IBM Rational Developer for System z
8.5.0

SCLMDT Administrator’s Guide

<||IH

IBM Rational Developer for System z
8.5.0

SCLMDT Administrator’s Guide

..lli

Note

Before using this document, read the general information under [“Documentation notices for IBM Rational Developer for|
[System z” on page 129

Third Edition (June 2012)

This edition applies to IBM Rational Developer for System z Version 8.5.0, (program number 5724-T07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation

Attn: Information Development Department 53NA
Building 501 P.O. Box 12195

Research Triangle Park NC 27709-2195

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

The IBM Rational Developer for System z Web site is at

|http: / /www.ibm.com/software /rational /products/developer/systemz/|

The latest edition of this document is always available from the Web site.

Copyright International Business Machines Corporation 2010. All rights reserved. U.S. Government Users Restricted
Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

© Copyright IBM Corporation 2010, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/software/rational/products/developer/systemz/

Contents
Figures .
Tables .

About this document.
Who should read this book .

Chapter 1. Product installation .

Chapter 2. SCLM customization for

SCLM Developer Toolkit.

SCLM customization for SCLM Developer Toolklt
JAVA/]2EE build summary . .o
JAVA/J2EE build objects generated
Language translators for JAVA/J2EE support

SCLM language definitions
SCLM data sets for JAVA/J2EE .
SCLM types
Recommended data set attrlbutes for some
typical types
SCLM member formats .
$GLOBAL format.
J2EE ARCHDEF format.
J2EE ARCHDEF samples
J2EE Ant Build Script format
CLASSPATH dependencies .
J2EE sample scripts. .
JAVA/J2EE Ant XML build skeletons
Mapping J2EE projects to SCLM .
Recommendations for mapping J2EE pro]ects
to SCLM
SCLM Developer Toollqt deployment
WebSphere Application Server (WAS)
deployment
SCLM to UNIX Systern Servrces deployment
Secure deployment . . .o
Public key authentication .
Other deployment options
ASCII or EBCDIC storage options .
ASCII/EBCDIC language translators .
$GLOBAL
TRANSLATE.conf .
SITE and project-specific optrons
Example of using combinations of the
TRANSLATE.conf overrides . .
Example of using combinations of the
BIDIPROP overrides

Chapter 3. SQLJ Support
What is SQL?.

What is DB2?.

What is JDBC?

What is SQLJ?

Comparing JDBC and SQL]

© Copyright IBM Corp. 2010, 2012

. Vil

. ix

N OOl Ul W w W

. 20

20

. 20
.21
.21
.21
.21
.22
.24
. 25

. 30

.31

. 33
.33
.33
.33
.33
.34

What is a Serialized Profile?.35
WhatisaDBRM?35
SQLJ program preparatron G o)
Translation . . G 1)
Customization37
Binding. . . <
SCLM DT types and translators N 4
Tailoring the build process38
Tailoring the Build Script.38
sqlj.* properties38
db2sqljcustomize.* propertles G
Custom user script39
Binding [DBRM].41
Binding [Serialized Profile]42

Chapter 4. SCLM security. 45

Security flag 45
Set up in your Security product o
Security profiles.45
SurrogateuserID46
Example: Build46
Example: Deploy47

Chapter 5. CRON-initiated Builds and

Promotes . . . e .. 249
STEPLIB and PATH requlrernents S
CRON Build job execution49
CRON Build job samples.50

Appendix A. SCLM overview 53

SCLM Concepts53
File naming53
Type.53
Language54
SCLM properties54
SCLM project structure54
ARCHDEF54

JAVA/J2EE concepts55

Appendix B. Long/short name

translation table. Y4
Technical summary of the SCLM Translate program 57
Single long/short name record processing 58
FINDLONG processing58
FINDSHORT processing58
TRANSLATE processing59
Multiple long/short name record processing . . . 59
IMPORT processing59
MIGRATE processing60

Appendix C. SCLM Developer Toolkit
API061

Invocation format61
XML schema for SCLMDT cornrnands N VA
iii

Request functions and parameters.67

Function format.67
Function list68
AUTHUPD - Change SCLM authorlty code . .68
BROWSE - Browse SCLM member69
BUILD - Build SCLM member69
DELETE - Delete SCLM member71
DEPLOY - Deploy a J2EE EARfile71
EDIT - Edit SCLM member72
INFO - SCLM member status mformatron .. .72
J2EEIMP — Import project from SCLM73
J2EEMIG - Migrate project into SCLM74
J2EEMIGB - Batch Migrate project into SCLM. . 75
JARCOPY - Copy JAR file76
JOBSTAT — Retrieve batch job status76
LRECL - Retrieve LRECL of SCLM data set . . 77
MIGDSN - List NON-SCLM data sets and

members77
MIGPDS - Migrate NON SCLM data sets and
members into SCLM78

PROJGRPS - Retrieve SCLM groups for a pro]ect 78
PROJINFO - Retrieve SCLM project information 78

PROMOTE - Promote SCLM member79
REPORT - Create project report80
REPUTIL - SCLM DBUTIL report81
SAVE - Save SCLM member.81
UNLOCK - Unlock SCLM member . . . 81
UPDATE - Update SCLM member 1nformat10n 82
VERBROW - SCLM browse versions.83
VERDEL - SCLM delete versions83
VERHIST - SCLM version history. 84
VERLIST - SCLM list versions84
VERREC - SCLM recover versions84
Samples . . . B)
sclmdt_request. xml P - 2]
xmlbldjava8
sclmdt_responsexml87

Appendix D. Rational Application
Developer for WebSphere Software

Build utility. 95
Overview of Rational Apphcatlon Developer for
WebSphere Software Build utility95
Storing Java/J2EE objects in SCLM95
The Build utility compared to native ANT build
process 96
Rational Apphcatlon Developer for WebSphere
Software Build utility Installation notes 96
SCLM integration with the Build Utility.97

Rational Application Developer for WebSphere
Software Build utility implementation and usage . 97

SCLM Build utility language translators. . . . 98
J2EEAST: J2EE Verify/Build Translator . . . 98
J2EEOB]J: J2EE ARCHDEF translator 99
JAVA: Java language translator (EBCDIC) . . 99
JAVABIN: Java language translator (ASCII). . 99
J2EEPART: J2EE text language translator . . 100
J2EEBIN: J2EE binary language translator 100

Build utility Build scripts and formats 100
Build script format100
Unmodified AST routines101

projectlmport101
projectBuild101
EJBexport.102
WARExport.102
EARExport103
AppClientExport 103
AST Run Script (sample BWBASTR). .. 103
Java/JAR Build Script (sample) 105
WAR Build Script (sample). 105
EJB Build Script (sample) 106
EAR Build Script (sample) 107
J2EE ARCHDEEF format 108

SQLJ build support108
SQLJ customization (for the SCLM
Administrator)109

System requirements 109
Language translators 109

SQLJ user customization. 109

SQLJ build property script 109

SCLM ARCHDEEF (sample ASTSQL]) .o I

SCLM AST build script (sample ASTSQL]) 111

Java source in archive files 112
USAGE SCENARIO: ‘PlantsByWebSphere ... 113

Appendix E. BUILD FORGE and SCLM 119

Overview. 119
Prerequisites. 119
How to invoke the Bulld Forge agent on z / OS .. 119
Build Forge console server configuration 120
SCLM promote sample126

Documentation notices for IBM
Rational Developer for Systemz . . . 129

Copyright license . . . T 1 VA
Trademark acknowledgrnents. B < 72

iv IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Figures

PN WD

= e e
@ = oo

15.
16.
17.
18.
19.
20.
21.
22.
23.

Sample Jar application (JAR) ARCHDEF .
J2EE Build script JAR sample . . .
$GLOBAL - SCLMDT environment Varlables
Sample Jar application (JAR) ARCHDEF
Sample Web application (WAR) ARCHDEF
Sample EJB Application (EJB) ARCHDEF
Sample EAR Application (EAR) ARCHDEF
J2EE Ant build script S
J2EE Build script JAR sample

J2EE Build script WAR sample .

J2EE Build script EJB sample.

J2EE Build script EAR sample

SCLM build hierarchy .

TRANSLATE.conf - SCLMDT ASCH/ EBCDIC
translation configuration file . . .
Sample SITE-specific SCLM project settmg

Sample PROJECT-specific SCLM pro]ect settmg

SQLJ program preparation
BWBCRONT1 - CRON Build exec
BWBCRONSB - Build parameter file
BWBCRONP - Promote parameter file

Sample REXX for Translate module invocation

XML schema for SCLMDT commands
XML schema for SCLMDT commands
(continued).

© Copyright IBM Corp. 2010, 2012

.4
.4

9
10
10
11
11

.12
.14
.14
.14
.15

.18

. 24

27
28
. 36

.50
.51
.52

60

. 63

. 64

24.

25.

26.

27.
28.

29.
30.

31.
32.
33.
34.
35.
36.

37.
38.

39.

XML schema for SCLMDT commands
(continued).

XML schema for SCLMDT commands
(continued). .

XML schema for SCLMDT commands
(continued). .
Basic structure of the XML mput ﬁle .
sclmdt_request.xml — sample XML command
input file .
xmlbld java — sample]ava program
xmlbld.java — sample Java program
(continued).

. 65

. 66

. 67
. 67

. 85
. 86

. 87

sclmdt_response. xml - sample XML output flle 87

Server authorization .

Server definition

Server selector deﬁmtlon .
Environment variable definitions . .
Project sample setup for SCLM build (SCLM
build samplel)o
** SCLM Build samplel = .

Project sample step within SCLM bulld
samplel . S

** SCLM Promote samplel *

. 120
. 121
. 122

. 123

. 124
. 125

. 126
. 127

vi IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Tables

LN .

O XN

SCLM administrator checklist .

SCLM Developer Toolkit translators.

Customer-defined variables .
SCLM Language Translators and
ASCII/EBCDIC . .
$GLOBAL variables .
SITE/Project options .
Comparing JDBC and SQL]J .
SCLM translator types for SQL]
sqlj.* properties .

© Copyright IBM Corp. 2010, 2012

—_

.21
.23
. 28
. 34
. 38
. 39

10.
11.
12.
13.
14.
15.
16.
17.
18.

db2sqljcustomize.* properties

SCLMDT Developer Toolkit security proflles
Long/Short name translation parameters.
projectimport parameters

projectBuild parameters .

EJBexport parameters .

WAREXxport parameters .

EARExport parameters

AppClientExport parameters

. 39

46
58

. 101
. 101
. 102
. 102
. 103
. 103

vii

viii IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

About this document

This document discusses the configuration of IBM® Software Configuration and
Library Manager (SCLM) required for the SCLM Developer Toolkit function of IBM
Rational Developer for System z.

From here on, the following names are used in this manual:
* IBM Software Configuration and Library Manager is called SCLM.
« IBM Rational® Developer for System z® is called Developer for System z.

* The SCLM Developer Toolkit function of IBM Rational Developer for System z is
called SCLM Developer Toolkit, sometimes abbreviated to Developer Toolkit or
SCLMDT.

The information in this document applies to all Rational Developer for System z
v8.5 packages including IBM Rational Developer for zEnterprise .

Who should read this book

This document contains information for the administrator of SCLM projects that
will be used with SCLM Developer Toolkit. This includes projects that use Java
and z/0S® UNIX System Services component languages, as well as traditional
SCLM projects.

These administrators should be familiar with z/OS UNIX System Services, REXX
script, the Java Compiler, and SCLM project and language definitions.

© Copyright IBM Corp. 2010, 2012 ix

X IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Chapter 1. Product installation

This publication does not cover the implementation and loading of the SCLM
product, which is shipped with the z/OS operating system. Neither does it cover
the installation and configuration of SCLM Developer Toolkit itself, which is a
function of Rational Developer for System z.

Refer to ISPF Software Configuration and Library Manager Project Manager’s and
Developer’s Guide (SC34-4817) and Rational Developer for System z Host Configuration
Guide (SC23-7658) for more information on these tasks.

To complete the customization and project definition tasks, the SCLM
administrator needs to know several Developer for System z customizable values,
as described in Contact the z/OS system programmer responsible for
installing and customizing Developer for System z for more information.

