

Rational Statemate
Dataport Reference Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Dataport Library Overview 1

Function Types 2
Dataport Interface 2
Working with the Dataport 2

Using Dataport Functions 3

Dataport Function Calls 3
Calling Conventions 4

Function Name 4
Element Type Abbreviations 4
Function Input Arguments 6

Example 7
Function Return Values 7
Special Cases of Return Values 8

Using Functions in C Language Programs 9
Include Files 9
Information Retrieval Process 9
Initializing the Retrieval Process 10

Transaction Handling 11
Automatic Transaction Mode 12
Self Transaction Mode 13

Preparing and Executing Programs 15
Windows Systems 15
UNIX Systems 16

Sample Program 17

Sample C Program 17
Program Description 21

Main Section and Program Setup 21
Creating the Lists 22
Retrieving the Information 23
Writing the Graphical Information 24
Writing the Textual Information 25
Drawing the Names of the Elements 26
Drawing the Activity Box 27
Constructing the Activity Type 28
Constructing the Activity Termination Type 28
Global Variable Declarations 29
Program Definitions 29
Include File Statements 29

Program Output 30

Single-Element Functions 35

Overview of Dataport Single Element Functions 35
Calling Single-Element Functions 36
Single-Element Function Input Arguments 38
Single-Element Function Examples 39

Example 1: Returning a State’s Synonym and Description 39
Example 2: Returning Enumerated Type Values 39
Example 3: Writing a Portion of the Long Description 40
Example 4: Extracting Textual Information 40

List of Functions 41
stm_check_out_item 47
stm_check_in_item 50
stm_lock_item 51
stm_unlock_item 52
stm_r_ac_mini_spec_hyper 53
stm_r_ac_subroutine_bind 54
stm_r_ac_subroutine_bind_enable 55
stm_r_ac_subroutine_bind_expr 56
stm_r_ac_termination 57
stm_r_ac_xx_ac 59
stm_r_actual_parameter_exp 60
stm_r_actual_parameter_type 61
stm_r_cd_info 62
stm_r_changes_log 63
stm_r_ch_access_status 64
stm_r_ch_creation_date 65
stm_r_ch_creator 66
stm_r_ch_modification_date 67
stm_r_ch_modification_status 68
stm_r_ch_usage_type 69
stm_r_ch_version 70
stm_r_cn_value 71
stm_r_co_default_val 72
stm_r_ddb_list_names 73
stm_r_design_attr 74
stm_r_dt_enum_values 75
stm_r_element_type 76
stm_r_elem_in_ddb_list 79
stm_r_formal_parameter_names 80
stm_r_gds_visibility_mode 81
stm_r_hyper_key 82
stm_r_self_hyper_key 83
stm_r_included_gds 84
stm_r_inherited_gds 85

stm_r_md_implementation 86
stm_r_md_purpose 87
stm_r_msg_all 88
stm_r_msg_defined_in_scen 89
stm_r_msg_graphic 90
stm_r_msg_included_in_ord_insig 91
stm_r_msg_where_tc_begins 92
stm_r_msg_where_tc_ends 93
stm_r_next_msg 94
stm_r_nt_body 95
stm_r_oactor 96
stm_r_omd 97
stm_r_ord_insig_all 98
stm_r_ord_insig_graphic 99
stm_r_ouc 100
stm_r_parameter_binding 101
stm_r_previous_msg 102
stm_r_sb_action_lang 103
stm_r_sb_action_lang_expression 104
stm_r_sb_action_lang_local_data 105
stm_r_sb_ada_user_code 106
stm_r_sb_ansi_c_user_code 107
stm_r_sb_connected_chart 108
stm_r_sb_connected_statechart 109
stm_r_sb_connected_flowchart 110
stm_r_sb_global_data 111
stm_r_sb_global_data_mode 112
stm_r_sb_kr_c_user_code 113
stm_r_sb_parameters 114
stm_r_sb_proc_sch_local_data 115
stm_r_sb_proc_fch_local_data 116
stm_r_sb_return_type 117
stm_r_sb_return_user_type 118
stm_r_sb_return_user_type_name_type 119
stm_r_sep_all 120
stm_r_sep_graphic 121
stm_r_st_andlines 122
stm_r_st_static_reactions 123
stm_r_st_static_reactions_hyper 124
stm_r_stubs_name 125
stm_r_tc_all 126
stm_r_tc_graphic 127
stm_r_tr_attr_enforced 128
stm_r_tr_attr_name 129

stm_r_tr_attr_val 130
stm_r_tr_longdes 131
stm_r_tr_notes 132
stm_r_tt_cell 133
stm_r_tt_cell_hyper 134
stm_r_tt_cell_type 135
stm_r_tt_num_of_col 136
stm_r_tt_num_of_in 137
stm_r_tt_num_of_out 138
stm_r_tt_num_of_row 139
stm_r_tt_row 140
stm_r_tt_row_hyper 141
stm_r_xx 142
stm_r_xx_all 144
stm_r_xx_array_lindex 146
stm_r_xx_array_rindex 147
stm_r_xx_attr_enforced 148
stm_r_xx_attr_name 150
stm_r_xx_attr_val 152
stm_r_xx_bit_array_lindex 154
stm_r_xx_bit_array_rindex 155
stm_r_xx_cbk_binding 156
stm_r_xx_cbk_binding_enable 157
stm_r_xx_cbk_binding_expression 159
stm_r_xx_cbk_binding_expression_hyper 160
stm_r_xx_chart 161
stm_r_xx_combinationals 163
stm_r_xx_containing_fields 164
stm_r_xx_data_type 165
stm_r_xx_default_val() 166
stm_r_xx_definition_type 167
stm_r_xx_des_attr_name 170
stm_r_xx_des_attr_val 172
stm_r_xx_description 174
stm_r_xx_displayed_name 176
stm_r_xx_explicit_defined_xx 177
stm_r_xx_expr_hyper 178
stm_r_xx_expression 179
stm_r_xx_ext_link 181
stm_r_xx_graphic 183
stm_r_xx_instance_name 185
stm_r_xx_keyword 187
stm_r_xx_labels 190
stm_r_xx_labels_hyper 192

stm_r_xx_longdes 193
stm_r_xx_max_val 195
stm_r_xx_min_val 196
stm_r_xx_mini_spec 197
stm_r_xx_mode 198
stm_r_xx_name 199
stm_r_xx_note 202
stm_r_xx_notes 203
stm_r_xx_number_of_bits 204
stm_r_xx_of_enum_type 205
stm_r_xx_of_enum_type_name_type 206
stm_r_xx_parameter_mode 207
stm_r_xx_reactions 208
stm_r_xx_select_implementation 210
stm_r_xx_string_length 211
stm_r_xx_structure_type 212
stm_r_xx_synonym 214
stm_r_xx_text 216
stm_r_xx_truth_table 218
stm_r_xx_truth_table_expression 219
stm_r_xx_truth_table_local_data 220
stm_r_xx_type 221
stm_r_xx_type_expression 226
stm_r_xx_uniquename 227
stm_r_xx_user_type 229
stm_r_xx_user_type_name_type 230
stm_open_truth_table 231
stm_calculate_element_magic_number 232
stm_get_element_create_stamp 233
stm_r_line_width 234
 234

Query Functions 235

Overview 235
Calling Query Functions 236

By Attributes 237
By Structure Type 238
Name and Synonym Patterns 238

Query Function Input Arguments 240
Examples of Query Functions 241

Example 1 241
Example 2 241
Example 3 242

List of Query Functions 243
Activities (ac) 244

Input List Type: ac 244
Input List Type: af 251
Input List Type: ch 252
Input List Type: ds 253
Input List Type: md 253
Input List Type: mx 254
Input List Type: router 255
Input List Type: st 255
Input List Type: uc 256

A-Flow-Lines (af, ba, laf) 257
Output List Type: af 257

Input List Type: ac 257
Input List Type: co 258
Input List Type: di 258
Input List Type: ds 259
Input List Type: ev 259
Input List Type: if 260
Input List Type: laf 260
Input List Type: mx 261
Input List Type: router 261

Output List Type: ba 262
Input List Type: af 262

Output List Type: ba 262
Input List Type: ch 262

Output List Type: bt 262
Input List Type: ch 262

Output List Type: laf 263
Input List Type: ac 263
Input List Type: af 263
Input List Type: ds 264
Input List Type: mx 264
Input List Type: router 265

