

IBM® Rational® SDL Suite
Threaded OS Integrations

Copyright Notice
© Copyright 2000, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services,
or features discussed in this document in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM product, program, or service is not intend-
ed to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing
of this document does not grant you any license to these patents. You can send written license inquiries to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property De-
partment in your country or send written inquiries to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsis-
tent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions.
Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the infor-
mation herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of informa-
tion between independently created programs and other programs (including this one) and (ii) the mutual use of the infor-
mation which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software

IBM Corporation

1 Rogers Street
ii April 2009

Cambridge, Massachusetts 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement be-
tween us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in
other operating environments may vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announce-
ments or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of perfor-
mance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely
as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fic-
titious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Additional legal notices are described in the legal_information.html file that is included in your software installation.

Copyright license
This information contains sample application programs in source language, which illustrate programming techniques on
various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the applica-
tion programming interface for the operating platform for which the sample programs are written. These examples have
not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM
Corp. _enter the year or years_.

Trademarks
See http://www.ibm.com/legal/copytrade.html.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., reg-
istered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Sys-
tems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other coun-
tries, or both.

Other company, product or service names may be trademarks or service marks of others.
April 2009 Copyright Notice iii

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

How to contact Customer Support

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your prob-
lem, you can contact IBM® Rational® Software Support for assistance
in resolving product issues.

Prerequisites

To submit your problem to IBM Rational Software Support, you must
have an active Passport Advantage® software maintenance agreement.
Passport Advantage is the IBM comprehensive software licensing and
software maintenance (product upgrades and technical support) offer-
ing. You can enroll online in Passport Advantage from ht-
tp://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html

• To learn more about Passport Advantage, visit the Passport Advan-
tage FAQs at http://www.ibm.com/software/lotus/passportadvan-
tage/brochures_faqs_quickguides.html.

• For further assistance, contact your IBM representative.

To submit your problem online (from the IBM Web site) to IBM Ratio-
nal Software Support, you must additionally:

• Be a registered user on the IBM Rational Software Support Web
site. For details about registering, go to http://www-
01.ibm.com/software/support/.

• Be listed as an authorized caller in the service request tool.

Note:

If you are a heritage Telelogic customer, you can go to http://sup-
port.telelogic.com/toolbar and download the IBM Rational Telelog-
ic Software Support browser toolbar. This toolbar helps simplify the
transition to the IBM Rational Telelogic product online resources.
Also, a single reference site for all IBM Rational Telelogic support
resources is located at http://www.ibm.com/software/rational/sup-
port/telelogic/
iv April 2009

http://support.telelogic.com/toolbar
http://support.telelogic.com/toolbar
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

Submitting problems

To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a
problem to IBM, you are asked to supply a severity level. Therefore,
you need to understand and assess the business impact of the prob-
lem that you are reporting.

Use the following table to determine the severity level.

2. Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all
relevant background information so that IBM Rational Software
Support specialists can help you solve the problem efficiently. To
save time, know the answers to these questions:

• What software versions were you running when the problem oc-
curred?

Severity Description

1 The problem has a critical business impact: You
are unable to use the program, resulting in a criti-
cal impact on operations. This condition requires
an immediate solution.

2 This problem has a significant business impact:
The program is usable, but it is severely limited.

3 The problem has some business impact: The pro-
gram is usable, but less significant features (not
critical to operations) are unavailable.

4 The problem has minimal business impact: The
problem causes little impact on operations or a
reasonable circumvention to the problem was im-
plemented.
April 2009 How to contact Customer Support v

To determine the exact product name and version, use the option ap-
plicable to you:

– Start the IBM Installation Manager and select File > View In-
stalled Packages. Expand a package group and select a package
to see the package name and version number.

– Start your product, and click Help > About to see the offering
name and version number.

• What is your operating system and version number (including any
service packs or patches)?

• Do you have logs, traces, and messages that are related to the prob-
lem symptoms?

• Can you recreate the problem? If so, what steps do you perform to
recreate the problem?

• Did you make any changes to the system? For example, did you
make changes to the hardware, operating system, networking soft-
ware, or other system components?

• Are you currently using a workaround for the problem? If so, be pre-
pared to describe the workaround when you report the problem.