Table 1. SCLM administrator checklist

Description

Default value Where to find the answer | Value

sample library

Developer for System z

FEK.SFEKSAMP SMP/E installation

sample directory

Developer for System z

Jusr/1pp/rdz/samples SMP/E installation

Java bin directory

/usr/1pp/java/Jd5.0/bin rsed.envvars -

$JAVA_HOME/bin

Ant bin directory

/usr/1pp/Ant/apache-ant- |rsed.envvars -

configuration home
directory

1.7.1/bin $ANT_HOME/b1’n
WORKAREA home /var/rdz rsed.envvars -
directory $ CMDSERV_CONF_HOME
SCLMDT project /var/rdz/scimdt rsed.envvars

Long/short name
translation VSAM

FEK.#CUST.LSTRANS.FILE rsed.envvars -

$_SCLMDT_TRANTABLE

© Copyright IBM Corp. 2010, 2012

2 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Chapter 2. SCLM customization for SCLM Developer Toolkit

This chapter looks at how the SCLM administrator can customize SCLM for use by
SCLM Developer Toolkit.

SCLM customization for SCLM Developer Toolkit

This chapter looks at how the SCLM administrator can customize SCLM for use by
SCLM Developer Toolkit.

JAVA/J2EE build summary

Here is a summary of the process that occurs for Java and J2EE builds using the
supplied translators.

Note: You can build JAVA/J2EE members or ARCHDEEFS directly in TSO/ISPF on
the host, as well as through the Developer Toolkit Client.

The ARCHDEF contains the members that make up the JAVA/J2EE project and are
a short-name representation of how the project exists in an Eclipse workspace.

The ARCHDETF itself is built, which invokes a pre-build verify language translator
(J2EEANT). The translator reads the J2EE build script, which is referenced in the
ARCHDEEF by the SINC keyword, and overlays the properties specified into the
skeleton Ant XML referenced by properties SCLM-ANTXML (A). The build script,
when generated by the SCLM Developer Toolkit, is stored in SCLM with a
language of J2EEANT (1).

An ARCHDEF generates Java Classes for Java source identified with the INCLD
keyword in the ARCHDEF (2), and each ARCHDEEF can also generate a J2EE
archive file, such as a JAR, WAR, or EAR file. The J2EE object created is dependent
on the appropriate build script referenced and use of the ARCHDEF keyword
OUT1 (3), (B).

When the ARCHDEF is built, the pre-build verify language translator associated
with the build script (in SCLM type J2EEBLD) runs and determines what parts of
the ARCHDEF are required to be rebuilt (including nested ARCHDEFs (4)
identified through the use of the INCL keyword in the ARCHDEF). Those parts are
then copied into the z/OS UNIX System Services file system workarea and Ant
compiles and generates the required JAVA/J2EE objects specified by the build
script and ARCHDEF. Any external jar or class references that your IDE project
needs to resolve are done so from the path defined in the CLASSPATH_JARS

property (C).

SCLM then processes each individual ARCHDEF component running each
language translator associated with the component. The Language translator JAVA,
associated with Java source, copies the class files created back into SCLM.

Finally, the ARCHDEEF translator determines what J2EE objects have been
generated (JAR, WAR, EAR) and copies these parts back into SCLM.

It is essential to create a separate ARCHDEEF for each application component that
might make up an enterprise application (EAR). That is, an EAR which contains a

© Copyright IBM Corp. 2010, 2012 3

*

WAR which contains an EJB JAR should have an ARCHDEEF for the JAR, an
ARCHDEF for the WAR with an INCL of the EJB JAR ARCHDEF. The EAR
ARCHDEEF then should include an INCL of the WAR ARCHDEF.

The following sample shows the JAR code:

* Initially generated on 10/05/2006 by SCLM DT V2

*

LKED J2EEOBJ

*

* J2EE Build translator

* Source to include in build

*

INCLD ANOOOOO2 V2TEST %= com/Angelina.java *
INCLD V2000002 V2TEST %= com/V2Javal.java (2) *

INCLD V2000003 V2TEST * V2InnerClass.java *
*

* Nested SCLM controlled jars to include *
*

INCL V2JART1 ARCHDEF % DateService.jar (4) *

*

* Build script and generated outputs

*

SINC V2JARB1(1) J2EEBLD * J2EE JAR Build script *

ouT1 =*
LIST =

J2EEJAR

J2EELIST

* V2TEST.jar (3) *

Figure 1. Sample Jar application (JAR) ARCHDEF

<ANTXML>

The following example shows the corresponding JAR script.

<project name="JAVA Project" default="jar" basedir=".">

name="env" environment="env" value="env"/>
name="SCLM_ARCHDEF" value="V2JAR1"/>

name="SCLM_ANTXML" value="BWBJAVAA"/> (A)
name="SCLM_BLDMAP" value="YES"/>

name="JAR_FILE_NAME" value="V2TEST.jar"/> (B)
name="CLASSPATH_JARS" value="/var/SCLMDT/CLASSPATH"/> (C)
name="ENCODING" value="IBM-1047"/>

<property
<property
<property
<property
<property
<property
<property
</ANTXML>

Figure 2. J2EE Build script JAR sample

JAVA/J2EE build objects generated

The following objects are generated:

Compilation of all Java Source into output classes, stored in SCLM type
JAVACLAS.

Classes stored in SCLM and long/short name stored in Translate tables.
Optional Jar created (contains classes and might contain other Java project
components, such as XML, HTML, and so on, in a packaged structure).

Jar objects stored in SCLM and long/short name stored in Translate table.
Jar structure determined by the ARCHDEEF used. The long names associated
with the members in the ARCHDEF determine the Jar packaging format.
Optional E]B JAR (contains Classes and might contain other Java project
components, such as XML, HTML, JSP, and so on, in a packaged structure).

Optional Web WAR file based on J2EE web.xml file in J2EE project and stored in
SCLM, as above.

4 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

* Optional EAR file for deployment based on application.xml in J2EE project and
stored in SCLM, as above.

* All listing outputs are stored in SCLM type J2EELIST.

Language translators for JAVA/J2EE support

SCLM Developer Toolkit requires new language translators defined in SCLM for
JAVA/]2EE support. These language translators are shipped in the FEK.SFEKSAMV
members as shown below:

Table 2. SCLM Developer Toolkit translators

Translator Description

BWBTRAN] Sample default member translator. No parsing. Similar to SCLM FLM@TEXT. This translator can
be customized to create language definitions J2EEPART, J2EEBIN, BINARY, and TEXT.

BWBTRANS Sample SQL]J language translator. LANG=SQL]J

BWBTRAN1 Sample Java language translator. LANG=JAVA

BWBTRAN2 Sample JAVA/J2EE language translator incorporating Ant (for multiple Java compiles and JAR,
WAR, and EAR builds)

BWBTRAN3 Sample J2EE language translator for SCLM ARCHDEF J2EE support. LANG=J2EEOB]J

The SCLM administrator will need to copy these samples, rename if required, and
then generate them into the PROJDEFS.LOAD library for each SCLM project where
Java support is required. These translators are required to be added or compiled in
the Project Definition.

A sample project definition for JAVA/J2EE projects and host components is
provided in sample BWBSCLM.

SCLM language definitions

The sample translators define the following languages:

J2EEANT

This is the main build translator for JAVA/J2EE builds and this verify
translator is invoked when a J2EE ARCHDEF is built. The translator gets
invoked because the JAVA/J2EE build script, stored in SCLM type
J2EEBLD, is saved in SCLM with a language of J2EEANT. It is then
referenced through the SINC keyword in the ARCHDEEF.

This verify translator determines what parts are required to be built
(including nested ARCHDEFs) and depending on the build modes copies
these parts into the z/OS UNIX System Services WORKAREA directory. A
skeleton Ant XML is dynamically customized according to the build script
and the parts built in the workarea using Ant. The class files are passed to
the JAVA /JAVABIN language translators to store the class files back into
SCLM. J2EE objects generated, such as a JAR, WAR, or EAR are passed to
the ARCHDEF language translator (J2EEOB]) to be stored back into SCLM.

J2EEBIN

Language type that specifies JAVA/J2EE Binary or ASCII stored component
and defined by sample BWBTRAN]. No particular parsing occurs on build
of this language definition. JAVA/J2EE binary files and text files that you
want to be stored as ASCII can be generically slotted under this language
definition if no particular build parsing is required.

J2EEOBJ

This is the final build translator invoked as part of the ARCHDEEF build

Chapter 2. SCLM customization for SCLM Developer Toolkit 5

process. This translator determines what J2EE objects (JAR, WAR, EAR)
were previously built in translator J2EEANT and copies these objects into
SCLM with the generated short name provided. This translator is
referenced by the LKED keyword in the ARCHDEEF itself.

J2EEPART
Language type that specifies a JAVA/J2EE component and defined by
sample BWBTRAN]. No particular parsing occurs on build of this language
definition. Non-Java source or J2EE components that require
ASCII/EBCDIC language conversion can be generically slotted under this
language definition if no particular build parsing is required (for example,
html, XML, .classpath, .project, or definition tables). Optionally language
definition of TEXT can be used.

JAVA Language type for Java source and defined by sample BWBTRAN1. The Java
translator determines what type of build has been issued against Java
source.

Note: This language definition must be assigned to Java programs if you
want to store the Java source in EBCDIC on the host (that is, the source
might be viewed and edited directly on the host through ISPF). The
advantage of defining programs with this language definition is being able
to edit and view the source directly on the z/OS host. The disadvantages
are that code page conversions need to take place when migrating or
importing projects from the client to the host.

* Scenario 1: Build issued against individual Java program.

The Java translator compiles source into output classes. Class is stored in
SCLM in type JAVACLAS. Java compile output is stored in type
JAVALIST.

Any classpath dependencies can be satisfied by storing dependent JARs
in the classpath directory specified in $GLOBAL member parameter
CLASSPATH_JARS. For more information see[“$GLOBAL” on page 22

* Scenario 2: Build against ARCHDEF (ARCHDEF calls]2EEANT build
script referenced by the SINC keyword) leaves the Ant script specified to
do the build. The Java translator itself, when invoked by the ARCHDEEF,
just copies the output classes into SCLM. An ANT build summary file is
stored in JAVALIST. Individual Java components have an output table
stored in JAVALIST.

JAVABIN
Language type that is similar to Java and used when storing Java source as
ASCII in SCLM.

SQLJ Language type for SQL]J source code defined by sample BWBTRANS. SQLJ
Members defined with this language translator invoke the SQL]J language
translator at build time. SQLJ source is converted to Java source, and
compiled into classes and serialized objects (.ser files) in type SQLJSER.
Optionally, DBRM members can also be generated into type DBRMLIB.

Note: All objects such as JAR, WAR, and EAR have their internal zipped source
parts in ASCII to distribute to all platforms.

SCLM data sets for JAVA/J2EE

It is recommended that you create SCLM target source data sets of RECFM=VB,
LRECL=1024 for any JAVA/]J2EE source that is to be stored in SCLM from the
Toolkit client to allow long record types.

6 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

The editors on the Eclipse-based client create files of variable record length, and to

maintain integrity, the Host target data sets in SCLM should also be of
RECFM=VB. Using Fixed record length data sets (RECFM=FB) will result in
imported members having white spaces appended to end of record.

SCLM types

There are a number of SCLM types that need to be created for JAVA/J2EE support.

Some of these types are mandatory types and must be created for JAVA /J2EE

support to function.

Recommended data set attributes for some typical types
Default data set attributes of DSORG=PO TRACKS(1,5) DIR=50 BLKSIZE=0
(system determined) are recommended for the following SCLM TYPES.

Also, the following record format and record length attributes are recommended:

SCLM type RECFM LRECL
ARCHDEF FB 80
J2EEBLD FB 256
JAVALIST VB 255
J2EELIST VB 255
DBRMLIB VB 256
JAVACLAS VB 256
J2EEEAR VB 256
J2EEJAR VB 256
J2EEWAR VB 256
SQLJSER VB 256
Additional source dataset VB 1024
types for Java/J2EE

ARCHDEF
The ARCHDEF type contains JAVA /J2EE ARCHDEF members.