Actions (an) 266
Input List Type: an 266
Input List Type: ch 268

Actors (actor) 269
Input List Type: actor 269
Input List Type: ch 269

Basic relation(br) 270
Input List Type: ch 270
 270
Input List Type: actor 270

 271
Input List Type: uc 271

Boundary Boxes (bb) 272
Output List Type: bb 272
Output List Type: ch 272

Combinational Assignments (ca) 272
Output List Type: mx 272

Charts (ch) 273
Input List Type: ac 273
Input List Type: an 273
Input List Type: ch 274
Input List Type: co 277
Input List Type: di 277
Input List Type: ds 277
Input List Type: dt 278
Input List Type: ev 278
Input List Type: fd 278
Input List Type: if 279
Input List Type: md 279
Input List Type: mx 280
Input List Type: nt 280
Input List Type: router 280
Input List Type: sb 281
Input List Type: st 281

Connectors (cn) 282
Input List Type: ba 282
Input List Type: bm 282
Input List Type: bt 283
Input List Type: cn 283
Input List Type: st 284
Input List Type: tr 284

Conditions (co) 285
Input List Type: af 285
Input List Type: ch 286
Input List Type: co 287
Input List Type: di 288
Input List Type: if 288
Input List Type: mf 289

Data-Items (di) 290
Input List Type: af 290
Input List Type: ch 291
Input List Type: co 291
Input List Type: di 292

Input List Type: fd 298
Input List Type: if 298
Input List Type: mf 298

Data-Stores (ds) 299
Input List Type: ac 299
Input List Type: af 299
Input List Type: ch 300
Input List Type: ds 301
Input List Type: md 302

User-Defined Types (dt) 303
Input List Type: ch 303
Input List Type: dt 304
Input List Type: fd 309

Events (ev) 310
Input List Type: af 310
Input List Type: ch 310
Input List Type: ev 311
Input List Type: if 312
Input List Type: mf 313

Fields (fd) 314
Input List Type: ch 314
Input List Type: di 314
Input List Type: dt 314
Input List Type: fd 315
Input List Type: mx 319

Functions (fn) 320
Input List Type: ch 320

Information-Flows (if) 321
Input List Type: af 321
Input List Type: ch 322
Input List Type: co 322
Input List Type: di 323
Input List Type: ev 323
Input List Type: if 324
Input List Type: mf 326

M-Flow-Lines (bf, lmf, mf) 327
Output List Type: bf 327

Input List Type: co 327
Input List Type: di 327
Input List Type: ev 328
Input List Type: if 328
Input List Type: mx 329

Output List Type: lmf 330

Input List Type: md 330
Input List Type: mf 330

Output List Type: mf 331
Input List Type: co 331
Input List Type: di 331
Input List Type: ev 332
Input List Type: if 332
Input List Type: lmf 333
Input List Type: md 333
Input List Type: mx 334

Modules (md) 335
Input List Type: ac 335
Input List Type: ch 335
Input List Type: ds 336
Input List Type: md 337
Input List Type: mf 341
Input List Type: router 341

Mixed (mx) 342
Input List Type: af 342
Input List Type: ac 343
Input List Type: an 345
Input List Type: ba 346
Input List Type: bm 346
Input List Type: bt 347
Input List Type: ch 347
Input List Type: co 350
Input List Type: di 351
Input List Type: ds 352
Input List Type: dt 352
Input List Type: ev 353
Input List Type: fd 354
Input List Type: fn 355
Input List Type: if 355
Input List Type: md 356
Input List Type: mf 357
Input List Type: msg 358
Input List Type: mx 358
Function Relationships 364
Input List Type: router 366
Input List Type: sb 367
Input List Type: st 368
Input List Type: tr 370

Module-Occurrences (om) 371
Input List Type: md 371

Routers (router) 371
Input List Type: ac 371
Input List Type: af 372
Input List Type: ch 372
Input List Type: md 373
Input List Type: router 373

Subroutines (sb) 376
Input List Type: ch 376
Input List Type: sb 377

States (st) 383
Input List Type: ac 383
Input List Type: ch 384
Input List Type: cn 385
Input List Type: mx 385
Input List Type: st 386
Input List Type: tr 390

Timing Constraint (tc) 390
Input List Type: ch 390

Transitions (tr) 391
Output List: tr 391

Input List Type: cn 391
Input List Type: enforced 391
Input List Type: mx 392
Input List Type: st 393
Input List Type: tr 394

Utility Functions 395

Generating Lists 395
Creating a List 395
Loading a List 396

Calling List Utility Functions 396
Calling Report and Plot Functions 397

Producing Predefined Reports 397
Generating Chart Plots 398

Calling Functions on Reactions 398
Calling Functions of the Workarea 398

Utility Function Examples 399
Example 1 399
Example 2 399

List of Utility Functions 400
stm_action_of_reaction 404
stm_add_attribute 405
stm_backup 407

stm_commit_transaction 408
stm_decode_color 409
stm_delete_attributes 409
stm_dispose_all 412
stm_dispose_graphic 413
stm_dispose_text 413
stm_do_command_line 414
stm_exit_simulation 415
stm_exit_graphic_editor 416
stm_finish_uad 417
stm_frm_Reset_id 417
stm_get_db_status 418
stm_init_uad 418
stm_internal_refresh 421
stm_list_add_id_element 421
stm_list_add_id_element_to_list 422
stm_list_add_ptr_element 423
stm_list_add_ptr_element_to_list 424
stm_list_contains_id_element 425
stm_list_contains_ptr_element 426
stm_list_create_ids_list 427
stm_list_create_ptr_list 428
stm_list_create_id_list_with_args 429
stm_list_create_ptr_list_with_args 430
stm_list_delete_id_element 431
stm_list_delete_id_element_from_list 432
stm_list_delete_ptr_element 433
stm_list_delete_ptr_element_from_list 434
stm_list_destroy 435
stm_list_extraction 436
stm_list_extraction_by_chart 437
stm_list_extraction_by_chart_id 438
stm_list_extraction_by_type 439
stm_list_first_id_element 440
stm_list_first_ptr_element 441
stm_list_intersect_ids_lists 442
stm_list_intersect_ptr_lists 443
stm_list_last_id_element 444
stm_list_last_ptr_element 445
stm_list_length 446
stm_list_load 447
stm_list_next_id_element 448
stm_list_next_ptr_element 450
stm_list_previous_id_element 451

stm_list_previous_ptr_element 453
stm_list_purge 454
stm_list_sort 455
stm_list_sort_alphabetically_by_branches 456
stm_list_sort_alphabetically_by_levels 457
stm_list_sort_by_attr_value 458
stm_list_sort_by_branches 460
stm_list_sort_by_chart 462
stm_list_sort_by_levels 463
stm_list_sort_by_name 465
stm_list_sort_by_synonym 467
stm_list_sort_by_type 469
stm_list_subtract_ids_lists 470
stm_list_subtraction_ptr_lists 471
stm_list_union_ids_lists 472
stm_list_union_ptr_lists 473
stm_load 474
stm_multiline_to_one 478
stm_multiline_to_strings 478
stm_open_truth_table 479
stm_plot 480
stm_plot_ext 484
stm_plot_hyper_exp 489
stm_plot_with_autonumber 493
stm_plot_with_break 497
stm_plot_with_headerline 501
stm_r_global_interface_report 504
stm_r_local_interface_report 505
stm_run_simulation_profile 505
stm_save 506
stm_select_id 509
stm_start_transaction 510
stm_start_transaction_rw 510
stm_trigger_of_reaction 511
stm_uad_attribute 513
stm_uad_dictionary 514
stm_uad_interface 515
stm_uad_list 516
stm_uad_n2 517
stm_uad_protocol 519
stm_uad_resolution 520
stm_uad_state_interface 521
stm_uad_structure 522
stm_uad_tree 523

stm_unload 524
stm_unload_all 527

Project Management 529

stm_r_pm_member_workareas 530
stm_r_pm_operator_projects 531
stm_r_pm_project_databank 532
stm_r_pm_project_manager 533
stm_r_pm_project_members 534
stm_r_pm_projects 535

Data Types 537

Function Status Codes 539

Dataport Library Overview
The Dataport library provides:

� Functions to perform a wide variety of database extraction operations. Using the library’s
functions, you can extract information pertaining to an element from the specification
database.

You can use information extracted from the database for a variety of applications, such as:
– To plot portions of Rational Statemate charts using your own plotter package.

To do this, extract the graphic information of the relevant elements and then
use this information as input data for your plotter.

– To analyze data stored in the database. To do this, extract the relevant data and
then use your own software to perform the analysis.

– To extract textual information describing Rational Statemate elements for use
in specification-related applications.

� Functions to perform a variety of operations on elements extracted from the specification
database. For example, you can alphabetically order a list of extracted states using their
names.