3. Submit your problem to IBM Rational Software Support. You can
submit your problem to IBM Rational Software Support in the fol-
lowing ways:

– Online: Go to the IBM Rational Software Support Web site at
https://www.ibm.com/software/rational/support/ and in the Ra-
tional support task navigator, click Open Service Request. Se-
lect the electronic problem reporting tool, and open a Problem
Management Record (PMR), describing the problem accurately
in your own words.

For more information about opening a service request, go to ht-
tp://www.ibm.com/software/support/help.html

You can also open an online service request using the IBM Sup-
port Assistant. For more information, go to http://www-
01.ibm.com/software/support/isa/faq.html.

– By phone: For the phone number to call in your country or re-
gion, go to the IBM directory of worldwide contacts at ht-
vi April 2009

https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/

tp://www.ibm.com/planetwide/ and click the name of your
country or geographic region.

– Through your IBM Representative: If you cannot access IBM
Rational Software Support online or by phone, contact your
IBM Representative. If necessary, your IBM Representative can
open a service request for you. You can find complete contact
information for each country at http://www.ibm.com/planet-
wide/.

If the problem you submit is for a software defect or for missing or in-
accurate documentation, IBM Rational Software Support creates an Au-
thorized Program Analysis Report (APAR). The APAR describes the
problem in detail. Whenever possible, IBM Rational Software Support
provides a workaround that you can implement until the APAR is re-
solved and a fix is delivered. IBM publishes resolved APARs on the
IBM Rational Software Support Web site daily, so that other users who
experience the same problem can benefit from the same resolution.
April 2009 How to contact Customer Support vii

http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

viii April 2009

Table of Contents
Copyright Notice . ii
How to contact Customer Support . iv

1
Threaded OS Integrations . 1

Threaded OS Integrations. 2

Overview . 2
Threaded integrations . 3
April 2009 i

Table of Contents
ii April 2009

Threaded OS Integrations
April 2009 1

Threaded OS Integrations

Overview

The threaded integrations with Real-time operating systems described in this
document has been developed by IBM Rational in the IBM Rational Tau
product. Our intension, however, is that the integrations should be possible
to use both in IBM Rational SDL Suite (Cadvanced) and IBM Rational Tau
(AgileC and C Code Generator) products.

The difference between the threaded integrations described in this document
and the previous existing threaded integrations before SDL Suite version 4.5
is not that large. The integration principles are almost exactly the same. The
major difference is that previous integrations are expressed using macros,
while this integration uses a functional interface. Another difference is that
all the previous integrations provided by IBM Rational are mixed into one .h
file, while in this integration, each RTOS integration is implemented using
one .h and one .c file. Both these changes are made to increase the readability
and to simplify debugging. The change in file structure makes it also easier
to implement new integrations and for a customer to modify an integration.

The integrations currently available integrations are listed below.

Previous integrations:

• SUN Solaris (This is a POSIX pthread integration that probably can be
used on most UNIX-like operation system.)

• Win32

• VxWorks

• OSE

The new threaded integrations:

• POSIX pthreads (tested on SUN Solaris and Linux but can probably be
used on most UNIX-like operation system.)

• Win32

• VxWorks

• Nucleus Plus
2 Threaded OS Integrations April 2009

Threaded OS Integrations
Each RTOS integration consists of two files with the names rtapidef.h and
rtapidef.c. The rtapidef.h file is included in the scttypes.h file, while the
rtapidef.c file is included in the sctsdl.c file. As rtapidef.c is included in
sctsdl.c there are no new files to compile and the make files are not effected,
except for some compilation options discussed below.

When it comes to compilation none of the compilation switches used for the
previous threaded integrations should be defined. To use the new integra-
tions the following should be given:

• a switch selecting an application kernel, for example SCTAPPLCLENV

• the switch THREADED

• a compiler option to tell the compiler where to find the rtapidef.h and the
rtapidef.c file.

Example: cc -DSCTAPPLCLENV -DTHREADED -I/some/suitable/path

In the remaining part of this document the new threaded integrations are de-
scribed in detail. This documentation is provided for customers who want to
understand and possibly modify the integrations or to make new integrations
themselves. The documentation was initially written for the AgileC code
generator in IBM Rational Tau and has been somewhat adopted to Cad-
vanced in IBM Rational SDL Suite.

Note: The new threaded integrations are not prepared for
ALTERNATIVE_SIGNAL_SENDING as the old threaded integrations
were. This limits the new threaded NucleusPlus integration interrupt routines
usage. The way Nucleus Plus handle semaphores in conjunction with inter-
rupts makes it impossible to send messages from an interrupt routine directly
to an SDL process.