The long name parts in each ARCHDEF member outline the JAVA /]J2EE
project structure. The ARCHDEF for a given project can be dynamically

created from the client when migrating in new projects or updated when
adding new parts to an existing project.

The SCLM ARCHDEEF is the primary SCLM file for defining the elements
of a JAVA/]J2EE project. Regarding JAVA /J2EE applications, the ARCHDEF
represents how the J2EE application is structured in the Client IDE project
workspace.

The Project file structure of the application is replicated in the ARCHDEF
(using the SCLM host short name to map the long name structure).
Additional keywords in the ARCHDEF, such as LINK, SINC, and OUT1
indicate to SCLM the J2EE nature of this project and source include a
JAVA/]J2EE build script to facilitate build processing of this project.

J2EEBLD

The J2EEBLD type is required for Java and J2EE build and deploy
processes, and contains the following;:

* J2EEBLD build scripts used to drive the Ant build and deploy process.

Chapter 2. SCLM customization for SCLM Developer Toolkit 7

8

SCLM

¢ Java and J2EE ANTXML scripts to be invoked for builds and deploys.

* $GLOBAL, which specifies the default properties for the SCLM project
for JAVA /J2EE build processing. See ["$GLOBAL format”| and
[“$GLOBAL” on page 22| for more information.

Note: Sample Java and J2EE ANTXML scripts are supplied. Generally,
these scripts require little or no user customization. Site- and
user-dependent variables are customized in the J2EEBLD scripts
themselves to override default ANTXML variables. For more information
see ['JAVA /J2EE Ant XML build skeletons” on page 15

JAVALIST
The JAVALIST type is required for the Java build process and contains
listing outputs from Java builds.

J2EELIST
The J2EELIST type is required for the J2EE build process and contains
listing outputs from J2EE builds.

DBRMLIB
Technically a DB2® type.

DBRMLIB is required for SQLJ support and stores the database request
modules.

JAVACLAS
The JAVACLAS type is required for both Java and J2EE build processes
and contains output class files from builds associated with the JAVA,
J2EEANT language definitions.

J2EEEAR
The J2EEEAR type is required for the J2EE build process and contains EAR
output from builds associated with the J2EEANT language definition.

J2EEJAR
The J2EEJAR type is required for JAVA /J2EE builds and contains JAR
output from builds associated with the J2EEANT language definition.

J2EEWAR
The J2EEWAR type is required for the J2EE build process and contains
WAR output from builds associated with the J2EEANT language definition.

SQLJSER
The SQLJSER type is required for the J2EE/SQL]J build process and stores
SQL]J serialized profiles.

<Java/|2EE> types

A separate SCLM type is required for each JAVA /J2EE project to be stored
in SCLM. This is to avoid conflicts in same-named files that occur with
JAVA /J2EE projects. For more information see |”Mapping J2EE projects t0|
[SCLM” on page 16)

member formats

This section describes SCLM member formats.

$GLOBAL format
The $GLOBAL format is of type J2EEBLD and language J2EEPART. It must use the
name $GLOBAL and variables are defined in tagged language format.

IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

$GLOBAL specifies the default properties for the SCLM project for JAVA /J2EE
build processing. This must be stored in the SCLM type J2EEBLD.

For a detailed description of the $GLOBAL member parameters, see ["$§GLOBAL”

See the

following code sample:

<property name="ANT_BIN" value="/usr/1pp/Ant/apache-Ant-1.6.0/bin/Ant"/>
<property name="JAVA BIN" value="/usr/1pp/java/IBM/J1.4/bin"/>
<property name="_SCLMDT_CONF_HOME" value="/etc/rdz/scImdt/CONFIG"/>
<property name="_SCLMDT_WORK_HOME" value="/var/rdz/WORKAREA"/>
<property name="CLASSPATH_JARS" value="/var/rdz/CLASSPATH"/>

Figure 3. $GLOBAL - SCLMDT environment variables

J2EE ARCHDEF format
The J2EE ARCHDEF format is of type ARCHDEF and language ARCHDEF.

The ARCHDEEF uses standard SCLM architecture keywords to tell SCLM how to

process

the build of the ARCHDEE.

LKED J2EEOB]J

INCLD

SourceFile SourceType

INCL ArchdefName ArchdefType
SINC BuildScriptname J2EEBLD
OUT1 * J2EEOutputObjectType

LIST * J2EELIST

LKED

INCLD

INCL

SINC

OuUT1

LIST

Indicates this is a LEC ARCHDEF and gives the language of the
ARCHDEF translator to be invoked (for J2EE ARCHDEFs, this is always
J2EEOB]).

SCLM include of J2EE component. SourceFile is the name of the source
member (for example, Java source) that is included in this ARCHDEF.
SourceType is the SCLM type that contains the member. In an SCLM
Developer Toolkit generated ARCHDEEF there will be a comment that gives
the full file name of the file as it existed in the project on the workbench.

SCLM include of another nested ARCHDEEF, such as the ARCHDEF that
contains the manifest for an EJB application.

Source include of the J2EEBLD build script. BuildScriptName is the name of
the build script. The source type is always J2EEBLD.

Indicates the J2EE object type created by this ARCHDEF. The member
name is always *. The J2ZEEOutputObjectType is set to either J2EEEAR,
J2EEWAR, or J2EEJAR. The member created will be given a name of the
generated short name for the JAR, WAR, or EAR file.

Summary component listing and audit of the ARCHDEF built. The
member name is always *. The source type is always J2EELIST. The
member will be given a name of the same value as the ARCHDEF member
name.

J2EE ARCHDEF samples: The following example shows the JAR code:

Chapter 2. SCLM customization for SCLM Developer Toolkit 9

*

% Initially generated on 10/05/2006 by SCLM DT V2

*

LKED J2EEOBJ * J2EE Build translator

*

* Source to include in build

*

INCLD ANOOOOO2 V2TEST % com/Angelina.java
INCLD V2000002 V2TEST % com/V2Javal.java
INCLD V2000003 V2TEST * V2InnerClass.java

*

* Build script and generated outputs
*

SINC ~ V2JARB1 J2EEBLD % J2EE JAR Build script
ouTr =+ J2EEJAR * V2TEST.jar

LIST = J2EELIST

Figure 4. Sample Jar application (JAR) ARCHDEF
The following example shows the WAR code:

*

* Initially generated on 5 Sep 2006 by SCLM DT V2

*

LKED J2EEOBJ * J2EE Build translator

*

* Source to include in build

*
INCLD DADO0026 SAMPLE5 * JavaSource/service/dateController.java
INCLD XX000001 SAMPLE5 =* .classpath
INCLD XX000002 SAMPLE5 * .project
INCLD XX000003 SAMPLE5 * .websettings
INCLD XX000004 SAMPLES * .website-config
INCLD OP000002 SAMPLE5 * WebContent/operations.html
INCLD MABOOOO1 SAMPLE5 * WebContent/META-INF/MANIFEST.MF
INCLD IBOOOOO1 SAMPLES * WebContent/WEB-INF/1ibm-web-bnd.xmi
INCLD IB0O00002 SAMPLE5 * WebContent/WEB-INF/ibm-web-ext.xmi
INCLD WEGOO0O1 SAMPLE5 * WebContent/WEB-INF/web.xml
INCLD MADOOOO2 SAMPLE5 * WebContent/theme/Master.css
INCLD BLOOOOO1 SAMPLE5 * WebContent/theme/blue.css
INCLD BLOO00O2 SAMPLE5 * WebContent/theme/blue.htp]l
INCLD LO0O0O13 SAMPLE5 * WebContent/theme/logo blue.gif

*

* Build script and generated outputs
*

SINC SAMPLE5 J2EEBLD * J2EE WAR Build script
OuT1 = J2EEWAR * Sampleb5.war
LIST = J2EELIST

Figure 5. Sample Web application (WAR) ARCHDEF

The following example shows the EJB code:

10 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

EE R R R R R T I I

LKED J2EEOBJ

*

INCLD XX000001 SAMPLE3
INCLD XX000002 SAMPLE3
INCLD MAOOO004 SAMPLE3
INCLD EJOO0004 SAMPLE3
INCLD IBO000O3 SAMPLE3
INCLD XX000008 SAMPLE3

INCLD XX000009 SAMPLE3
INCLD XX000010 SAMPLE3
INCLD XX000011 SAMPLE3
INCLD DAOO00O5 SAMPLE3
INCLD DAOOO0O6 SAMPLE3
INCLD DAOO00O7 SAMPLE3
INCLD EJO000O1 SAMPLE3
INCLD EJOO000Z2 SAMPLE3
INCLD EJOO0003 SAMPLE3
INCLD XX000012 SAMPLE3
INCLD XX000013 SAMPLE3
INCLD XX000014 SAMPLE3
INCLD XX000015 SAMPLE3
INCLD XX000016 SAMPLE3
INCLD XX000017 SAMPLE3
INCLD XX000018 SAMPLE3
INCLD XX000019 SAMPLE3

INCLD DAOO00O8 SAMPLE3
INCLD XX000020 SAMPLE3

*

SINC SAMPLE3 JZ2EEBLD
ouT1 = J2EEJAR

*

LIST = J2EELIST

.classpath

.project

ejbModule/META-INF/MANIFEST.MF
ejbModule/META-INF/ejb-jar.xml
ejbModule/META-INF/ibm-ejb-jar-bnd.xmi
ejbModule/com/ibm/ejs/container/ EJSWrapper
_Stub.java
ejbModule/com/ibm/ejs/container/ EJSWrapper
_Tie.java
ejbModule/com/ibm/websphere/csi/_CSIServant
_Stub.java
ejbModule/com/ibm/websphere/csi/_Transactio
nalObject Stub.java
ejbModule/myEJB/DateBean.java
ejbModule/myEJB/DateBeanBean. java
ejbModule/myEJB/DateBeanHome. java
ejbModule/myEJB/EJSRemoteStatelessDateBeanH
ome_la4c4c85.java
ejbModule/myEJB/EJSRemoteStatelessDateBean_
_ladc4c85.java
ejbModule/myEJB/EJSStatelessDateBeanHomeBea
nHomeBean lad4c4c85.java
ejbModule/myEJB/_DateBeanHome Stub.java
ejbModule/myEJB/ DateBean_Stub.java
ejbModule/myEJB/ EJSRemoteStatelessDateBean
Home_la4c4c85_Tie.java

ejbModule/myEJB/ EJSRemoteStatelessDateBean
_ladc4c85_Tie.java
ejbModule/org/omg/stub/javax/ejb/_EJBHome S
ub.java
ejbModule/org/omg/stub/javax/ejb/_EJBObject
_Stub.java
ejbModule/org/omg/stub/javax/ejb/_Handle_St
ub.java
ejbModule/org/omg/stub/javax/ejb/_HomeHand1
e Stub.java
ejbModule/services/DateBeanServices.java
ejbModule/services/ DateBeanServices_Stub.j
ava

* J2EE EJB JAR Build script

DateService.jar

Figure 6. Sample EJB Application (EJB) ARCHDEF

The following example shows the EAR code:

LKED J2EEOBJ
*
INCLD XX000001 SAMPLEG6
INCLD XX000002 SAMPLE6
INCLD APOOO0O1 SAMPLEG6
INCL SAMPLE3 ARCHDEF
INCL SAMPLE5 ARCHDEF
*
SINC SAMPLE6 J2EEBLD
ouT1 = J2EEEAR
LIST = J2EELIST

* ok kX X

* ok

.classpath

.project
META-INF/application.xml
DateService.jar
Sampleb.war

J2EE EAR Build script
Sample6.ear

Figure 7. Sample EAR Application (EAR) ARCHDEF

Chapter 2. SCLM customization for SCLM Developer Toolkit

EBE I I R S T R R S N N . S S R N S N

* Ok kX X

11

J2EE Ant Build Script format

The J2EE Ant Build Script format is of type J2EEBLD and language J2EEANT. It can
be any name up to eight characters and variables are defined in tagged language
format. The build scripts are very similar for JAR, WAR and EAR. The syntax
below is shown for a WAR build script. For JAR and EAR, build scripts, variables
are the same except for using EAR_NAME and JAR_NAME instead of WAR_NAME.