� Functions to activate Rational Statemate capabilities from your program. For example, you
can generate a plot of a chart using the Rational Statemate plot function.
Rational Statemate 1

Dataport Library Overview
Function Types
There are four types of Dataport functions:

� Single-element functions - Provide information on discrete Rational Statemate elements
in the specification database. For example, you can retrieve the contents of the
Description field in a particular state’s form.

� Query functions - Extract lists of elements from the database, that conform to a specific
criterion. For example, you can extract a list of activities from the database that are
control activities. Most of these functions correspond directly to queries with the search
facility.

� Utility functions - Perform operations on lists. Most of these functions do not extract
information from the database, but rather manipulate the information you have already
retrieved.

� Project management functions - Extract information about the Rational Statemate
project, manager, and members.

Dataport Interface
The Rational Statemate Dataport functions have a C language interface. They can be called from C
language programs, as well as from programs written in other languages that can call C functions.

Working with the Dataport
To use the Dataport library, you extract information from the specification database by including
calls to various Dataport functions in your program. An explanation of function calls, parameters,
and returned values is provided in the following sections.

In addition to Dataport function calls, programs designed to extract database information must also
include a file of definitions, for example a definition of data-types.

After you finish writing and compiling your program, you must link it with the Dataport Library
image. These procedures are explained in Using Dataport Functions.
2 Data Port Reference Guide

Using Dataport Functions
This section provides information on how to use Dataport functions within a program. It provides
information on the following topics:

� Dataport Function Calls

� Calling Conventions

� Using Functions in C Language Programs

� Preparing and Executing Programs

Dataport Function Calls
Dataport function calls can appear anywhere in your program once an initialization procedure is
performed. Here are some examples of valid function calls.

In this example, the state named S1 is retrieved from the database and the variable state_id is
assigned to it. The state’s ID is retrieved; ID is a value that Rational Statemate uses to identify each
element in the database. The state_id can be used later in other function calls.

state_id = stm_r_st ("S1", &status);

Function calls are frequently used in sequence. For example, the ID for state S1 in this function call
has already been retrieved. The sample call retrieves the synonym of this state.

synonym = stm_r_st_synonym (state_id, &status);

This function creates a list (which contains the state S1), assigns it to the variable state_list,
then extracts the substates of S1.

state_list = stm_list_create (state_id,
 end_of_list, &status);
sub_st = stm_r_st_physical_sub_of_st (state_list,
 &status);

for (s = (stm_id) stm_list_first_element(
 sub_st, &status);
 status == stm_success;
 s = (stm_id) stm_list_next_element(
 sub_st, &status)
)

Rational Statemate 3

Using Dataport Functions
Prints a list of all substates of state S1.

printf ("\n %s", stm_r_st_name (s, &status));

Refer to Sample Program for an example of how to call Dataport functions in a C program.

Calling Conventions
Dataport functions provide you with information about particular Rational Statemate elements in
the database. To extract this information, you call the specific function that retrieves the
information you want. You specify the particular Rational Statemate elements that interest you as
input arguments to the function. The function returns a status code as an output argument, which
indicates whether the function call was successful.

Function Name

Single-element and query functions use the following prefix:

stm_r_

This prefix designates the function as a Rational Statemate database retrieval function.

Utility functions use the following prefix:

stm_

Element Type Abbreviations

Database extraction functions use two-character abbreviations to identify the type of Rational
Statemate elements referenced in function calls. The following table lists the element types and
their abbreviation.
4 Data Port Reference Guide

Calling Conventions
Element Abbreviation

A-flow-lines (basic) ba

A-flow-lines (compound) af

A-flow-lines (local) laf

Actions an

Actors actor

Activities ac

Boundary boxes bb

Charts ch

Combinational assignments ca

Conditions co

Connectors cn

Data-items di

Data-stores ds

Enumerated value en

Events ev

Fields fd

Information-flows if

Lifelines ll

Local data ld

Messages msg

Mixed (multiple types) mx

M-flow-lines (basic) bm

M-flow-lines (compound) mf

M-flow-lines (local) lmf

Modules md

Module-occurrences om

Notes nt

Off-page activities oa

Reference sequence
diagrams

ref_sd

Routers router

Separators sep

States st

Subroutines sb

Subroutine parameters sp

Timing constraints tc
Rational Statemate 5

Using Dataport Functions
For example, stm_r_ac_name retrieves the name of an activity, whereas stm_r_st_name retrieves the
name of a state.

The naming structure for each type of function is explained in the section that describes each
specific type. Note that element type and the information to be extracted are contained in the
function name and are not passed as arguments.

Arrow elements (transitions on a statechart, a-flow-lines (control and data flow lines on an activity
chart) and m-flow-lines on a module chart) can be either basic or compound:

� A basic arrow connects a box (state, activity, or module) or connector to another box or
connector.

� Compound arrows result from the combination of a number of basic arrows joined
together by connectors.

Function Input Arguments

Database extraction functions require input arguments in order to locate Rational Statemate
elements in the database. Input arguments consist of elements or lists of elements for which
information is sought.

Some functions require additional input arguments. Each argument must be declared to be of a
data type recognized by the Dataport library (or by the C compiler). This document includes a
complete list of input arguments for each type of database extraction function in the sections that
describe the specific function type.

Refer to the appropriate function sections for the lists of arguments relevant for each function.

Transitions (basic) bt

Transitions (compound) tr

Use cases uc

User-defined types dt

Element Abbreviation
6 Data Port Reference Guide

Calling Conventions
Example
To print out the synonym of the state S1 (if no synonym is defined in the state’s form, print
missing synonym), use the following statements:

 int status;
 stm_id state_id;
 stm_short_name synonym;
 .
 .
 .
state_id = stm_r_st ("S1", &status);
synonym = stm_r_st_synonym (state_id, &status);
if (status == stm_missing_synonym)
 printf ("\n synonym: *missing synonym*");
else
 printf ("\n synonym: %s", synonym);

The stm_id data-type is defined in the Dataport Library definition file, dataport.h. Refer to Data
Types for a complete list of data-type definitions.

Function Return Values

Library function return values are assigned to data-types declared in the library definition file
dataport.h. These data-types are defined in the C language. Refer Data Types for the maximum
length of return values.

For example, a function that retrieves the name of a Rational Statemate element, returns a value of
type stm_element_name (declared as char * in the library definition file), whereas a function that
retrieves a state’s ID returns a value of type stm_id (declared as long int).

The return values of data-types declared as strings char *, such as stm_element_name, are usually
limited in length.

The returned strings are defined as static in the functions. You should copy them if they are
needed for later use.
Rational Statemate 7

Using Dataport Functions
Special Cases of Return Values

The following are special cases of return values:

� Return values of filename

A number of Dataport functions store extracted information in files, such as a function
that retrieves an element’s long description. This function returns the name of the file that
contains the requested information. The filename returned is of type stm_filename. This
data-type is declared as char * in the library definition file.

Note: The returned string is defined as static in the functions. Copy the string if it is
required for later use.

� Return values of enumerated types

There are several functions that return a finite number of discrete values. These values are
not necessarily integers, and no particular order is assumed for these values.

For example, the function stm_r_st_type extracts the state type for the state specified in
the function call. The possible state types are:

stm_st_diagram

stm_st_and

stm_st_or

stm_st_instance

stm_st_reference

stm_st_basic

Your program can contain statements such as:
if (stm_r_st_type (st_id, &status) == stm_st_basic)

For such return values, there are special enumerated data-types declared in the
definition file. For example, the previous state types belong to the enumerated type
stm_state_type. Refer to for the list of enumerated data-types. Refer to Single-
Element Functions, Query Functions, and Utility Functions for the possible values and
the corresponding data-types that particular functions return.

� Return values of pointers to records

There are several functions that return a pointer to records with the textual and graphical
information of an element.

Note: The records are defined as static in the functions; You should copy the
records if they are needed for later use.
8 Data Port Reference Guide

Using Functions in C Language Programs
� Return values when the function call fails

When a function call fails, the function status code reflects the failure by returning the
following values:

By testing the value returned by the function, you can pinpoint function call failures.
To determine what went wrong, use the function status code.

Using Functions in C Language Programs
The Dataport has a C language interface. To use its functions in a program, you must follow
specific procedures to access both the library and your database.

Include Files

Every program that calls Dataport functions must include the definitions for its library data-types
and constants. The definitions are contained in the dataport.h file.

To incorporate these definitions, include the file by writing the following statement at the
beginning of your program:

#include dir_name/include/dataport.h

Substitute the value of the environment variable STM_ROOT for the dir_name variable.