Threaded integrations

To implement a new integration or to understand an existing one it is recom-
mended to use this manual together with the code for some existing integra-
tion(s). There are some major aspects that have to be handled to implement
an integration with real-time operating system.

• It is necessary to implement a clock function.

• There is need for a number of mutexes or binary semaphores to protect
some shared data.
April 2009 Threaded OS Integrations 3

• Some startup code, for creating threads with relevant properties and syn-
chronizing them are needed.

• A thread must be able to suspend its execution when it has nothing to do.
It must then be possible to wake it up again when a signal is sent to a part
in the thread.

To explain the details in these integration aspects the POSIX integration will
be used as an example. Apart from the code mentioned below the rtapidef.h
should include the necessary system include files to be able to access the con-
cepts needed.

Example 1: Includes in rtapidef.h for POSIX––––––––––––––––––––––––––

#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include <time.h>
#include <sys/time.h>

–––

If the RTOS has any requirements on the main function, which might be the
case, it is possible to rename the main function included in uml_kern.c by de-
fining XMAIN_NAME to for example:

#define XMAIN_NAME agilec_main

Then the user has to implement a proper main function that calls the
agilec_main function.

The clock function

To support the SDL concept of timers, a clock function is necessary. The
generated code and the kernel assumes that there is a clock function called
xNow that returns the current time. Time values are represented by values of
type SDL_Time which is defined as:

typedef struct
 s, ns xint32;
} SDL_Time;

xint32 is implemented as a 32-bit int. The components s and ns represent
the number of seconds and nanoseconds passed from some time in the past
depending on the implementation of the clock function.
4 Threaded OS Integrations April 2009

Threaded OS Integrations
There are two standard implementations of the clock function, one for UNIX
like systems and one for Windows. In Windows the standard function
_ftime is used to read the system clock, while on UNIX like systems the
standard function clock_gettime is used.

To implement a clock function you should include code in your own
rtapidef.h and rtapidef.c files according to the details below.

If timers are not used and the clock is not explicitly accessed in SDL or C,
there is no need for a clock implementation. Just include the macro defini-
tion:

#define xInitSystime()

in rtapidef.h.

If a clock implementation is needed then include the following prototypes in
rtapidef.h:

extern void xInitSystime(void);
extern SDL_Time xNow (void);

If no initialization function is needed then the xInitSystime function can
be replaced by the macro.

#define xInitSystime()

In the file rtapidef.c the implementation of these functions should be pro-
vided. The implementations will depend a lot on the support in software and
hardware for the underlying architecture.

Protection of shared data

It is necessary to protect the list of available signals, the list of available
timers, and a few other things. For this four global mutexes or binary sema-
phores are needed. These variables should be defined extern in
rtapidef.h and declared in rtapidef.c. The names of the variables
should be the same as in the example given below.

Example 2: In rtapidef.h: –––

extern pthread_mutex_t xFreeSignalMutex;
extern pthread_mutex_t xFreeTimerMutex;
extern pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
 extern pthread_mutex_t xMemoryMutex;
#endif

––
April 2009 Threaded OS Integrations 5

Example 3: In rtapidef.c:

pthread_mutex_t xFreeSignalMutex;
pthread_mutex_t xFreeTimerMutex;
pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
 pthread_mutex_t xMemoryMutex;
#endif

–––

These four variables should be initialized during the startup of the applica-
tion to an unlocked state. The function xThreadInit is a proper place for
this initialization. Note that the names of the variables are chosen for AgileC
in IBM Rational Tau, and do not fully reflect their usage in Cadvanced in
IBM Rational SDL Suite.

Example 4: xThreadInit ––

void xThreadInit (void)
{
 (void)pthread_mutex_init(&xFreeSignalMutex, 0);
 (void)pthread_mutex_init(&xFreeTimerMutex, 0);
 (void)pthread_mutex_init(&xCreateMutex, 0);
 #ifdef USER_CFG_USE_MEMORY_PACK
 (void)pthread_mutex_init(&xMemoryMutex, 0);
 #endif

}

–––

The lock and unlock operation must also be implemented for mutexes or bi-
nary semaphores. The following two functions should be implemented.