See the following example, which shows the sample build script:

<ANTXML>

<project name="J2EE Project type" default="web-war" basedir=".">
<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="ARCHDEF name"/>

<property name="SCLM_ANTXML" value="ANTXML name"/>

<property name="SCLM BLDMAP" value="Include Buildmap"/>

<property name="JAVA SOURCE" value="Include Java Source"/>
<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA HOME" value="${env.JAVA HOME}"/>

<property name="CLASSPATH_JARS" value="Classpath Directory location"/>
<property name="CLASSPATH_ JARS FILES" value="Jar/class filenames"/>
<property name="ENCODING" value="Codepage"/>

<property name="DEBUG_MODE" value="debug_mode"/>

<!-- WAR file name to be created by this build process -->
<l-- include suffix of .war -->
<property name="WAR_NAME" value="War name" />

<path id="build.class.path">
<pathelement location="."/>
<pathelement Tocation="${J2EE_HOME}/1ib/j2ee.jar"/>
<pathelement Tocation="${CLASSPATH_JARS}/jdom.jar"/>

<fileset dir="." includes="x=%/* jar"/>

<fileset dir="${CLASSPATH JARS}" includes="#x/*.jar, *x/*.zip"/>
</path>

</ANTXML>

Figure 8. J2EE Ant build script

The SCLM Build scripts overlay customer-defined variables dynamically on build
re] uest when running the Ant build script. These variables are set to values shown

in [Table 3

Table 3. Customer-defined variables

Variable Description

J2EE Project name Java/J2EE project type being built. This is a temporary project name set in the build
script for Ant to use during the build. This will be set to the following values:

* J2EE EAR Project
* J2EE WAR Project
* J2EE EJB Project

* JAVA Project

This variable does not need to be customized.

SCLM_ARCHDEF ARCHDEF name or the ARCHDEF being built

SCLM_ANTXML Name of skeleton Ant XML to use for build

SCLM_BLDMAP Value of Yes or No. If Yes then include the SCLM build map in MANIFEST directory
in JAR, WAR, or EAR. Provides audit and build map of parts included.

JAVA_SOURCE Value of Yes or No. If Yes then include Java source in JAR, WAR, or EAR.

12 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Table 3. Customer-defined variables (continued)

Variable

Description

CLASSPATH_JARS

z/0OS UNIX System Services classpath directory used for resolving classpath
dependencies during build. All jars located in this directory will be used in the
classpath.

CLASSPATH_JARS_FILES

Names of individual JAR and Class files to be included in the build. This can be in
the form of a list, as follows: <property name="CLASSPATH_JARS_FILES"
value="V2J4.jar,V2J3.jar" />

ENCODING

Either ASCII or EBCDIC code page for JAVA This is the code page JAVA source is
stored on the z/OS host. For example:

» For ASCII JAVA standard code page should be ISO8859-1
» For EBCDIC JAVA standard code page should be IBM-1047

JAR_FILE_NAME
EJB_NAME
WAR_NAME
EAR_NAME

Name of JAR, EJB JAR, WAR, or EAR.

DEBUG_MODE

Set to 'on' to force Developer Toolkit to not remove any build files from the
WORKAREA directory. This is useful if you need to check the structure of a built
Java/]J2EE application.

CLASSPATH dependencies: Java source within an ARCHDEF can have classpath
dependencies upon other Java libraries or classes. If these dependencies are on
Java components contained within the same ARCHDEEF structure, then these
classpath dependencies are resolved as part of the ARCHDEEF build (whether build
mode is conditional or forced).

However, a J2EE ARCHDEF component might have classpath dependencies on
external JARs or even on members contained in other ARCHDEFs. In this case the
J2EE build script associated with the ARCHDEEF can control classpath
dependencies with the following keywords:

CLASSPATH_JARS

This is a directory name in the z/OS UNIX System Services file system
which might include all external dependent JAR files and classes for that
particular ARCHDEEF build.

This directory can be updated with CLASSPATH files through the Client
Team function 'Upload jar files' to copy JAR files from the client into the
classpath directory. Also available is the function 'Copy file from SCLM to
classpath' to copy SCLM stored JAR files into the classpath directory.

CLASSPATH_JARS_FILES

This keyword can be used to selectively choose individual JAR or class
files to be used in the classpath. If this keyword is used, the listed
JAR/class files are retrieved from SCLM or if not located in SCLM, the
directory referenced by CLASSPATH_JARS is searched for retrieval. If this
keyword is used, only those files listed are used in the classpath.

J2EE sample scripts: The following example shows the JAR script:

Chapter 2. SCLM customization for SCLM Developer Toolkit 13

<ANTXML>

<project name="JAVA Project" default="jar" basedir=".">
<property name="env" environment="env" value="env"/>
<property name="SCLM_ARCHDEF" value="V2JAR1"/>

<property name="SCLM_ANTXML" value="BWBJAVAA"/>

<property name="SCLM_BLDMAP" value="YES"/>

<property name="JAR_FILE_NAME" value="V2TEST.jar"/>
<property name="CLASSPATH_ JARS" value="/var/rdz/CLASSPATH"/>
<property name="ENCODING" value="IBM-1047"/>

</ANTXML>

Figure 9. J2EE Build script JAR sample
The following example shows the WAR script:

<ANTXML>

<project name="J2EE WAR Project" default="web-war" basedir=".">
<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="SAMPLE5"/>

<property name="SCLM_ANTXML" value="BWBWEBA"/>

<property name="SCLM BLDMAP" value="YES"/>

<property name="JAVA SOURCE" value="YES"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA HOME" value="${env.JAVA HOME}"/>

<property name="CLASSPATH_JARS" value="/var/rdz/CLASSPATH"/>
<property name="ENCODING" value="IBM-1047"/>

<!-- WAR file name to be created by this build process -->
<property name="WAR NAME" value="Sample5.war" />

<path id="build.class.path">

<pathelement location="."/>

<pathelement Tocation="${J2EE_HOME}/1ib/j2ee.jar"/>
<pathelement Tocation="${CLASSPATH_JARS}/jdom.jar"/>

<fileset dir="${CLASSPATH JARS}" includes="x*/*. jar, *x/% zip"/>
</path>

</ANTXML>

Figure 10. J2EE Build script WAR sample
The following example shows the EJB script:

<ANTXML>

<project name="J2EE EJB Project" default="EJBBuild" basedir=".">
<property name="env" environment="env" value="env"/>

<property name="SCLM_ARCHDEF" value="SAMPLE3"/>

<property name="SCLM_ANTXML" value="BWBEJBA"/>

<property name="SCLM_BLDMAP" value="NO"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>

<property name="JAVA HOME" value="${env.JAVA HOME}"/>

<property name="CLASSPATH_JARS" value="/var/rdz/CLASSPATH"/>
<property name="ENCODING" value="IBM-1047"/>

<property name="EJB_NAME" value="DateService.jar"/>

<path id="build.class.path">

<pathelement Tocation="."/>

<pathelement Tocation="${J2EE_HOME}/1ib/j2ee.jar"/>
<pathelement location="${CLASSPATH JARS}/jdom.jar"/>

<fileset dir="${CLASSPATH JARS}" includes="#*/*.jar, **/*.zip"/>
</path>

</ANTXML>

Figure 11. J2EE Build script EJB sample

The following example shows the EAR script:

14 1BM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

<ANTXML>

<project name="J2EE EAR Project" default="j2ee-ear" basedir=".">
<property name="env" environment="env" value="env"/>
<property name="SCLM_ARCHDEF" value="SAMPLE6"/>

<property name="EAR_NAME" value="Sample6.ear"/>

<property name="SCLM_ANTXML" value="BWBEARA"/>

<property name="SCLM_BLDMAP" value="NO"/>

<property name="J2EE_HOME" value="${env.J2EE_HOME}"/>
<property name="JAVA_HOME" value="${env.JAVA_HOME}"/>
<property name="CLASSPATH_ JARS" value="/var/rdz/CLASSPATH"/>
<path id="build.class.path">

<pathelement location="."/>

<pathelement location="${J2EE_HOME}/1ib/j2ee.jar"/>
<pathelement Tocation="${CLASSPATH_JARS}/jdom.jar"/>
<fileset dir="${CLASSPATH JARS}" includes="x*/* jar, **/%.zip"/>

</path>

<target name="common">

<echo message="BuildName: ${Ant.project.name}" />
<echo message="BuildHome: ${basedir}" />
<echo message="BuildFile: ${Ant.file}" />
<echo message="BuildJVM: ${Ant.java.version}" />

</target>
</ANTXML>

Figure 12. J2EE Build script EAR sample

JAVA/J2EE Ant XML build skeletons

This section lists sample Ant build skeletons which are provided in the
FEK.SFEKSAMV library. These sample members can be copied into SCLM type
J2EEBLD in the SCLM hierarchy to be referenced and used by the JAVA /J2EE
build scripts. The JAVA/J2EE build scripts are property variable files that overlay
the Ant XML skeleton files.

The supplied sample J2EE build skeletons for building a simple JAR, SQLJ project,
EJB JAR, WAR, or EAR or for deployment can generally be used, as is, without
user customization. Be aware, however, that some J2EE projects might not fit the
standard model and some customization of the supplied Ant XML skeletons may
be required.

Note: JAVA/]J2EE build scripts can be generated through the SCLM Developer
Toolkit client application. These build scripts use a referenced Ant XML skeleton
(as below) and an ARCHDEEF in the JAVA/J2EE build process.

A detailed description of build scripts, Ant skeletons, and examples on JAVA/J2EE
build processing is contained in the SCLM Developer Toolkit User Guide supplied
with the client plug-in.

BWBJAVAA
Sample Ant XML JAVA build skeleton

This Ant skeleton is used by a Java build script to compile multiple Java
programs and optionally create a Java Archive (JAR) file which has a
structure determined by a specified ARCHDEF.

BWBEJBA
Sample Ant XML J2EE EJB build skeleton

Chapter 2. SCLM customization for SCLM Developer Toolkit 15

This Ant skeleton is used by a J2EE build script to compile or build an EJB
project which would usually create an EJB JAR which has a structure
determined by a specified ARCHDEF.

BWBWEBA
Sample Ant XML J2EE WEB build skeleton

This Ant skeleton is used by a J2EE build script to compile or build a WEB
project which would usually create a WEB Archive (WAR) file.

BWBEARA
Sample Ant XML J2EE EAR assemble skeleton

This Ant skeleton is used by a J2EE build script as an assemble process in
preparation for J2EE application deployment. The process produces
Enterprise Archive (EAR) files which can be deployed on to a Web
application server, such as WebSphere® application server.

BWBSQLB
Sample Java/SQL]J build script

This Ant Skeleton is used by a J2EE build script to compile or build a JAR
project that uses SQLJ.

BWBSQLBE
Sample EJB/SQLJ build script

This Ant Skeleton is used by a J2EE build script to compile or build an EJB
project that uses SQLJ.

BWBC9DT]
Cloud 9 to SCLM DT conversion sample.
BWBDEP]1

Sample to update SQLJ .ser files within a JAR at deployment time using
db2sqljcustomize.

BWBDEP]2

Sample for db2sqljcustomize where the property longname will copy the
specified JAR from the indicated group and type locations in SCLM to the
destination directory specified by "dest".

BWBDEP]3

This sample routine will customize the .ser files contained within selected
JAR files for deployment using db2sqljcustomize.

BWBTRANX

Sample SCLM build translator for SYSXML build error messaging for
COBOL.

Mapping J2EE projects to SCLM

IBM SCLM Developer Toolkit provides the capacity to manage, build, and deploy
projects in SCLM. This section describes how to configure the SCLM project
structure to support distributed application development such as JAVA /J2EE.

Many JAVA /]J2EE projects result in the creation of an executable EAR file. This
application is an assembly of projects, typically EJBs and Web applications and,

IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

within the IDE environments, these are generally developed as individual project
structures that are linked to an EAR project.