Information Retrieval Process

Perform the following operations when using Dataport functions:

1. Initialize the retrieval process, via the stm_init_uad function.

2. Call the Dataport functions to retrieve database information.

3. Include the following line in your program, after the last Dataport function call:

stm_finish_uad();

Function Type Return Value

list NIL

string NIL

Boolean false

stm_id 0
Rational Statemate 9

Using Dataport Functions
Initializing the Retrieval Process

To initialize the retrieval process, add the following statement to your program before any calls to
Dataport library functions:

stm_init_uad (proj_name, w_area, trans_mode, &status)

In this call:

� proj_name - The name of the Rational Statemate project containing the information of
interest.

� w_area - The directory pathname of your workarea in which the specification database is
found.

� trans_mode (transaction on mode) - The transaction on mode. This specifies the manner
in which you want to handle database transactions, using self_transaction or
automatic_transaction modes.

This function returns true if successful, or false if unsuccessful. If unsuccessful, check the
status argument for the reason the function failed.

Note
The stm_init_uad function automatically changes the current directory to the workarea
directory. Therefore, all references to files inside the program have to take this into account.
Also, when the program terminates, it does not return to the original directory.

The following example shows how to initialize the retrieval process in a C program. In this
example, you are prompted for the name of the project to open.

main()
{
int status, success;
char name[32];
char dir[30];
printf ("Enter name of Statemate project: ");
scanf ("%s", name);
printf ("Enter directory pathname
 for your Workarea: ");
scanf ("%s", dir);
success =
 stm_init_uad (name, dir, automatic_transaction,
 &status);
if (!success)
 printf ("Init function failed.
 Reason: status code %d", status);
}

10 Data Port Reference Guide

Using Functions in C Language Programs
Note

� The project name (in this case, the content of the variable name) is not case sensitive.
� It is recommended that you write the init function in the form shown in the example

(success=...; if(!success)...;) to ensure that the init function succeeds before
continuing.

Transaction Handling
The transaction mode determines how database modifications are reflected in your retrievals. The
transaction modes are automatic_transaction and self_transaction.

Use automatic_transaction mode in the following cases:

� The database is not being updated during the information retrieval.
� The database is being updated by processes running in parallel to your program, but you

are not interested in these updates.
� Your program uses the load and unload functions to change the database contents, and you

want to use the updated database in your program each time it changes.
Refer to Automatic Transaction Mode for more information,

Use self_transaction mode if your information retrieval is to reflect database changes done by
other processes at the same time your program is working, and you do not use load and unload
functions in your program. Refer to Self Transaction Mode for more information.
Rational Statemate 11

Using Dataport Functions
Automatic Transaction Mode
In automatic_transaction mode, an implicit start_transaction is performed when you
initialize the retrieval process and an implicit commit_transaction is performed when you finish
the retrieval process.

Whenever you use load and unload functions to change the contents of the database, the program
implicitly closes the read transaction, starts the read/write transaction, commits the changes, and
implicitly starts a new read transaction.

The following is an example of how to use automatic_transaction:

main()
{
 int status, success;
 stm_list st_list;
 stm_id el;
 success = stm_init_uad ("PROJ", "/local/proj",
 automatic_transaction, &status);
 if (!success)
 {
 printf ("cause of failure is: %d", status);
 return;
 }
/* */
/* once initialization is done, */
/* retrieval can be done at any time. */
/* */
 st_list = stm_r_st_name_of_st ("*", &status);
 for (el = (stm_id)
 stm_list_first_element (st_list, 0);el!=NIL;
 el =(stm_id)stm_list_next_element (st_list, 0))
 {
 printf ("\n%s", stm_r_st_name (el, 0));
 }
/* */
/* The resulting output is: */
/* state_a */
/* state_b */
/* state_c */
/* state_d */
/* */
stm_finish_uad();
12 Data Port Reference Guide

Using Functions in C Language Programs
Self Transaction Mode
Use self_transaction mode when working with applications that are sensitive to database
changes performed by a process that runs in parallel with your program. When you operate using
the self_transaction mode, you must explicitly perform a start_transaction before you call
Dataport retrieval library functions. This is done by including the following statement in your
program:

stm_start_transaction();

For each start_transaction, you must perform an explicit commit_transaction to conclude the
database retrievals by including the following statement in your program:

stm_commit_transaction();

You can start and commit transactions at any stage of your program. However, before retrieving
additional data following a commit_transaction, you must first perform another
start_transaction. Perform a new start_transaction whenever you want to refresh the
image of the database so subsequent retrievals accurately reflect the database information.

The following is the structure of the self_transaction mode:

main()
{
 int status, success;
 stm_list st_list;
 stm_id el;
 success = stm_init_uad ("PROJ", "/local/proj",
 self_transaction, &status);
 if (!success)
 {
 printf ("cause of failure is: %d", status);
 return;
 }
/* */
/* once initialization is done, */
/* a start_transaction statement is */
/* needed in this mode. */
/* */
 stm_start_transaction ();
 st_list = stm_r_st_name_of_st ("*", &status);
 for (el = (stm_id)
 stm_list_first_element (st_list, 0);el!=NIL;
 el = (stm_id)stm_list_next_element(st_list, 0))
 {
 printf ("\n%s", stm_r_st_name (el, 0));
 }

/* */
/* retrievals are done for now, so a */
/* commit_transaction is performed. */
/* */
/* stm_commit_transaction(); */
/* The resulting output is: */
/* state_a */
/* state_b */
/* state_c */
/* state_d */
Rational Statemate 13

Using Dataport Functions
/* */
/* During the course of this output */
/* another process has updated the */
/* database, drawing a new state since */
/* this last transaction took place. */
/* */
/* If the same retrieval is done again, */
/* different results should be found! */
/* To insure that the program "sees" */
/* the changes, start_transaction is */
/* performed again. */
/* */
 stm_start_transaction ();
 st_list = stm_r_st_name_of_st ("*", &status);
 for (el = (stm_id)
 stm_list_first_element (st_list, 0);el!=NIL;
 el =(stm_id)stm_list_next_element (st_list, 0))
 {
 printf ("\n%s", stm_r_st_name (el, 0));
 }
/* */
/* The resulting output is: */
/* state_a */
/* state_b */
/* state_c */
/* state_d */
/* state_e */
/* */
/* The last state, e, is new to the list */
/* */
 stm_commit_transaction ();
 stm_finish_uad ();
}

14 Data Port Reference Guide

Preparing and Executing Programs
Preparing and Executing Programs
C programs containing Dataport function calls must be linked with the Dataport library. To execute
a program containing calls to Dataport functions, follow the procedure for your operating system.
The definitions in the dataport.h file can be used for debugging purposes.

Windows Systems

Define the environment variable STM_ROOT, as follows:

SET STM_ROOT=root name

Contact your Rational Statemate manager for the name of the root directory of the Rational
Statemate tree. For example:

SET STM_ROOT=C:\IBM Rational\stmm\4.6

Use the following command to compile and link:

PROGRAM= my_prog.exe
DLL= <STM_ROOT>\bin\dataport.dll
DLIB= <STM_ROOT>\lib\dataport.lib
SRCS= my_prog.c
HDRS= my_prog.h

CFLAGS= /DDLL_LINK /I<STM_ROOT>\include
LIBS= kernel32.lib
all: $(PROGRAM) $(DLL) $(HDRS)

$(PROGRAM): $(SRCS) $(DLIB)
cl $(CFLAGS) $(SRCS) $(DLIB) $(LIBS)

clean:
 -del $(PROGRAM) >nul: 2>&1
 -del *.obj >nul: 2>&1
 -del *.pdb >nul: 2>&1
 -del *.ilk >nul: 2>&1
 -del *.mdp >nul: 2>&1
 -del *.opt >nul: 2>&1

In this syntax:

� prog.o—The name you want to assign to the executable image
� prog.h—The header file
� myprog.c—The name of the file containing the C program

Use the following command to execute your program:

prog
Rational Statemate 15

Using Dataport Functions
UNIX Systems

Define the environment variable STM_ROOT, as follows:

% setenv STM_ROOT root_name

Contact your Rational Statemate manager for the name of the root directory of the Rational
Statemate tree.

Use the following command to compile and link:

cc -o <program> <otherflags> <myprog.c> \
 $STM_ROOT/lib/dataport.o \
 $STM_ROOT/lib/libgcc.a $STM_ROOT/lib/x_stubs.o \
 -lm -lsocket -lnsl -L/usr/ucblib -lucb -ldl

In this syntax:

� program—The name you want to assign to the executable image
� otherflags—Can include -g or -O
� myprog.c—The name of the file containing the C program

Use the following command to execute your program:

program

In this syntax, program is the name of the executable image.