Example: In rtapidef.h:

extern void xThreadLock (pthread_mutex_t *);
extern void xThreadUnlock (pthread_mutex_t *);

In rtapidef.c:

void xThreadLock (pthread_mutex_t *M)
{
 (void)pthread_mutex_lock(M);
}

void xThreadUnlock (pthread_mutex_t *M)
{
 (void)pthread_mutex_unlock(M);
}

6 Threaded OS Integrations April 2009

Threaded OS Integrations
Startup phase - creating the threads

After some basic initialization the kernel will in the main function start the
specified threads. For each thread the functions xThreadInitOneThread
and xThreadStartThread will be called, where xThreadInitOneThread
should perform some thread specific initialization and
xThreadStartThread should start the thread. Each thread should run the
function xMainLoop declared in the kernel. This is performed by using a
wrapper function, xThreadEntryFunc, which is defined in the integration
and is the function really started in the thread.

After all the threads have been started the function xThreadGo is called in
the function main. Some more information on these functions are given
below.

It is important that the started threads do not execute any SDL transitions be-
fore all threads are created. Therefore the xThreadEntryFunc will as first
action wait on a semaphore. The xThreadGo function will when all threads
are created release this semaphore.

Many functions has a pointer to type xSystemData as parameter. This con-
tains the local information for the thread. Among other things it contains a
field of type xThreadVars, which should be defined in the RTOS integra-
tion.

Example: xThreadVars type in rtapidef.h

typedef struct {
 pthread_mutex_t SignalQueueMutex;
 pthread_cond_t SignalQueueCond;
 pthread_t ThreadId;
} xThreadVars;

where the two first fields will be discussed in the next section, and the
ThreadId will be used during the startup phase to store the identity of the
threads.

The code for the behavior described in this section should look something
like the following example.

Example: In rtapidef.h:

extern sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)
 extern sem_t xMainThreadSem;
#endif

extern void xThreadInitOneThread (
April 2009 Threaded OS Integrations 7

struct _xSystemData *);
extern void xThreadStartThread (

struct _xSystemData *,
unsigned int, unsigned int,
unsigned int, unsigned int);

In rtapidef.c:

sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)

sem_t xMainThreadSem;
#endif

void xThreadInit (void)
{

....
(void)sem_init(&xInitSem, 0, 0);

}

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
 (void)pthread_mutex_init(

&xSysDP->ThreadVars.SignalQueueMutex, 0);
 (void)pthread_cond_init(

&xSysDP->ThreadVars.SignalQueueCond, 0);
}

static void *xThreadEntryFunc (void *xSysDP)
{
 (void)sem_wait(&xInitSem);
 (void)sem_post(&xInitSem);
 xMainLoop((xSystemData *)xSysDP);
}

void xThreadStartThread(struct _xSystemData *xSysDP,
 unsigned int StackSize,
 unsigned int Prio,
 unsigned int User1,
 unsigned int User2)
{
 pthread_attr_t Attributes;

 (void)pthread_create(&xSysDP->ThreadVars.ThreadId,
 &Attributes, xThreadEntryFunc,

(void *)xSysDP);

}

void xThreadGo(void)
{
 (void)sem_post(&xInitSem);
8 Threaded OS Integrations April 2009

Threaded OS Integrations
 #if defined(USER_CFG_USE_xInEnv)
 xInEnv(); /* AgileC */
 #elif defined(XENV)
 xInEnv(xNow()); /* Cadvanced */
 #else
 (void)sem_init(&xMainThreadSem, 0, 0);
 (void)sem_wait(&xMainThreadSem);
 #endif
}

The xInitSem semaphore is used for synchronization of the threads. It is ini-
tialized in the beginning of xThreadInit to 0, that is to a blocking state.
After that the xThreadStartThread once for each thread that is to be
started. The function pthread_create will call the function given as third
parameter (xThreadEntryFunc) with the void * parameter given as fourth
parameter (the xSysD pointer) as parameter. pthread_create will also store
the identity of the thread in the variable passed as first parameter. The second
parameter is the properties of the thread. This will be discussed later in this
section.

If any of the threads get a chance to execute before all the threads are created,
these threads will hang on the sem_wait call in xThreadEntryFunc, until
the main thread calls xThreadGo that will post the semaphore xInitSem
once. One of the threads waiting on this semaphore will then be able to exe-
cute and will immediately post the semaphore again. This will continue until
all threads are free to execute.