This form of multiple-project structure does not map to SCLM directly. That is, an
SCLM project cannot be linked to another SCLM project to provide some form of
aggregated project structure. However, SCLM does provide a means to support
this multiple project structure within a single SCLM project using types.

SCLM projects can be defined with multiple source types. Each type can hold a
single IDE project. If we tried to store multiple Eclipse IDE projects in SCLM
without some form of segregation then each of the project's .classpath and .project
files would be overwritten as each project was added to SCLM. The use of
different source types enables these files, and all others associated with that
project, to be stored safely within SCLM.

This mapping would result in the IDE projects being stored independently within
SCLM using the type as the principal differentiator. For example, EJB1 is stored in
the SCLM project SCLMPR]1 under type EJB1. Using this structure, it is possible to
map the IDE project structure to independent types within the SCLM project.

Note:

1. It is not necessary to map a project name in the IDE to the SCLM type name;
these names exist independently of each other.

2. Type names are restricted to eight characters; therefore an IDE project called
"ProjectOne’ could not have the corresponding type name of 'ProjectOne’. You
can use 'Projl' instead.

It is therefore important that the SCLM project structure is planned to
accommodate the mapping of different IDE-based projects into the single SCLM
project structure. This is because, within large SCLM projects, it might be a
non-trivial matter to add additional project types as this requires a change to the
SCLM project definition, a rebuild of the SCLM project definition, and the
allocation of data sets for the new types.

This structure is not restricted to J2EE-style projects but could also apply to any
situation where multiple projects are being developed that provide some form of
dependency upon each other.

Recommendations for mapping J2EE projects to SCLM
The following list gives recommendations for mapping J2EE projects (and others)
to SCLM:

* Identify the J2EE project composition in terms of E]Bs, Web applications, and so
on, so that this can be used to plan the SCLM project structure.

* For each of the J2EE IDE project components, create a corresponding type in the
SCLM project. It is useful to provide some form of meaningful naming
convention to support this. While it is possible to name the IDE projects
independently of the SCLM type, some correlation will make administration
easier.

* As project requirements can change, create additional type definitions to enable
the smooth addition of other components, such as additional EJBs. Additional
services can be anticipated through the type structure.

* Mapping multiple IDE projects into a single SCLM project is supported by the

type construct. It is also useful to apply some packaging structure that takes into
account the type definition for that project.

Chapter 2. SCLM customization for SCLM Developer Toolkit 17

* Java-style packaging conventions can also be defined at the project level to avoid
the likelihood of source naming collisions.

¢ If the IDE is structured with multiple projects it is advisable to replicate this
structure in SCLM using type.

The use of multiple SCLM types to store individual IDE projects also relates to the
operation of the ARCHDEEF structure for the building of these IDE projects.

High Level ARCHDEF

Ruferences the ather ARCHDEFS

Project 1 ARCHDEF Project 2 ARCHDEF
Builowxrnd Bulezml
WAR file ganaratad JAR fle gareated

Figure 13. SCLM build hierarchy

The ARCHDEEF file contains the list of files that make up a build. In a J2EE context
a build can result in an EAR file being composed of a number of WAR and JAR
files. This isolation of projects is similar to the type structure that defines the
project in SCLM. By having a high-level ARCHDEEF that refers to those 'parts’ that
make up the build, it is possible to have a structured build environment. This
relates to the effective definition of project structure when defining the types in
SCLM.

By defining the project in a structured manner this also enables the following:

* Migration of files from an SCLM project type or ARCHDEEF to an IDE project
without the need to know individual parts.

* The ARCHDEEF structure based on type definition also enables project
dependencies to be mapped more effectively. It is common for IDE projects to
refer to other IDE projects in the workspace. Use of the SCLM INCL keyword in
ARCHDETFs supports this notion as other IDE projects, referenced by other
ARCHDETFs, can be included by nesting the ARCHDEFs within higher level
ARCHDEFs.

When building applications with references or dependencies on other build objects,

such as JARs, other projects, or other classes, there are the following multiple

approaches:

1. Include the reference to the JAR through the INCLD statement in the
ARCHDEE. This will build the application with the library reference into the
final build package.

18 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

2. Include the IDE project as a nested INCL SCLM project ARCHDEEF.
3. Include the dependent JAR in the CLASSPATH directory.

* Should the IDE project refer to a JAR but it is not expected to be part of the
final build package then the library file can be copied to the system
CLASSPATH using the Upload JARS service in Developer Toolkit. This will
have the effect of making that service available from a different SCLM
project. At build time the IDE project referring to the JAR will be resolved.
However, at runtime, the JAR must be available in a PATH statement.

* Refer to a JAR that is in the same SCLM project through the use of the
CLASSPATH_JARS_FILES property in the build script.

SCLM Developer Toolkit deployment

SCLM Developer Toolkit provides several deployment features. You can deploy
Enterprise Archive files (EAR) into any WebSphere Application Server (WAS). In
addition, any component built or controlled by the SCLM Developer Toolkit can be
distributed using a customizable deploy script. Sample scripts are provided that
can be used to copy an EAR to a remote host using the secure copy (SCP) and
secure FTP (SFTP) commands.

At the core of deployment there are essentially two scripts; the first type of script,
the one that is modified by the user, is the properties script, it contains a list of
parameters for the deployment operation. The second is the action script that
contains the steps required to run the deployment operation.

Deployment is initiated from the SCLM Developer Toolkit client plugin and the
type of deployment is chosen by pressing the relevant button on the deployment
screen. Depending on what deployment action is chosen will have an effect on
what is populated in the properties script. For most of the scripts there is a
property named SCLM_ANTXML that contains the member name of the
corresponding action script. Developer Toolkit takes the generated properties script
and overlays it on the action script, before invoking the resultant action script.

Below is a list of sample Ant deployment action scripts which are provided in the
FEK.SFEKSAMV library. These sample members can be copied into SCLM type
J2EEBLD in the SCLM hierarchy to be referenced and used by the generated
properties scripts. The generated properties scripts are property variable files that
overlay the Ant XML deployment action scripts referenced below. These scripts
must be stored with a text type language, such as TEXT or J2EEPART.

Member Description

BWBDEPLA WAS EAR Deployment.

BWBRDEPL Remote WAS EAR Deployment.

BWBSCOPY Secure copy deployment. Copies a build object from one host to

another using SCP.

BWBSFTP Secure FTP deployment. Copies a build object from one host to
another using SFTP.

In order for these build scripts to be usable from multiple groups, the
administrator must build and promote the scripts to the highest group level
available in the project.

There is a slightly different processing depending on the types of scripts being
generated.

Chapter 2. SCLM customization for SCLM Developer Toolkit 19

WebSphere Application Server (WAS) deployment
For WebSphere Application Server (WAS) deployment the SCLM_ANTXML
property does not point to an Ant action script, but refers to a JACL action script

instead. Alternatively, you can use the wsadmin tool that is shipped with WAS on
z/0S.

The wsadmin tool requires a JACL script to guide the deployment process. If using
this deploy method then the JACL script must be created as an ASCII file in a
z/0S UNIX directory before the deployment process can be invoked.

Developer for System z customization provides a sample (ASCII) JACL script as
/etc/rdz/scImdt/CONFIG/scripts/deploy.jacl (where /etc/SCLMDT is the default
etc directory for SCLM Developer Toolkit).

Additional JACL examples can be found in the WebSphere Application Server
(WAS) documentation.

The directory locations of the wsadmin tool (wsadmin.sh) and the JACL script
(deploy.jacl) can be configured in the preference page under Team > SCLM
Preferences > Build Script Options. The SCLMDT client is used to generate a
deployment script which can then be built against. (The deployment process is
triggered by a deploy function request against the deployment script which is
stored in SCLM type J2EEBLD).

The sample action scripts that need to be stored in SCLM type J2EEBLD for WAS
deployment or remote WAS deployment are BWBDEPLA and BWBRDEPL.

SCLM to UNIX System Services deployment

SCLM Developer Toolkit provides a means to deploy any files that are stored in
the SCLM repository to the z/OS UNIX System Services File System on the same
LPAR. This provides a simple means to deploy an object built by SCLM into an
environment where it can be either executed or even deployed to a remote host
using the Secure Deployment described below.

There is no sample action script for this action. Select the members from SCLM
and use the Include SCLM members button to generate the required properties
script. This copies the files from the selected SCLM location to a directory specified
on the z/OS UNIX System Services File System. This directory must previously
exist or an error will occur.

Secure deployment

This option provides a means to copy deployable objects to a remote host by using
the secure copy (SCP) and secure FTP (SFIP) commands. By using a combination
of the Secure deploy properties script and the Include SCLM members, the
required files can be selected from the SCLM hierarchy, copied to a location in the
z/0S UNIX System Services File System, and then copied to the destination
machine from that z/OS UNIX System Services File System location using the
secure copy (SCP) and secure FTP (SFTP) commands.

The sample action scripts that need to be stored in SCLM type J2EEBLD for secure
deployment are BWBSCOPY and BWBSFTP.

Note: The IBM Ported Tools for z/OS will need to be ordered, installed, and
configured to support secure deployment. Refer to IBM Rational Developer for

20 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

System z Host Planning Guide (GI11-8296) to learn how Ported Tools can be
obtained. The installation and customization of this product is not described in this
manual.

IBM Ported Tools for z/OS provides the following:
* scp for copying files between networks. It is an alternative to rcp.

* sftp for file transfers over an encrypted ssh transport. It is an interactive file
transfer program similar to ftp.

Public key authentication
Public key authentication provides an alternative to interactive logon that can be
automated as part of Developer Toolkit's secure deployment operation.

In order for public key authentication to work as desired, you can either use a
surrogate User ID for deployment or configure each user for whom you want to
provide deployment capabilities.

For instructions on how to set up automated key-based authentication using
ssh-agent and ssh-add, refer to IBM Ported Tools for z/OS User’s Guide. For
information about using SCLM Developer Toolkit surrogate user ID, see
[‘SCLM security,” on page 45

Other deployment options

It is also possible to create your own Ant scripts to perform deployment in a
number of different ways. In your scripts, by using the Ant <exec> tag you can
invoke any program that is available in the z/OS UNIX System Services File
System. Using this method the build scripts can call other programs, such as FTP,
to perform deployment. For more information about creating Ant scripts, see the
online Ant documentation at |http:/ /ant.apache.org /|

ASCII or EBCDIC storage options

Source files transferred from the SCLM Developer Toolkit plug-in can be stored in
SCLM as either ASCII or EBCDIC.

Generally all source in SCLM is stored in EBCDIC to be viewed and edited directly
from ISPF/SCLM on z/0S. If you do not want to browse or edit code directly
from the host, you might want to store code directly (that is, as binary transferred)
where source will be stored in SCLM using the original client's ASCII/UNICODE
code page. This does have some performance benefits for large projects being
stored and imported from SCLM and for JAVA/J2EE builds as an ASCII to
EBCDIC translation will not be performed.

SCLM Developer Toolkit determines if a file is binary transferred or if an ASCII to
EBCDIC conversion takes place by checking the SCLM language associated with
each file or member. Then SCLM Developer Toolkit checks to see if that SCLM
Language has an entry in the TRANSLATE. conf file with a TRANLANG keyword.

ASCII/EBCDIC language translators
Table 4. SCLM Language Translators and ASCII/EBCDIC

SCLM Language Translator | Description

JAVA Java source members stored as EBCDIC. Created by using sample BWBTRANI.
SQLJ SQLJ members stored as EBCDIC. Created by using sample (BWBTRANS).
JAVABIN Java source members stored as ASCII. Created by using sample BWBTRANI.

Chapter 2. SCLM customization for SCLM Developer Toolkit 21

http://ant.apache.org/

Table 4. SCLM Language Translators and ASCII/EBCDIC (continued)

SCLM Language Translator | Description

J2EEPART Any J2EE files where no parsing is required and stored as EBCDIC. Created by using
sample BWBTRANI.

J2EEBIN Any J2EE files where no parsing is required and stored as binary or ASCII files.
Created by using sample BWBTRANI.

SQLJ SQLJ source members stored as EBCDIC. Created by using sample BWBTRANS.