Optional qualifiers, such as debug, can be added in the compile, link, and execute stages. Refer to
your operating system reference manuals for the available options.
16 Data Port Reference Guide

Sample Program
This section contains a sample C program that shows you how to use the Rational Statemate
Dataport to extract information about activities from the specification database. The information
extracted is both textual (such as activity name, synonym, short description, and so on) and
graphical (such as the Cartesian coordinates of the activity’s box).

Sample C Program
The sample C program is as follows:

#include <stdio.h>

#include "dataport.h"
#define GET_STR(S)
 {int i;for(i=0;(S[i++]=getchar())!=’\n’;);
 S[--i]=’\0’;}

int status=0;
FILE *fd;
char array[80];

void draw_line (color, x1, y1, x2, y2)
stm_color color;
stm_coordinate x1, y1, x2, y2;
{
 printf("\n line from %f, %f to %f, %f in color %d",
 x1, y1, x2, y2, color);
}

void draw_string (s, color, x1, y1)
char *s;
stm_color color;
stm_coordinate x1,y1;
{
 printf ("\n string %s at %f, %f in color %d\n",
 s, x1, y1, color);
}
static char *activity_type (search_for)
stm_activity_typesearch_for;
{

static struct search_activity_type {
 stm_activity_typeact_type;
 char *name;
} ActivityType[] = {
 {stm_ac_diagram,”DIAGRAM”},
 {stm_ac_reference,”REFERENCE”},
Rational Statemate 17

Sample Program
 {stm_ac_internal,”INTERNAL”},
 {stm_ac_instance,”INSTANCE”},
 {stm_ac_control,”CONTROL”},
 {stm_ac_control_instance,”CONTROL_INSTANCE”},
 {stm_ac_external,”EXTERNAL”},
 {NULL, ”NULL”},
}
struct search_activity_type*sat;

 for (sat = ActivityType; sat->name != NULL; sat++)
 if (sat->act_type == search_for)
 return sat->name;
 return ””; /* error!*/
}

static char *activity_termination_type(search_for)
stm_activity_terminationsearch_for;
{
static struct search_activity_termination {
 stm_activity_terminationact_term_type;
 char *name;
} ActivityTerminationType[] = {
 {stm_ac_missing, ”MISSING” },
 {stm_ac_self_termination, ”SELF_TERMINATION” },
 {stm_ac_controlled_termination,
 ”CONTROLLED_TERMINATION”},
 {NULL, ”NULL” },
}
struct search_activity_termination*sat;

 for (sat = ActivityTerminationType;
 sat->name != NULL;sat++)
 if (sat->act_term_type == search_for)
 return sat->name;
 return ""; /* error!*/
}

void activity_text_output(ac_text)
stm_ac_text_ptr ac_text;
{
 printf("\n\n\n\n\n activity textual information\n");
 printf("============================\n");
 printf("\n activity name: %s", ac_text->ac_name);
 printf("\n activity in chart: %d",
 ac_text->ac_chart);
 printf("\n activityuniquename:%s",
 ac_text->ac_uniquename);
 printf("\n activity synonym: %s",
 ac_text->ac_synonym);
 printf("\n activity type: %s",(ac_text->ac_type));
 printf("\n activity termination: %s",
 activity_termination_type (ac_text->ac_termination));
 printf("\n activity short description: %s",
 ac_text->ac_short_des);
 printf("\n activity long description:\n\n");
 if ((fd=fopen(ac_text->ac_long_des, "r")) == ZNIL)
 printf("\n\n cannot open file for printing");
 while (fgets(array,81,fd)!=ZNIL) printf("%s",array);
}
void activity_graphic_output (ac_graphic, ac_name)
stm_ac_graphic_ptr ac_graphic;
stm_name ac_name;

{

18 Data Port Reference Guide

Sample C Program
 int i = 0;
 stm_coordinate prev_x;
 stm_coordinate prev_y;

printf("\n\n activity graphical information\n");
 printf("==============================\n");

 draw_string (ac_name, ac_graphic->ac_name_color,
 ac_graphic->ac_x_coor, ac_graphic->ac_y_coor);

 for (i=1; i<=ac_graphic->ac_polygon.points_no;i++)
 {
 prev_x = ac_graphic->ac_polygon.outline[i-1].x;
 prev_y = ac_graphic->ac_polygon.outline[i-1].y;
 draw_line(ac_graphic->ac_color,prev_x,prev_y,
 ac_graphic->ac_polygon.outline
 [i % ac_graphic->ac_polygon.points_no].x,
 ac_graphic->ac_polygon.outline
 [i % ac_graphic->ac_polygon.points_no].y);
 }
}

void activities_info (ac_list)

stm_list ac_list;
{
 stm_ac_text_ptr ac_textual;
 stm_ac_graphic_ptr ac_graphical;
 stm_id el;

 for (el = (stm_id) stm_list_first_element (ac_list, &status);

 status == stm_success;
 el= (stm_id)stm_list_next_element (ac_list, &status))
 {

 ac_textual = stm_r_ac_text (el, &status);
 if (status == stm_success)
 activity_text_output (ac_textual);

 ac_graphical=stm_r_ac_graphic(el,&status);
 if (status == stm_success)
 activity_graphic_output(ac_graphical,
ac_textual->ac_name);
 }
}

void activity_boxes()
{
 char ac_name[32];
 stm_id ac_id;
 stm_list ac_list,acs_list;

printf("\n enter activity name: ");
 GET_STR(ac_name);
 ac_id=stm_r_ac(ac_name,&status);
 if (status!=stm_success)
 {
 printf("illegal activity name"); return;
 }
Rational Statemate 19

Sample Program
 ac_list=stm_list_create(ac_id,end_of_list,&status);
 acs_list=stm_r_ac_physical_sub_of_ac(ac_list,&status);

 if (status!=stm_success)
 {
 printf("error during execution"); return;
 }
 acs_list=stm_list_union(ac_list, acs_list, &status);
 activities_info(acs_list);
}

main()
{
 char pname[32];

 printf("enter name of project: ");
 GET_STR(pname);
 success=stm_init_uad(pname, "/usr/sam/proj",
 self_transaction, &status);
 if (success)
 {
 stm_start_transaction();
 activity_boxes();
 stm_commit_transaction();
 }
 else
 printf(cause of failure 15:%d,status);
 stm_finish_uad();
}

20 Data Port Reference Guide

Program Description
Program Description
For clarity, the program is explained in sections, not necessarily in the order in which it is written.
The most general part, the main section of the program, is described first, then the individual
functions are described.

Main Section and Program Setup
main()

This section is the main part of the program. It calls the individual routines that are included in the
C program.

{
 char pname[32];
 printf("enter name of project: ");
 GET_STR(pname);

The program begins by prompting for the name of the project.

success=stm_init_uad(pname,"/usr/sam/proj",
 self_transaction,&status);

The extraction is initialized by this function call. Your user’s authorization to use the database is
checked. You must be a member of the project that contains the specified activity-chart. If you are
a member, the database is opened.

The parameter value self_transaction declares that you control the transaction handling, rather
than having it done automatically. If the function is not successful, check the value of status to find
out the reason for the failure.

stm_start_transaction();

This statement permits database operations. The statement must appear here because the
self_transaction parameter was used in the init statement.

activity_boxes();

This calls the primary routine.

stm_commit_transaction();
stm_finish_uad();
}

This example does not have functions that write to the database; therefore, the commit statement
here serves only to conclude the transactions.

The finish statement concludes the Dataport operations and closes the database.
Rational Statemate 21

Sample Program
Creating the Lists
void activity boxes()

This primary function creates a list of activities. The list is composed of a specified activity
together with its subactivities. You are prompted for the parent activity.