After that all threads are running and depending on the OS and the applica-
tion properties, the main thread can perform different things. Our recommen-
dation is to call the xInEnv function and let that function run in this thread.
For more details see the discussion on xInEnv. Another alternative is to hang
the main thread on a semaphore, as shown above using the semaphore
xMainThreadSem (if xInEnv is not used). In this case you can post the
xMainThreadSem semaphore anywhere to restart the execution of the main
thread.

When the main thread returns from the function xThreadStart, the program
will continue to execute in the main function and will perform a call to exit.
The behavior of a threaded program when the main thread performs exit, is
OS dependent. In POSIX pthreads all threads are stopped at such an action.
That is the reason it is important to hang the main thread at the end of the
xThreadStart function.
April 2009 Threaded OS Integrations 9

Now to the properties of the threads. In most RTOS, properties like stack size
and priority can be set for individual threads. Together with the definition of
the thread artifacts, four integer values can be specified.

• The first value is interpreted as the stack size.

• The second value is interpreted as the priority.

• The third and fourth values can be used for other properties, defined by
the RTOS integration or defined by you.

The currently predefined integrations only makes use of the first and second
values. These values are passed as parameters to the xTreadStartThread
function.

How the properties are set up in detail depend on the RTOS. Please see the
available integrations, in the function xThreadStartThread, for examples.

In rtapidef.h proper default values for the four xThreadData fields
should be set up. These default values are used if no value is specified in the
thread definition.

Example:

#define DEFAULT_STACKSIZE 1024
#define DEFAULT_PRIO 0
#define DEFAULT_USER1 0
#define DEFAULT_USER2 0

Suspending and waking up threads

When a thread finds out that it has nothing more to do, at least just for the
moment, it should suspend itself to make the processor available for other
threads. The thread should then wake up again either when a timer has ex-
pired and needs to be handled, or when some other thread (including xInEnv)
sends a signal that should be treated by the suspended thread.

To implement these features one mutex or binary semaphore is used together
with some sort of conditional variable. We need the possibility to perform a
condition wait, with or without a timeout. We need also a way to signal to a
thread to wake up again. These two entities are needed for each thread and is
therefore included in the xThreadVars struct mentioned earlier:

typedef struct {
 pthread_mutex_t SignalQueueMutex;
 pthread_cond_t SignalQueueCond;
10 Threaded OS Integrations April 2009

Threaded OS Integrations
 pthread_t ThreadId;
} xThreadVars;

The purpose of the SignalQueueMutex is to protect the signal queue where
signals from the outside of the thread are inserted. The SignalQueueCond
should facilitate the conditional wait.

The SignalQueueMutex should be initialized in xThreadInitOneThread.
If SignalQueueCond needs to be initialized it could be performed at the
same place.

Example 5 –––

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
(void)pthread_mutex_init(&xSysDP->ThreadVars.SignalQueueMutex, 0);
(void)pthread_cond_init(&xSysDP->ThreadVars.SignalQueueCond, 0);

}

––

The SignalQueueMutex is locked by using the function xThreadLock, dis-
cussed above. It is then unlocked in three different ways:

• xThreadUnlock (discussed above)

• xThreadWaitUnlock

• xThreadSignalUnlock

The xThreadWaitUnlock is called by the thread itself when it has come to
the conclusion that it should suspend itself, while xThreadSignalUnlock is
called by another thread that wants to wake up the current thread. Both func-
tions are passed the xSysD pointer for the thread that the operation should be
performed on.

Example: In rtapidef.h:

extern void xThreadWaitUnlock (struct _xSystemData *);
extern void xThreadSignalUnlock (struct _xSystemData *);

Example: In rtapidef.c:

void xThreadWaitUnlock (struct _xSystemData *xSysDP)
{
 #if defined(CFG_USED_TIMER) || defined(THREADED)
 #ifdef THREADED
 /* Cadvanced */
 if (xSysDP->xTimerQueue->Suc==xSysDP->xTimerQueue) {
 #else
 /* AgileC */
 if (! xSysDP->TimerQueue) {
April 2009 Threaded OS Integrations 11

 #endif
 (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

 } else {
 struct timespec timeout;
 #ifdef THREADED
 /* Cadvanced */
 timeout.tv_sec =

((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.s;

 timeout.tv_nsec =
((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.ns;

 #else
 /* AgileC */
 timeout.tv_sec = xSysDP->TimerQueue->Time.s;
 timeout.tv_nsec = xSysDP->TimerQueue->Time.ns;
 #endif
 (void)pthread_cond_timedwait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex,
&timeout);

 }
 #else
 (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

 #endif
 (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

void xThreadSignalUnlock (struct _xSystemData *xSysDP)
{
 (void)pthread_cond_signal(

&xSysDP->ThreadVars.SignalQueueCond);
 (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

At the time when xThreadWaitUnlock or xThreadSignalUnlock is called
the SignalQueueMutex will be locked and must therefore be unlocked at the
end of both functions.