SQLJBIN SQLJ source members stored as ASCIIL Created by using sample BWBTRANS.

TEXT Default TEXT translator where no parsing is required and stored as EBCDIC. Created
by using sample BWBTRANI.

BINARY Default binary language translator where no parsing required. Created by using

sample BWBTRANI.

Default usage is assumed to be ASCII/EBCDIC translation. This means that files
browsed and edited in the Eclipse plug-in can also be browsed and edited directly
on host from ISPF/SCLM.

ASCII usage (binary transferred) is recommended for project migration or import
and build performance, as files require no translation. This is only suitable if
editing in ISPF/SCLM is not required.

Depending on the SCLM Language Translator used, source can be built in either
ASCII or EBCDIC.

For cross platform usability, all deployable files, such as JAR, WAR, and EAR are
built so that all of the contained objects are of type ASCII, regardless of whether
any of the source is stored as EBCDIC.

JAVA/]J2EE build note: If Java source is ASCII stored then the Build script must
specify the ASCII code page using the ENCODING property variable to correctly
compile the Java source.

For example:
<property name="ENCODING" value="1S08859-1"/>

The Ant script called will use the Java command with the ENCODING=1S08859-1 to
compile the ASCII source. The default ENCODING code page is the EBCDIC code
page 1BM-1047.

$GLOBAL

As part of the JAVA/J2EE build process some additional information is required in
order to successfully perform the builds. As the builds are performed in z/OS
UNIX System Services, information, such as the Java product location, Ant product
location, and the location of the SCLM Developer Toolkit configuration files and
workarea is required.

Additionally it might be required to use different versions of Ant or Java for
different SCLM development groups, so to this end the $GLOBAL member can be
group-specific. The environment variables set in $GLOBAL can be overwritten by
specific build script variable settings.

Note: When using the ant.conf configuration file, then the JAVA_HOME specified will
override any JAVA_BIN specified in $GLOBAL for Java/J2EE project compiles. This is

22 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

not true if Ant configuration is done in rsed.envvars, which is what is described in
Rational Developer for System z Host Configuration Guide (SC23-7658).

A sample member BWBGLOB is provided in the FEK.SFEKSAMV library. This sample
member needs to be copied into SCLM type J2EEBLD in the SCLM hierarchy as
member $GLOBAL and saved with a valid non-parsing language, such as TEXT (as
provided in language translator FLM@TEXT in the SISPMACS library).

The $GLOBAL member currently makes available the following information to the
JAVA /]2EE build processes:

Table 5. $GLOBAL variables

Variable Description
ANT_BIN z/0S UNIX System Services file system directory path of Ant runtime
Example:

<property name="ANT_BIN" value="/usr/1pp/apache-Ant-1.6.0/bin/Ant"/>

JAVA_BIN z/0S UNIX System Services file system directory path of Java compile/runtime
Example:

<property name="JAVA BIN" value="/usr/1pp/java/5.0/bin"/>

_SCLMDT_WORK_HOME | The location of the SCLM Developer Toolkit WORKAREA directory
Example:

<property name="_SCLMDT_WORK_HOME" value="/var/rdz"/>

_SCLMDT_CONF_HOME | The location of the SCLM Developer Toolkit CONFIG directory
Example:

<property name="_SCLMDT_CONF_HOME" value="/etc/rdz/scImdt"/>

CLASSPATH_JARS z/0S UNIX System Services file system classpath directory used for JAVA compiles.
All jars located in this directory will be used in the classpath.

Example:

<property name="CLASSPATH JARS" value="/var/rdz/CLASSPATH"/>

TRANTABLE VSAM file containing the long/short name translations
Example:

<property name="TRANTABLE" value="FEK.#CUST.LSTRANS.FILE"/>

DEBUG_MODE Set to "on" if you want Developer Toolkit to not remove Java/J2EE build files from the
z/0S UNIX System Services file system.

This is useful if you want to see the structure of the built outputs in the USS file
system for debugging purposes.

If these variables are to be set for all group levels in the SCLM project, it is a good
practice to create a single $GLOBAL member at the highest level in the hierarchy.
When the JAVA/J2EE build translator runs it will look up the hierarchy from the
group level performing the build and use the first §GLOBAL it finds in the
J2EEBLD type.

Chapter 2. SCLM customization for SCLM Developer Toolkit 23

Note: The $GLOBAL member must be stored as a valid saved SCLM member so
this hierarchy lookup can be performed.

If different settings are required, for example, at different development groups, a
$GLOBAL member can be created in each of the development groups.

TRANSLATE.conf

The TRANSLATE. conf file provides keywords to determine how code is stored
within SCLM. The configuration file contains keywords that determine how files
are transferred to the host depending on their language definition. Specific
keywords determine if files of a certain language type are binary, transferred, and
stored or whether the text-based source remains in ASCII format rather than the
default translation from ASCII to EBCDIC.

Additionally, SCLM language definitions control whether long name files are
converted to suitable valid short hostnames to store in SCLM. This long-to-short
name mapping is controlled by the SCLM long/short name translate VSAM.

TRANSLATE. conf is located in /etc/rdz/scImdt/CONFIG. You can edit the file with
the TSO OEDIT command.

The following example shows the TRANSLATE.conf code, which must be
customized to match your system environment. Comment lines start with an
asterisk (*).

* cross system sharing
TRANVRLS = NO

* codepage
CODEPAGE ASCII = IS08859-1
CODEPAGE EBCDIC = IBM-1047

% ascii/ebcdic translation
TRANLANG JAVABIN

TRANLANG J2EEBIN

TRANLANG J2EEOBJ

TRANLANG TEXTBIN

TRANLANG BINARY

TRANLANG DOC

TRANLANG XLS

* Tong/short name translation

LONGLANG JAVA
LONGLANG SQLJ
LONGLANG J2EEPART
LONGLANG JAVABIN
LONGLANG J2EEBIN
LONGLANG J2EEOBJ
LONGLANG DOC
LONGLANG XLS

Figure 14. TRANSLATE.conf - SCLMDT ASCII/EBCDIC translation configuration file

The following keywords are valid within the TRANSLATE. conf file:
code page ASCII

Indicates the ASCII code pages to use in translation. The default is
1508859-1.

There must be a code page directive for both ASCII and EBCDIC for SCLM
Developer Toolkit to determine how to convert files being transferred.

24 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Code page EBCDIC
Indicates the EBCDIC code pages to use in translation The default is
IBM-1047.

There must be a code page directive for both ASCII and EBCDIC for SCLM
Developer Toolkit to determine how to convert files being transferred.

TRANVRLS
Indicates whether the long/short name translate VSAM data set can be
shared across systems. The default is NO. The only valid values are YES and
NO.

SCLM uses VSAM Record Level Sharing (RLS) to allow sharing of the
VSAM data set and maintain integrity in a shared environment. The VSAM
data sets must be defined with the correct STORAGECLASS for RLS use.
Refer to DFSMS(TM) Using Data Sets (5C26-7410) for more information on
RLS.

TRANLANG
Indicates which SCLM language types require no ASCII/EBCDIC
translation (files will be transferred binary to the host).

Note that there is no equal sign (=) in this directive to separate the
TRANLANG keyword and the name of the (dummy) Language Translator.

LONGLANG
Determines which SCLM language types require long name to short name
conversion. Long name to short name translation implies that the long
name file on the Client (including directory package structure) will be
mapped to a valid host member name of 8 characters and stored in SCLM
using this translated host short name.

If the SCLM Language is not specified in the LONGLANG keyword, the client
file is assumed to be already in host short name format (8 characters or
less) and is stored as is.

Note that there is no equal sign (=) in this directive to separate the
LONGLANG keyword and the name of the SCLM Language.

Note: It is possible to override values set in the TRANSLATE. conf file at a SITE and
SCLM Project level, as described in [’SITE and project-specific options.”]

SITE and project-specific options

A facility has been provided to allow certain settings to be made at a SITE
installation level or at a specific SCLM project level. The options that can currently
be configured are the following;:

* Mandatory Change Code entry
* Deactivation of foreground Builds and Promotes

* Specification of package approval system. Currently IBM Breeze for SCLM is the
supported approval system.

* Definition of Batch Build, Promote, and Migrate job cards
* Opverride settings in the TRANSLATE.conf configuration file
* Project list filter restriction

* Define default settings for bidirectional (bidi) languages

All or none of these options can be set. If they are not set, they will be defaulted in

the programs. Some of these options can be set in the SITE.conf file while others
can be set at an SCLM project-specific level. Alternatively there can be no

Chapter 2. SCLM customization for SCLM Developer Toolkit 25

SITE-specific file and options can be set at an SCLM project level only. For job
cards you can override the job card information by using your own specified job
card entered through the IDE.

This facility is activated by creating SITE.conf file in the z/OS UNIX
/etc/rdz/scImdt/CONFIG/PROJECT/ directory (where /etc/rdz/scimdt is the default
etc directory for SCLM Developer Toolkit). This directory is created during the
customization of Developer for System z.

A sample SITE.conf file is provided in the /usr/1pp/rdz/samples/ directory. Copy
this directory and the directives to match your needs. You can edit the file with the
TSO OEDIT command. The following example shows the SITE.conf configuration
file.

26 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

* SCLM Developer Toolkit Site Specific option

*

* SCM Approver processing applies to this project?
BUILDAPPROVER=NONE

PROMOTEAPPROVER=NONE

*

* Change Code entry on check-in is mandatory?
CCODE=N

*

*

* To allow promotion by architecture definition only,

* set the value of PROMOTEONLYFROMARCHDEF to Y
PROMOTEONLYFROMARCHDEF=N

*

* Foreground or On-line builds/promotes allowed for this project?
FOREGROUNDBUILD=Y

FOREGROUNDPROMOTE=Y

*

* Batch Build default jobcard

BATCHBUILD1=//SCLMBILD JOB (#ACCT),'SCLM BUILD',CLASS=A,MSGCLASS=X,
BATCHBUILD2=// NOTIFY=&SYSUID,REGION=512M

BATCHBUILD3=//*

BATCHBUILD4=//*

*

* Batch Promote default jobcard

BATCHPROMOTE1=//SCLMPROM JOB (#ACCT),'SCLM PROMOTE',CLASS=A,MSGCLASS=X,
BATCHPROMOTE2=// NOTIFY=&SYSUID,REGION=128M
BATCHPROMOTE3=//*

BATCHPROMOTE4=//

*

* Batch Migrate default jobcard

BATCHMIGRATE1=//SCLMMIGR JOB (#ACCT),'SCLM MIGRATE',CLASS=A,MSGCLASS=X,
BATCHMIGRATE2=// NOTIFY=&SYSUID,REGION=128M
BATCHMIGRATE3=//+*

BATCHMIGRATE4=//*

*

* Batch Deployment default jobcard

BATCHDEPLOY1=//SCLMDPLY JOB (#ACCT),'SCLM DEPLOY',CLASS=A,MSGCLASS=X,
BATCHDEPLOY2=// NOTIFY=&SYSUID,REGION=128M

BATCHDEPLOY3=//*

BATCHDEPLOY4=//*

*

* BUILD Security flag for SAF/RACF security call and possible Surrogate
* ID switch

BUILDSECURITY=N

*

* PROMOTE Security flag for SAF/RACF security call and possible

* Surrogate ID switch

PROMOTESECURITY=N

* J2EE DEPLOY security flag for SAF/RACF security call and possible
* Surrogate ID switch

DEPLOYSECURITY=N

* Project 1ist flag if set to N will stop users selecting * as project
filter. This may avoid long catalog searches for all SCLM projects.

Project Tist flag if set to N will stop users selecting * as project
filter. This may avoid long catalog searches for all SCLM projects.

* %k ok X X

PROJECTLISTALL=Y

Large temporary dataset allocations for users are set in the
product. The maximum temporary dataset allocation is SPACE(15,75)
tracks. To alter the maximum dataset allocation, uncomment and
modify the primary and secondary extent values below to your own
values. The SPACE values represent number of TRACKS.
*TEMPDSN=SPACE(15,75)

* % X Xk %

Figure 15. Sample SITE-specific SCLM project setting
Chapter 2. SCLM customization for SCLM Developer Toolkit

27

It is also possible to have project-specific configuration settings that are used to
configure a single SCLM project. These will override the SITE-specific values if a
SITE.conf exists. If you want to set project-specific values then you need to create
a file called <project>.conf in the /PROJECT directory, where <project> is the
SCLM project name (not case-sensitive).