{
 char ac_name[32];
 stm_id ac_id;
 stm_list ac_list,acs_list;

ac_name holds the name of the activity., ac_id holds the ID number of the activity, and ac_list
and acs_list hold the list of activities.

printf ("\n enter activity name: ");
GET_STR (ac_name);
ac_id = stm_r_ac (ac_name, &status);
if (status!=stm_success)
 {
 printf ("illegal activity name");
 return;
 }

The element ID that corresponds to the element name is retrieved. The status check determines
whether the retrieval was successful. If the activity name is not unique or if it is incorrect, an error
message is printed and the function is aborted.

ac_list = stm_list_create (ac_id, end_of_list, &status);

This statement creates a list of the single activity of interest. This list is then used as an input
parameter for the routine stm_r_ac_physical_sub_of_ac.

acs_list = stm_r_ac_physical_sub_of_ac (ac_list, &status);

This statement creates a list of all the subactivities for the input activity list (which, in this case,
contains only a single activity).

if (status != stm_success)
{
 printf ("error during execution");
 return;
}

The status of the operation is checked for success (in this case, the check is redundant). An error
could be caused if the activity in ac_list is deleted from the database by some other process while
the sample C program is being executed. This situation can occur when the entire program is
performed under more than one transaction.

acs_list = stm_list_union (ac_list, acs_list, &status);
22 Data Port Reference Guide

Program Description
This statement merges the two lists that contain the parent activity and its subactivities.

activities_info(acs_list);
}

The last statement of this function calls the function activities_info, which retrieves
information for each element in a list of activities.

Retrieving the Information
void activities_info (ac_list)
stm_list ac_list;

This function retrieves both the textual and graphical information contained in the database.

{
 stm_ac_text_ptr ac_textual;
 stm_ac_graphic_ptr ac_graphical;
 stm_id el;

These statements declare variables to point to textual and graphical records, and to include the ID
for an activity. The structure of these records is defined in dataport.h.

for (el = (stm_id) stm_list_first_element (ac_list,
 &status);
 status == stm_success;
 el = (stm_id) stm_list_next_element (ac_list,
 &status)
)
stm_list_next_element (ac_list, &status))

These statements loop through each element in the activity list. The status of
stm_list_next_element is not equal to stm_success when there are no more elements in the list.

{
 ac_textual = stm_r_ac_text (el, &status);
 if (status == stm_success)
 activity_text_output (ac_textual);

This statement retrieves the textual information for an activity. If successful, it writes the
information into the report.

 ac_graphical = stm_r_ac_graphic (el, &status);
 if (status == stm_success)
 activity_graphic_output (ac_graphical,
 ac_textual->ac_name);
 }
}

This statement retrieves the graphical information for an activity. If successful, it calls the graphic
output routine, passing the name for the activity.
Rational Statemate 23

Sample Program
Writing the Graphical Information
void activity_graphic_output(ac_graphic,ac_name)

This function defines the output of the graphical information retrieved from the database. In this
example, the information is written into the report. The information can also be passed to an actual
drawing routine, if desired.

The name of the activity, ac_name, is passed as a second parameter because the activity name is
used in a graphic drawing such as a plot, although this information is part of the element’s textual
record.

stm_ac_graphic_ptr ac_graphic;
stm_name ac_name;

ac_graphic is a pointer to an activity’s graphical record; ac_name is the name of the activity.

{
 int i = 0;
 stm_coordinate prev_x;
 stm_coordinate prev_y;

Declares the following variables:

� i—Controls the loop of the routine.
� prev_x and prev_y—Store the previous coordinates from which the line is drawn.

printf ("\n\n activity graphical information\n");
printf ("==============================\n");

These statements are the title of the output; they begin the retrieved information for each activity
retrieved.

draw_string (ac_name, ac_graphic->ac_name_color,
 ac_graphic->ac_x_coor,ac_graphic->ac_y_coor);

This uses the routine draw_string to plot the activity name. It sends as parameters the string that
holds the name, color, and X-Y coordinates where the name is drawn.

for (i=1; iac_polygon.points_no; i++)
24 Data Port Reference Guide

Program Description
Plots the element. It loops through the coordinates and draw lines between the control points of the
box representing the activity.

{
 prev_x = ac_graphic->ac_polygon.outline[i-1].x;
 prev_y = ac_graphic->ac_polygon.outline[i-1].y;
 draw_line(ac_graphic->ac_color,prev_x,prev_y,
 ac_graphic->ac_polygon.outline
 [i % ac_graphic->ac_polygon.points_no].x,
 ac_graphic->ac_polygon.outline
 [i % ac_graphic->ac_polygon.points_no].y);
 }
}

For each coordinate, the following parameters are passed to the draw_line routine:

� The color of the activity
� The X-Y coordinates to start and end the line

The draw_line function is called for each side of the activity individually.

Note
The lines of code beginning with ac_graphic to.x and ac_graphic to.y should be entered
on a single line, which cannot be shown in the example.

Writing the Textual Information
void activity_text_output(ac_text)

This function defines how textual information retrieved from the database is output. In this
example, this information is written into the report. It can also be manipulated by your own report
generator, if desired.

stm_ac_text_ptr ac_text;

Declares the pointer to the activity’s textual record.

printf("\n\n\n\n\n activity textual information\n");
printf("============================\n");
Rational Statemate 25

Sample Program
These statements generate a title for the output; they precede the retrieved information for each
activity.

printf("\n activity name: %s", ac_text->ac_name);
printf("\n activity in chart: %d", ac_text->ac_chart);
printf("\n activity unique name: %s",
 ac_text->ac_uniquename);
printf("\n activity synonym: %s", ac_text->ac_synonym);
printf("\n activity type:%s",
 activity_type(ac_text->ac_type));
printf("\n activity termination: %s",
 activity_termination_type (
 ac_text->ac_termination));
printf("\n activity short description: %s",
 ac_text->ac_short_des);
printf("\n activity long description:\n\n");

Prints the information retrieved from the activity’s fields.

 if ((fd = fopen (ac_text->ac_long_des, "r")) == NIL)
 printf("\n\n cannot open file for printing");
 while (fgets(array,81,fd) != NIL) printf("%s", array);

These statements loop through the element’s long description, printing the lines one by one until a
null string is reached.

Drawing the Names of the Elements
void draw_string (s, color, x1, y1)

This function draws the element’s name.

char *s;

This is the name of the activity.

stm_color color;

This is the color to be used for the activity name.

stm_coordinate x1, y1;
26 Data Port Reference Guide

Program Description
This is the coordinate location for placing the activity name.

{
 printf("\n string %s at %f, %f in color %d\n",
 s, x1, y1, color);
}

The information is printed in a textual report. However, you can write a program routine to use this
information in a plot.

Drawing the Activity Box
void draw_line(color, x1, y1, x2, y2)

This function draws the activity.

stm_color color;

This sets the color to be used for the activity.

stm_coordinate x1, y1, x2, y2;

This sets the coordinate locations for the activity’s control points.

{
 printf("\n line from %f, %f to %f, %f in color %d",
 x1, y1, x2, y2, color);
}

The information is printed in a textual report. However, you can write a program routine to use this
information in a plot.
Rational Statemate 27

Sample Program
Constructing the Activity Type
static char *activity_type (search_for)
stm_activity_type search_for;
{
static struct search_activity_type {
 stm_activity_type act_type;
 char *name;
}

ActivityType[] = {
 {stm_ac_diagram, "DIAGRAM"},
 {stm_ac_reference, "REFERENCE"},
 {stm_ac_internal, "INTERNAL"},
 {stm_ac_instance, "INSTANCE"},
 {stm_ac_control, "CONTROL"},
 {stm_ac_control_instance, "CONTROL_INSTANCE"},
 {stm_ac_external, "EXTERNAL"},
 {NULL, NULL},
}
struct search_activity_type *sat;

 for (sat = ActivityType; sat->name != NULL; sat++)
 if (sat->act_type == search_for)
 return sat->name;
 return ""; /* error! */

This routine matches a string for output to the type of the activity.

Constructing the Activity Termination Type
static char *activity_termination_type(search_for)
stm_activity_termination search_for;
{
static struct search_activity_termination {
 stm_activity_termination act_term_type;
 char *name;
}
ActivityTerminationType[] = {
 {stm_ac_missing, "MISSING"},
 {stm_ac_self_termination, "SELF_TERMINATION"},
 {stm_ac_controlled_termination,
 "CONTROLLED_TERMINATION"}, {NULL,NULL},
}
struct search_activity_termination *sat;

 for (sat = ActivityTerminationType;
 sat->name != NULL; sat++)
 if (sat->act_term_type == search_for)
 return sat->name;
 return ""; /* error! */
}

This routine matches a string for output to the termination type of the activity.
28 Data Port Reference Guide

Program Description
Global Variable Declarations
int status = 0;

This holds the status of function calls.

FILE *fd;

This is the file pointer to the file containing the long description.

char array[80];

This is an array used to hold each line of the long description for output to the report.

Program Definitions
#define GET_STR(S)

 {int i; for (i=0;(S[i++] = getchar())!=’\n’;);
 S[--i]=’\0’;}

This defines a routine to read characters entered at the keyboard.

Include File Statements
#include <stdio.h>

This includes the standard I/O library.