In xThreadWaitUnlock the thread wants to suspend itself. If timers are used
and there is a timer active in the timer queue, it should wait until the timer
expires or until some other thread tells it to wake up. In POSIX pthreads the
function pthread_cond_wait performs exactly this. If timers are not used
12 Threaded OS Integrations April 2009

Threaded OS Integrations
or there is no timer active, the thread should be suspended until someone else
wakes it up. In POSIX pthreads this can be achieved with the function
pthread_cond_wait.

In xThreadSignalUnlock the thread given by the parameter should be
waken up. Here the pthread function pthread_cond_signal can be used.

The integrations described here are also used when the Cadvanced is used to
generate threaded applications. This adds a few requirements in the imple-
mentation of a threaded integration. First a function that can stop a thread is
needed.

In rtapidef.h:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
extern void xThreadStopThread(struct _xSystemData *);
#endif

In rtapidef.c:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
void xThreadStopThread(struct _xSystemData *xSysDP)
{
 pthread_mutex_destroy(&xSysDP->ThreadVars.SignalQueueMutex);
 pthread_cond_destroy(&xSysDP->ThreadVars.SignalQueueCond);
 pthread_exit(0);
}
#endif

The xThreadStopThread function should clean up the thread specific sema-
phores and stop the thread. It is always the thread that should be stopped that
will call this function to stop itself.

Another difference is the way timers are accessed for the two code genera-
tors. This effects the details in the xThreadWaitUnlock function. Please see
this function above and especially the sections under #ifdef THREADED.

In the case of the Cadvanced the RTOS integrations are accessed through a
macro layer. The macros in this layer is used in the Cadvanced kernel files
and in the generated code.

Example 6: Defines in scttypes.h ––––––––––––––––––––––––––––––––––

The following defines are relevant (from scttypes.h):

#define THREADED_GLOBAL_VARS
#define THREADED_GLOBAL_INIT \
 xThreadInit();
#define THREADED_THREAD_VARS \
 xThreadVars ThreadVars;
#define THREADED_THREAD_INIT(SYSD) \
 xThreadInitOneThread(SYSD);
April 2009 Threaded OS Integrations 13

#define THREADED_THREAD_BEGINNING(SYSD)
#define THREADED_AFTER_THREAD_START \
 xThreadGo();
#define THREADED_START_THREAD(F, SYSD, STACKSIZE, PRIO, USER1,
USER2) \
xThreadStartThread(SYSD, STACKSIZE, PRIO, USER1, USER2);
#define THREADED_STOP_THREAD(SYSD) \
 xThreadStopThread(SYSD);
#define THREADED_LOCK_INPUTPORT(SYSD) \
 xThreadLock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_UNLOCK_INPUTPORT(SYSD) \
 xThreadUnlock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_WAIT_AND_UNLOCK_INPUTPORT(SYSD) \
 xThreadWaitUnlock(SYSD);
#define THREADED_SIGNAL_AND_UNLOCK_INPUTPORT(SYSD) \
 xThreadSignalUnlock(SYSD);
#define THREADED_LISTREAD_START xThreadLock(&xFreeSignalMutex);
#define THREADED_LISTWRITE_START xThreadLock(&xFreeSignalMutex);
#define THREADED_LISTACCESS_END xThreadUnlock(&xFreeSignalMutex);
#define THREADED_EXPORT_START xThreadLock(&xCreateMutex);
#define THREADED_EXPORT_END xThreadUnlock(&xCreateMutex);

–––
14 Threaded OS Integrations April 2009

	Copyright Notice
	How to contact Customer Support
	Threaded OS Integrations
	Threaded OS Integrations
	Overview
	Threaded integrations
	The clock function
	Protection of shared data
	Startup phase - creating the threads
	Suspending and waking up threads