A sample project config file is provided in the /usr/Tpp/rdz/samples/ directory as
file SCLMproject.conf. Copy this sample to the PROJECT directory, using the
correct target name, and customize the directives to match your needs.

You can edit the file with the TSO OEDIT command. The following example shows
the Project configuration code.

* SCLM Developer Toolkit Project Specific option

*

* SCM Approver processing applies to this project?
BUILDAPPROVER=BREEZE

PROMOTEAPPROVER=BREEZE

*

* Change Code entry on check-in is mandatory?

CCODE=Y

*

* Foreground or On-line builds/promotes allowed for this project?
FOREGROUNDBUILD=N

FOREGROUNDPROMOTE=N

*

* Batch Build default jobcard

BATCHBUILD1=//SCLMBILD JOB (#ACCT),'SCLM BUILD',CLASS=A,MSGCLASS=X,
BATCHBUILD2=// NOTIFY=&SYSUID,REGION=512M

BATCHBUILD3=//*

BATCHBUILD4=//*

*

* Batch Promote default jobcard

BATCHPROMOTE1=//SCLMPROM JOB (#ACCT),'SCLM PROMOTE',CLASS=A,MSGCLASS=X,
BATCHPROMOTE2=// NOTIFY=&SYSUID,REGION=128M
BATCHPROMOTE3=//*

BATCHPROMOTE4=//*

*

* BUILD Security flag for SAF/RACF security call and possible Surrogate
* ID switch

BUILDSECURITY=N

* PROMOTE Security flag for SAF/RACF security call and possible

* Surrogate ID switch

PROMOTESECURITY=N

* J2EE DEPLOY security flag for SAF/RACF security call and possible
* Surrogate ID switch

DEPLOYSECURITY=N

Figure 16. Sample PROJECT-specific SCLM project setting

All of the listed options are optional. Defaults are used if nothing is specified in
the SITE.conf or the project.conf.

Table 6. SITE/Project options

BUILDAPPROVER=approval product/NONE Specify the name of the approval product used for the build
process. Currently the only supported product is IBM Breeze for
SCLM, which is selected with the BREEZE keyword. Default is
NONE.

28 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Table 6. SITE/Project options (continued)

PROMOTEAPPROVER=approval product/NONE

Specify the name of the approval product used for the promote
process. Currently the only supported product is IBM Breeze for
SCLM. If the PROMOTEAPPROVER is set to BREEZE then the
Breeze specific fields will be displayed during a promote. Default
is NONE.

CCODE=N/Y

Specify Y to make change code entry on check-in a mandatory
field. Default is N such that Change Code entry is not mandatory.

FOREGROUNDBUILD=Y/N

Specify N to restrict foreground builds. Default is Y such that
foreground builds are allowed.

FOREGROUNDPROMOTE=Y/N

Specify N to restrict foreground promotes. Default is Y such that
foreground promotes are allowed.

BATCHBUILD1=Job card 1
BATCHBUILD2=Job Card 2
BATCHBUILD3=Job Card 3
BATCHBUILD4=Job Card 4

Set a default batch job card for the build process. Different
projects can use different account codes or Job class so the option
of specifying project-specific job cards allows for this scenario.

BATCHPROMOTE1=Job card 1 Set a default batch job for the Promote process. Different projects
BATCHPROMOTE2=Job card 2 can use different account codes or Job class so the option of
BATCHPROMOTE3=Job card 3 specifying project-specific job cards allows for this scenario.
BATCHPROMOTE4=Job card 4

BATCHMIGRATEl=Job card 1 Set a default batch job for the Migrate process. Different projects
BATCHMIGRATE2=Job card 2 can use different account codes or Job class so the option of
BATCHMIGRATE3=Job card 3 specifying project-specific job cards allows for this scenario.
BATCHMIGRATE4=Job card 4

BUILDSECURITY=Y/N

Specify Y to invoke SAF/RACEF security call for the build step and
possible do a surrogate ID switch. For more information see
[Chapter 4, “SCLM security,” on page 45]

PROMOTESECURITY=Y/N

Specify Y to invoke SAF/RACEF security call for the promote step
and possible do a surrogate ID switch. For more information see
[Chapter 4, “SCLM security,” on page 45

DEPLOYSECURITY=Y/N

Specify Y to invoke SAF/RACEF security call for the deploy step
and possible do a surrogate ID switch. For more information see
[Chapter 4, “SCLM security,” on page 45

ASCII=ASCII codepage

Specify the ASCII code page to override the ASCII code page
specified in TRANSLATE.conf. For example:

ASCII=UTF-8

EBCDIC=EBCDIC codepage

Specify the EBCDIC code page to override the EBCDIC code page
specified in TRANSLATE.conf. For example:

EBCDIC=IBM-420

TRANLANG=SCLM Language

Specify a TRANLANG parameter to be added to the list of TRANLANG
parameters specified in the TRANSLATE. conf. For example:

TRANLANG=DOC

NOTRANLANG=SCLM Language

Use the NOTRANLANG keyword to remove an already specified
TRANLANG from the list allowable for this SCLM project as specified
in TRANSLATE.conf. For example:

NOTRANLANG=JAVA

LONGLANG=SCLM Language

Specify a LONGLANG parameter to be added to the list of LONGLANG
parameters specified in TRANSLATE. conf. For example:

LONGLANG=DOC

Chapter 2. SCLM customization for SCLM Developer Toolkit 29

Table 6. SITE/Project options (continued)

NOLONGLANG=SCLM Language

Use the NOLONGLANG keyword to remove an already specified
LONGLANG from the list allowable for this SCLM project as specified
in TRANSLATE.conf. For example:

NOLONGLANG=COBOL

BIDIPROP=LANG=SCLM Language/*
TextOrient=LTR/RTL
TextType=Visual/Logical
SymetricSwap=0n/0ff
NumericSwap=0n/0ff

Use the BIDIPROP keyword to set bidirectional language defaults
to SCLM languages. The LANG= can be set to either all SCLM
languages or to specific SCLM languages. Bidirectional support is
only supported under Developer for System z.

PROJECTLISTALL=Y

The project list flag if set to N will stop users selecting * as project

filter. This may avoid long user catalog searches for all SCLM
projects.

Example of using combinations of the TRANSLATE.conf
overrides

The TRANSLATE. conf file sets up default settings for code page support and default
SCLM language support to be applied across SCLM Developer Toolkit. In this
example, TRANSLATE. conf has the values listed below.

CODEPAGE ASCII = IS08859-1
CODEPAGE EBCDIC = IBM-1047
*

TRANLANG
TRANLANG
TRANLANG
TRANLANG
TRANLANG
TRANLANG
TRANLANG
*

LONGLANG
LONGLANG
LONGLANG
LONGLANG
LONGLANG
LONGLANG
LONGLANG
LONGLANG

JAVABIN
J2EEBIN
J2EEOBJ
TEXTBIN
BINARY
DOC

XLS

JAVA
SQLJ

DOC

XLS
J2EEPART
JAVABIN
J2EEBIN
J2EEOBJ

It is possible for different SCLM projects that are storing different types of data,
maybe in different national languages, to override these default settings. So the
SCLMPRJ1.conf project configuration file for SCLM project SCLMPRJ1 can have the
following override settings:

* Arabic Codepage overrides
*

ASCII=UTF-8
EBCDIC=IBM-420

*

* Project specific TRANLANG and LONGLANG entries

*

TRANLANG=DOC
LONGLANG=DOC

This sets code pages for source translations to the Arabic code page pair.
Additionally an SCLM Language of DOC will be added to the defaults from
TRANSLATE. conf.

IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

SCLM Project SCLMPR]2 might have some different override settings in
SCLMPRJ2.conf

* Hebrew Codepage overrides
*

ASCII=UTF-8

EBCDIC=IBM-424

*

* Project specific TRANLANG and LONGLANG entries
*

TRANLANG=DOC
TRANLANG=XLS
NOTRANLANG=JAVABIN
NOTRANLANG=J2EEBIN
NOTRANLANG=J2EEOBJ
LONGLANG=DOC
LONGLANG=XLS
NOLONGLANG=COBOL
NOLONGLANG=J2EEPART
NOLONGLANG=JAVABIN
NOLONGLANG=J2EEBIN
NOLONGLANG=J2EEOBJ

This sets code pages for source translations to the Hebrew code page pair.
Additionally SCLM Languages of DOC and XLS are added to the defaults from
TRANSLATE. conf. In this case, however, the defaults set in TRANSLATE.conf are then
removed. This is not really necessary, as having additional settings is not an issue,
but it demonstrates how a project can be set up to only have the required SCLM
languages for a specific SCLM project.

Example of using combinations of the BIDIPROP overrides
The BIDIPROP values specified in SITE.conf can be overridden by any of the
BIDIPROP values specified in the SCLM project-specific <project>.conf files. For
example, the following is set in SITE.conf:

*

* ommmm e SITE SPECIFIC BIDI OPTIONS ----------=-------

*

*

* BiDi Language default properties

*

BIDIPROP=LANG=* TextOrient=LTR TextType=Visual SymetricSwap=0ff NumericSwap=0ff

This sets all SCLM languages to the specified settings. Now the following can be
set in the ADMIN10. conf file:

* BiDi Language default properties
BIDIPROP=LANG=JAVA TextOrient=RTL TextType=Visual SymetricSwap=0n NumericSwap=0ff
BIDIPROP=LANG=COBOL TextOrient=RTL TextType=Logical SymetricSwap=0ff NumericSwap=0ff

These settings will override the settings in SITE.conf for the JAVA and COBOL

language definitions. All other languages will have the default settings, as specified
in SITE.conf.

Chapter 2. SCLM customization for SCLM Developer Toolkit 31

32 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Chapter 3. SQLJ Support

SQLJ is a language extension for Java. It is one of several technologies that allow
Java programmers to include database communication in their programs. SQL]J
provides a means to produce static, embedded SQL that generally out-performs
dynamic equivalents such as JDBC.

SCLM Developer Toolkit ships with sample scripts allowing you to build SQLJ
enabled Java programs using DB2.

After reading this chapter you will understand the essentials of SQL]J, and how to
apply this knowledge while using SCLM Developer Toolkit.

What is SQL?

SQL is an acronym for Structured Query Language. It is an open language, used to
query, add to, remove from, and change data in a Relational Database Management
System (RDMS).

The first implementation of this language was in an early IBM database product in
the 1970s: System R . Since then, SQL has grown, been standardized (by ANSI and
ISO) and appeared in many variations on many different database systems.

What is DB2?

DB2 is a popular database system, traditionally for the mainframe platform, that
has since been extended onto many others. It is the standard for relational database
management systems on z/OS.

DB2 UDB Version 8 is the version that SCLM Developer Toolkit's build scripts are
based on. References to DB2 in this chapter refer specifically to DB2 UDB Version
8.

What is JDBC?

JDBC stands for Java Database Connectivity. In Java development, this is a well
known and commonly used technology for implementing database interaction.
JDBC is a call-level API, meaning that SQL statements are passed as strings to the
API, which then takes care of executing them on the RDMS. Consequently, the
value of these strings can be changed at runtime, making JDBC dynamic.

While JDBC programs will execute slower than their SQL]J equivalents, one

advantage of this approach is a concept known as Write once, call anywhere. This
means that since no interaction is required until runtime, a JDBC program is very
portable and can be taken between different systems with minimum expenditures.

What is SQLJ?

SQLJ is a language extension used for database transactions in Java applications. It
produces static, embedded SQLJ. The term is made up of SQL which stands for
Structured Query Language and] which stands for Java.

© Copyright IBM Corp. 2010, 2012 33

SQLJ is static because the SQL statements that will be executed at runtime are
known when the program is assembled. Contrast this to JDBC, where the queries
that are executed can be changed at any time.