#include "dataport.h"

This includes the Dataport Library definitions. In this example, the sample program is assumed to
have the same directory path as the file of definitions.
Rational Statemate 29

Sample Program
Program Output
The following is the output when the sample C program is executed. Information for an activity-
chart in the ACCM project is extracted.

enter name of project: ACCM

enter activity name: MAIN_AC

activity textual information

============================

activity name: SC_ACTIVITIES

activity in chart: 12

activity unique name: SC_ACTS_CH:SC_ACTIVITIES

activity synonym: SCA

activity type: INTERNAL

activity termination: MISSING

activity short description: Speed Controller
Activities

activity long description:

activity graphical information

==============================
string SC_ACTIVITIES at 5.000000,14.208320 in color 7

line from 4.625000,14.791700 to 4.625000,4.541660 in color 8

line from 4.625000,4.541660 to 19.958320,4.541660 in color 8 line from
19.958320,4.541660 to 19.958320,14.791700 in color 8

line from 19.958320,14.791700 to 4.625000,14.791700 in color 8

activity textual information
============================

activity name: CONTROL_SC

activity in chart: 14

activity unique name: SC_X12:CONTROL_SC

activity synonym: CSC

activity type: CONTROL

activity termination: MISSING

activity short description: Manage Speed Controller

activity long description:

!PURPOSE

This activity determines when the capabilities of the Speed Controller are
activated.
30 Data Port Reference Guide

Program Output
!END_PURPOSE

!BRIEF_DESCRIPTION

This control activity is described by a statechart.

!END_BRIEF_DESCRIPTION

activity graphical information

==============================

string CONTROL_SC at 10.583320,13.041700 in color 13 line from
9.958330,13.791700 to 9.958330,12.791700 in color 3 line from
9.958330,12.791700 to 14.666700,12.791700 in color 3 line from
14.666700,12.791700 to 14.666700,13.791700 in color 3 line from
14.666700,13.791700 to 9.958330,13.791700 in color 3

activity textual information

============================

activity name: SET_CRS_SPEED

activity in chart: 19

activity unique name: SETTING:SET_CRS_SPEED

activity synonym: SDCS

activity type: INTERNAL

activity termination: SELF_TERMINATION

activity short description: Set Desired Cruising Speed

activity long description:

!PURPOSE This activity stores the current speed as the desired cruising
speed.

!END_PURPOSE

!BRIEF_DESCRIPTION

The activity reads the current speed and records it in the data-store that
stores the desired cruising speed.

!END_BRIEF_DESCRIPTION

activity textual information

============================

activity name: CALIBRATE

activity in chart: 19

activity unique name: SETTING:CALIBRATE

activity synonym: CRPM

activity type: INTERNAL

activity termination: SELF_TERMINATION

activity short description: Calibrate Rotations per
Mile

activity long description:
Rational Statemate 31

Sample Program
!PURPOSE

The activity counts and updates the number of drive shaft rotations in a
measured mile for different tire sizes.

!END_PURPOSE

!BRIEF_DESCRIPTION

--- TBD

!END_BRIEF_DESCRIPTION

activity graphical information

==============================

string CALIBRATE at 15.291700,10.583320 in color 7 line from
14.791655,11.354160 to 14.791655,10.312480 in color 8 line from
14.791655,10.312480 to 19.124985,10.312480 in color 8 line from
19.124985,10.312480 to 19.124985,11.354160 in color 8 line from
19.124985,11.354160 to 14.791655,11.354160 in color 8

activity textual information

============================

activity name: MEASURE_SPEED

activity in chart: 18

activity unique name: CHECK:MEASURE_SPEED

activity synonym: MDCS

activity type: INTERNAL

activity termination: CONTROLLED_TERMINATION

activity short description: Measure Distance and Current Speed activity long
description:

!PURPOSE

This activity calculates the current speed, and updates the total mileage of
the car.

!END_PURPOSE

activity graphical information

==============================

string SET_CRS_SPEED at 5.625000,10.666700 in color 7 line from
5.333330,11.500000 to 5.333330,10.458320 in color 8 line from
5.333330,10.458320 to 9.666660,10.458320 in color 8 line from
9.666660,10.458320 to 9.666660,11.500000 in color 8 line from
9.666660,11.500000 to 5.333330,11.500000 in color 8

!BRIEF_DESCRIPTION

The activity measures the distance traveled in a brief time interval, and
calculates the average speed over this time. It adds the distance to the total
mileage and updates the mileage store.

!END_BRIEF_DESCRIPTION

activity graphical information

==============================
32 Data Port Reference Guide

Program Output
string MEASURE_SPEED at 15.375000,6.416660 in color 7

line from 14.875035,7.229170 to 14.875035,6.187490 in color 8 line from
14.875035,6.187490 to 19.208365,6.187490 in color 8 line from
19.208365,6.187490 to 19.208365,7.229170 in color 8 line from
19.208365,7.229170 to 14.875035,7.229170 in color 8

activity textual information

============================

activity name: MAINTAIN_SPEED

activity in chart: 25

activity unique name: OPERATE:MAINTAIN_SPEED

activity synonym: MDS

activity type: INTERNAL

activity termination: CONTROLLED_TERMINATION

activity short description: Maintain Desired Speed

activity long description:

!PURPOSE

This activity keeps the speed of the vehicle at a desired value.

!END_PURPOSE

!BRIEF_DESCRIPTION

This activity compares the current speed to the desired speed and controls
the throttle accordingly.

!END_BRIEF_DESCRIPTION

activity graphical information

==============================

string MAINTAIN_SPEED at 5.916660,6.875000 in color 7 line from
5.374995,7.645840 to 5.374995,6.604160 in color 8 line from 5.374995,6.604160
to 9.708325,6.604160 in color 8 line from 9.708325,6.604160 to
9.708325,7.645840 in color 8 line from 9.708325,7.645840 to 5.374995,7.645840
in color 8

activity textual information

============================

activity name: ACCELERATE

activity in chart: 25

activity unique name: OPERATE:ACCELERATE

activity synonym: CTBAP

activity type: INTERNAL

activity termination: CONTROLLED_TERMINATION

activity short description:

Control Throttle by Accelerator Pedal
Rational Statemate 33

Sample Program
activity long description:

!PURPOSE

This activity controls the speed according to the accelerator pedal position
which is determined by the driver.

!END_PURPOSE

!BRIEF_DESCRIPTION

--- TBD

!END_BRIEF_DESCRIPTION

activity graphical information

==============================

string ACCELERATE at 7.750000,5.166660 in color 7

line from 7.249995,5.937500 to 7.249995,4.895820 in color 8 line from
7.249995,4.895820 to 11.583325,4.895820 in color 8 line from
11.583325,4.895820 to 11.583325,5.937500 in color 8

line from 11.583325,5.937500 to 7.249995,5.937500 in color 8
34 Data Port Reference Guide

Single-Element Functions
This section provides information about the single-element extraction functions. For each function,
the following information is provided:

� Return value type
� The elements for which it is relevant
� Description
� Syntax
� Arguments
� Status codes

The two characters xx in the function names denote element type abbreviations. Refer to Element
Type Abbreviations for the list of element abbreviations. Refer Data Types for a list of the data
types.

Overview of Dataport Single Element Functions
Single-element functions provide information about discrete Rational Statemate elements in the
database. Using single-element functions, you can retrieve any information attached to a particular
element. This information is usually entered into the database via forms. Data extraction is a multi-
stage procedure. Generally, when working with a Rational Statemate element, you know the
element’s name (path name). You can retrieve more information about an element, such as the
element’s synonym or what attributes are defined in the element’s form, using the single-element
functions.

Complete the following steps to obtain more information about a Rational Statemate element:

1. Specify the element name or synonym. Receive the element ID.

2. Specify the ID and the information requested. Receive the extracted information

3. Use the extracted information.

The element ID is an internal representation that Rational Statemate uses to identify each element.
You do not see the ID; you extract it from the database using one function and pass it along to
another to process your information request.
Rational Statemate 35

Single-Element Functions
Note

� Multiple functions can be called in succession for the same element. Each extracts
different types of information.

� There are functions that extract records of all information on an element. You can then use
fields of this record, instead of using the individual functions for each type of information.

Calling Single-Element Functions

Extracting information from your database is at least a two-stage process.

Stage 1

Pass the element name or synonym as a function argument to get the element ID. The function
calling sequence is as follows:

stm_r_xx (name, status)

In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function.
� xx—The two-character element type abbreviation.
� name—The name of the element for which information is requested. The input argument

name contains the name (path name) or synonym that uniquely identifies the element of
interest. The name can be a variable or a literal string (enclosed by single apostrophe
marks).