SQLJ is embedded because during binding, a serialized form of the programs SQL
statements is given to the database. The database uses this serialized data to
determine optimized access paths to the tables that are referenced within. In JDBC,
the database has no way to determine which statements will be executed, until it
receives them at runtime from the application. Therefore it must determine access
paths at runtime. This incurs an overhead that is avoided by using SQLJ.

Comparing JDBC and SQLJ

This table is based on material found in section 5.2 of the Redbook DB2 UDB for
z/OS Version 8: Everything You Ever Wanted to Know, ... and More.

Table 7. Comparing JDBC and SQLJ

SQLJ (static)

JDBC (dynamic)

PERFORMANCE

Most of the time, static SQL is faster
than dynamic SQL, because at
runtime only the authorization for
packages and plans must be checked
prior to the execution of the program.

Dynamic SQL statements require the
SQL statements to be parsed,
table/view authorization to be
checked, and the optimization path to
be determined.

AUTHORIZATION

With SQLJ, the owner of the
application grants EXECUTE
authority on the plan or package, and
the recipient of that GRANT must
run the application as written.

With JDBC, the owner of the
application grants privileges on all
the underlying tables that are used
by the application. The recipient of
those privileges can do anything that
is allowed by those privileges, for
example, using them outside the
application the authorizations were
originally granted for. The
application cannot control what the
user can do.

DEBUGGING

SQLJ is not an API but a language
extension. This means that the SQL]J
tooling is aware of SQL statements in
your program, and checks them for
correct syntax and authorization
during the program development
process.

JDBC is a pure call-level API. This
means that the Java compiler does
not know anything about SQL
statements at all they only appear as
arguments to method calls. If one of
your statements is in error, you will
not catch that error until runtime
when the database complains about
it.

MONITORING

With SQLJ, you get much better
system monitoring and performance
reporting. Static SQL packages give
you the names of the programs that
are running at any given point in
time. This is extremely useful for
studying CPU consumption by the
various applications, locking issues
(such as deadlock or timeout), and so
on.

Where in SQL] you can determine
the name of the program currently
executing, with JDBC all transactions
occur through the same program.
This makes monitoring and locating
problem areas more difficult.

34

IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Table 7. Comparing JDBC and SQLJ (continued)

SQLJ (static) JDBC (dynamic)

VERBOSITY

As SQLJ statements are coded in With JDBC, all SQL statements must
purely SQL syntax, without the need |be wrapped in API calls that

to wrap them in a Java method, the |generally make for unclear and
programs themselves are easier to verbose code.

read, making them easier to
maintain. Also, since some of the
boilerplate code which has to be
coded explicitly in JDBC is generated
automatically in SQL]J, programs
written in SQLJ tend to be shorter
than equivalent JDBC programs.

What is a Serialized Profile?

A Serialized Profile is a code that is written in SQLJ is placed in a file with a .sq1]j
extension. In the first step of program preparation (that will be discussed in more
detail later on), the .sqlj file is fed into the SQL]J translator.

The translator produces two types of output. The first is Java source code (.java).
This source code is obviously the Java implementation of the code within the .sqlj
file.

The second type of output is a serialized profile (.ser). This file contains all the
SQL statements from the .sqlj file, in a serialized form. This profile must be
available to the program at runtime, and it can also be used to bind to the RDMS.

What is a DBRM?

DBRM stands for Database Request Module. This is the traditional DB2 serialized
representation of the SQL statements in a program. For example, a program may
be written in COBOL. This program will be preprocessed by DB2 to produce a
DBRM that will be used to bind against a particular DB2 subsystem.

With SQLJ, the process is slightly different, and is referred to in DB2 UDB Version
8 terms as compatibility mode. The utility db2sqljcustomize can be provided with
optional command-line arguments that cause a DBRM to be generated. This DBRM
can then be bound to DB2 using traditional means, for example, a REXX script
called by an SCLM user exit.

SQLJ program preparation

Before discussing how to use SCLM Developer Toolkit to build SQLJ programs,
first examine the manual process. This process is for the DB2 implementation of
SQLJ, and features 3 commands called sqlj, db2sqljcustomize, and db2bind. Note that
the bind step can optionally be performed in db2sqljcustomize, so db2bind is not
always required.

Chapter 3. SQLJ Support 35

Dez sau DBz SOL produces Profile corterts|
source profile printer ftest output)

2 file tdbZsqliprint) R
inpist to input to
DBZ SaL Input to
trans|zor DB2 5011 0B2 0L
(sgli) profiles profile customize
serfiles
l[dbZsqljoustomize
generates updates N
all awomatically (default)
Generated inputo
Javafiles (manual bind})
Javafiles E DBz S0
profile binder
(dbZsqljbind)
input to
ind
|un': comipiler | packages I
produces

class files

0

Figure 17. SQLJ program preparation

Translation

The SQLJ translator (not to be confused with an SCLM language translator) takes
SQL]J source files as input, and produces Java source code (.java files) and
serialized profiles (.ser files).

The SQLJ language itself is not discussed in this book. Consult |http://www.sql.org]
to find references on developing SQLJ code.

The number of serialized profiles generated per .sqlj file depends upon the
number of connection context classes referenced within the SQL]J code. A serialized
profile will be generated for each.

Many SQL]J source files will only refer to a single connection context class, and
therefore generate a single serialized profile. The serialized profiles are named
according to the order that they are referenced in the source file. The name takes
the following format:

progname_SJProfileX.ser

Where:

* progname represents the name of the program. This is determined by removing
the .sql1j extension from the input source filename.

36 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

http://www.sql.org

* X represents an integer representing the index of the current class. Indexing is
zero based. The first connection context class referenced will produce profile 0;
the second will produce profile 1, and so on.

Example:
Input: Customer.sqlj (references one connection context class)

Qutput: Customer.java
Customer_SJProfile0.ser

And optionally, if the argument -compile=true is supplied to sqlj:
Customer.class

Customization

Once the serialized profiles are generated, we customize them. The command for
doing so in DB2 Version 8 is db2sqljcustomize, however, in previous versions it was
db2profc. Each invocation of the customizer should match up with an invocation
with the SQLJ translator. In other words, if a single invocation of the translator
generated five profiles, then those five profiles must be fed as input to a single
invocation of the profile customizer. Another way to think of it is to associate each
individual program name with one invocation of each of the utilities. Remember
that the program name is the same as the input source filename with the .sqlj
extension removed.

Customization adds DB2 specific information to the serialized profile that is used
at runtime. Other options, such as automatic binding, can be configured through
command-line switches. If you are using a legacy version of DB2, or you are
specifying the gendbrm and dbrmdir flags for db2sqljcustomize, a DBRM file will be
generated. This file is used later to bind to the database. With the Universal driver
from DB2 UDB 8+, you may forgo the generation of a DBRM, and instead bind
using the serialized profiles generated by the SQLJ translator.

Binding
Binding is the last step in the SQL] program preparation process. In DB2 version 8,
the command used to bind is db2sqljbind, or you may bind automatically when
running db2sqljcustomize. Binding is the step that builds an access path to DB2
tables for your serialized SQL statements. These statements are available either in
the form of a DBRM or a serialized profile.

By default, four packages are created, one for each isolation level. You can either
bind using the traditional method, wherein a DBRM is used, or the new Universal
method, where serialized profiles are used instead.

SCLM DT types and translators

Before discussing the SCLM types and translators, an important distinction must
be made between an SCLM language translator, or simply, SCLM translator, and the
SQLJ translator sqlj that ships as part of DB2.

In SCLM, any defined language is required to have a translator so it is known how
to deal with that language. This is not the same as the SQL] translator sglj that is a
command-line utility that takes an SQL]J source file and produces serialized profiles
and Java source code.

Having made that distinction, discuss the SCLM Types and SCLM Translators
associated with the SQLJ build process, as follows.

Chapter 3. SQLJ Support 37

An SCLM translator for SQLJ is provided and should be assigned as the language
type of all SQLJ source code stored in SCLM. This new translator requires
additional SCLM Types to be defined. The SCLM translator for SQLJ is similar to
the JAVA translator but contains additional IOTYPE definitions for SCLM output
types SQLJSER and DBRMLIB. If you do not want to generate DBRM files as part
of the customization step then this DBRMLIB IOTYPE may be removed from the
SQLJ language definition.

Within the project definition, an administrator must define and generate the new
SCLM translator and the additional types.

Table 8. SCLM translator types for SQLJ

SQLJSER This is required to store the generated serialized profile files (.ser files)
created or customized in the translation and customization steps. It is
recommended to define this SCLM type data set as recfm=VB, Irecl= 256.

DBRMLIB A type required to contain the generated DBRM files created in the

customization step. This type is only required for customers using
generated DBRM files as part of their DB2 bind processing.

Tailoring the build process

In order to retain maximum flexibility, the SQLJ build process is highly
customizable, to cater for different site configurations, and any combination of
parameters that must be passed to sqlj and db2sqljcustomize.

This section describes the concepts behind SCLM Developer Toolkit's
implementation of SQLJ. After reading it, you will be able to customize the build
process to match the requirements of your site.

While doing SQLJ translation and profile customization, SCLM Developer Toolkit
directly invokes the same Java classes used by the commands sqlj and
db2sqljcustomize. Be aware that the arguments supplied to the SCLM DT translation
and customization processes will be exactly the same. For an in-depth discussion
of all the command-line arguments for each command, consult the DB2 Universal
Database”" User Guide.

Tailoring the Build Script

Assuming you have used the Add to SCLM wizard, the build script for your SQLJ
program will be given the same member name as the ARCHDEEFE. For example, if
the ARCHDEF for your sqlj project is SCLM10.DEV1.ARCHDEF (SQLJO1), you will
locate the build script at SCLM10.DEV1.J2EEBLD(SQLJO1).

In that build script there will be a reference to the master build script. This can be
found in the property. Most of the configuration listed for the translation and
customization steps goes on in this file.

Note: The build script shipped with Developer Toolkit is BWBSQLB for JAR
projects, and BWBSQLBE for EJB projects. You should not need to change this
value.

sqlj.* properties
Each property listed in[Table 9 on page 39|appears in the BWBSQLB build script.
The properties are in XML form, as follows:

Configuring the script involves changing the value for any relevant properties.

38 IBM Rational Developer for System z 8.5.0: SCLMDT Administrator’s Guide

Table 9. sqlj.” properties

Name Value Description

sqlj.exec usr/lpp/rdz/bin/bwbsqlc.rex Specifies the location of the sqlj and
db2sqljcustomize exec routine bwbsqlc.rex,
which is located in the Developer for System z
install directory.

sqlj.class sqlj.tools.Sqlj Specify the sqlj class name. This is the name of
the class invoked by the sqlj utility. It is very
unlikely you will need to change this value.

sqlj.bin /db2path/bin Specify the db2 sqlj bin directory location where
the sqlj script resides.

sqlj.cp /db2path/jcc/classes/sqlj.zip Specify the location of sqlj.zip for inclusion on
the classpath.

sqlj.arg -compile=false status linemap=NO Specify global property arguments below for

db2optimize

sqlj processing.

<property name= NAME

db2sqljcustomize.* properties
Each property listed in [Table 10|appears in the BWBSQLB build script. The properties
are in XML form, as follows:

Table 10. db2sqljcustomize.” properties

value= VALUE />

Configuring the script involves changing the value for any relevant properties.

Name Value Description
sqljdb2cust.class com.ibm.db2 jcc.sqlj.Customizer Specify the sqlj db2 customize
class name. It is very unlikely
that you should need to
change this value.
db2sqljcust.cp Classpath settings for the
/db2path/jcc/classes/db2jcc jar: customize utility. Fully
./SRC: qualified path names must be
/db2path/jcc/classes/db2jcc_license_cisuz.jar supplied in XML.
db2sqljcust.arg -automaticbind NO -onlinecheck YES -staticpositioned YES | General arguments to supply
-bindoptions & ISOLATION(CS)a -genDBRM to the customization utility.
db2sqljcust.propfile user.properties Temporary property file name
to be passed to a user
property determination script
for dynamic property values.
Leave as default.
db2sqljcust.userpgm NONE if you want to bypass the script. Otherwise, specify | This script will be run