� status—The return function status code.

For example:

stm_r_st(’S1’, &status)

This function call returns the ID for state S1. The value returned by the function is a
Rational Statemate element of the type specified by xx. In this example, the value returned by
the function is of type STATE.
36 Data Port Reference Guide

Overview of Dataport Single Element Functions
Stage 2

Pass the element ID as a function argument to get the information requested. The function calling
sequence is as follows:

stm_r_xx_info (inarg, ..., &status)

or

stm_r_info (inarg, ..., &status)

In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function.
� xx—The two-character element type abbreviation. Note that in some functions, these two

characters are omitted.
� info—The type of information to be extracted from the database.
� inarg—The required input arguments.
� status—The return function status code.

For example:

stm_r_ac_description (a, &status)

or

stm_r_description (a, &status)

This function call retrieves the contents of the Description field for the activity whose ID is
contained in the variable a.

There is one function whose calling sequence differs from that shown above. This function,
stm_r_element_type, receives an element ID as input and returns the element type. The function
returns an enumerated type value of the form stm_state, stm_activity, and so on.

Note
In addition to the Stage 1 functions, there are other ways to obtain an element’s ID. In Stage
2 functions, IDs are passed as arguments to identify elements in the database.
Rational Statemate 37

Single-Element Functions
Single-Element Function Input Arguments

The following table lists the input arguments for single-element functions.

Argument Function Data Type

name The name of the Rational Statemate element. It can
be an element name, path name, or synonym,
including the chart name, (for example, K:L.M).

stm_element_name,
stm_short_name, or
stm_pathname

element ID The value that Rational Statemate uses to identify
each element in the database. Rational Statemate
assigns a unique ID to every element.

stm_id

attribute name The name of an attribute defined in the form for a
Rational Statemate element (in the Attribute
field).

stm_attr_name

begin keyword The string of text appearing in the long description
attached to the specified Rational Statemate
element. This string represents the beginning of the
portion of the long description that you want to
extract from the database.

char * (string)

end keyword The string of text appearing in the long description
attached to the specified element. This string
represents the end of the portion of the long
description that you want to extract from the
database.

char * (string)

filename The path name of a system file. Long descriptions
(and portions thereof) are copied to the system file
specified in this argument. Information is copied to a
file as follows:

• If you specify a directory name and file name,
the text is copied to this file.

• If you specify a file name, the file is written to the
current workarea.

• If you specify neither a directory name nor a file
name (you pass an empty string, "", as the
argument), the file is written to the /tmp directory.

The file is erased from this directory after you finish
working with the Dataport.
The name of the file is the value returned by the
function.

stm_filename
38 Data Port Reference Guide

Overview of Dataport Single Element Functions
Single-Element Function Examples

This section provides several examples of single-element functions used to extract information
from the Rational Statemate database.

Example 1: Returning a State’s Synonym and Description
To find the synonym and the short description for a state S1 as it appears in the state’s form (the
pathname CH:SSS.S1 uniquely identifies the state), include the following code in the C program:

stm_id state_id;
stm_description state_desc;
stm_short_name state_syn;
int status;

state_id = stm_r_st ("CH:SSS.S1", &status);
state_syn = stm_r_st_synonym (state_id, &status);
state_desc = stm_r_st_description (state_id, &status);

Two consecutive function calls are used to extract the synonym and the short description of the
same element. The assigned variable and the function return value must have compatible data
types; therefore, state_id is declared as stm_id.

Example 2: Returning Enumerated Type Values
To return enumerated type values, include the following code:

stm_id state_id;
stm_element_name state_name;
char *state_type;
stm_state_type st_type;
int status;
 .
 .
 .
state_id = stm_r_st (state_name, &status);
st_type = stm_r_st_type (state_id, &status);
 switch (st_type) {
 case stm_st_or:
 strcpy (state_type,"or"); break;
 case stm_st_and:
 strcpy (state_type,"and"); break;
 .
 .
 .
}

printf ("The state %s is of type %s",
 state_name, state_type);
Rational Statemate 39

Single-Element Functions
Example 3: Writing a Portion of the Long Description
To output the portion of a long description appearing between the strings "!BEGIN" and "!END" for
state S1, use the following code:

stm_id state_id;
stm_filename descr_file;
 .
 .
 .
state_id = stm_r_st ("S1", &status);
descr_file = stm_r_st_keyword (state_id,
 "!BEGIN", "!END", "", &status);
 .
 .
 .

The fourth input parameter (empty string) of the function stm_r_st_keyword determines the file
name to which the extracted text is written. If the string is empty, as it is in this case, the function
creates a temporary file. The name of this file is returned by the function (in this case, the
assignment statement stores the returned file name in descr_file).

Example 4: Extracting Textual Information
To extract an entire record of all textual information for an activity, and then use the individual
fields in subsequent calls, use the following code:

stm_id act_id;
stm_ac_text_ptr act_textual;
stm_description act_desc;
stm_short_name act_syn;
int status;
 .
 .
 .
act_id = stm_r_ac ("AAA.A1", &status);
act_textual= stm_r_ac_text (act_id, &status);
act_syn = act_textual->ac_synonym;
act_desc = act_textual->ac_short_des;

Note the difference between this example and the first example. In Example 1, single functions are
used for each type of information; here, the whole record is extracted and the information from
each field is used later.
40 Data Port Reference Guide

List of Functions
List of Functions
As previously mentioned, the extraction functions take the form:

stm_r_<element_type><task>

For example, stm_r_uc_attr_name returns the names of attributes associated with the specified
use case. Because this function can retrieve values for other elements besides use cases, it is
denoted as stm_r_xx_attr_name. This function would be included in the A section (for
attr_name).

For ease-of-use, the functions are presented in alphabetical order, by task. The functions are as
follows:

Function Description

stm_check_out_item Checks out a chart file (or any other configuration item file)
into the current workarea.

stm_check_in_item Checks in a chart file (or any other configuration item
file) from the current workarea.

stm_lock_item Lock a chart file (or any other configuration item file)
in the current workarea.

stm_unlock_item Unlock a chart file (or any other configuration item
file) in the current workarea.

stm_r_ac_mini_spec_hyper Returns a string with the mini-spec, including hyperlinks to
referenced elements.

stm_r_ac_subroutine_bind Returns the subroutine binding connected to the specified
activity

stm_r_ac_subroutine_bind_enable Determines whether the subroutine bound to the specified
activity is enabled or disabled.

stm_r_ac_subroutine_bind_expr Returns the subroutine binding expression that is connected
to the specified activity.

stm_r_ac_termination Returns the activity termination type specified in the activity
form.

stm_r_actual_parameter_exp Returns the actual binding of the formal parameter name in
the specified instance chart or component.

stm_r_actual_parameter_type Returns the type of the formal parameter name in the
specified instance chart or component.

stm_r_inherited_gds Retrieves the description of the specified continuous chart.

stm_r_ch_access_status Returns the status of charts in the workarea, that is, Read,
Update, or New.

stm_r_ch_creator Returns the date (as a string) on which the specified chart
was created.
Rational Statemate 41

Single-Element Functions
stm_r_ch_creator Returns the name of the Rational Statemate user who
created the specified chart.

stm_r_ch_modification_date Returns the date in which the version of the chart in the
workarea was saved in the databank.

stm_r_ch_modification_status Returns the chart modification status of the specified chart.

stm_r_ch_usage_type Returns the usage type for a chart.

stm_r_ch_version Returns the version of the specified chart.

stm_r_cn_value Returns a value associated with a diagram connector.

stm_r_co_default_val Returns the default value associated with the specified
element.

stm_r_ddb_list_names Returns the names of the lists created by the property sheet.

stm_r_design_attr Retrieves the information on the element’s Design-Attributes
as would appear when using the Info tool within Rational
Statemate.

stm_r_dt_enum_values Returns a list of the enum values ids for the specified User
Defined Type.

stm_r_element_type Returns the element type of the specified element.

stm_r_elem_in_ddb_list Return a list of stm_id's stored in a specified list_name.

stm_r_formal_parameter_names Returns a list of names of formal parameters that appear in
bindings of instance boxes and components.

stm_r_gds_visibility_mode Returns the visibility mode for the specified global definition
set (GDS).

stm_r_hyper_key Retrieves the unique key for the specified element.

stm_r_self_hyper_key Retrieves the unique key for the specified element.

stm_r_included_gds Returns the list of global definition sets contained in the
specified chart.

stm_r_inherited_gds Retrieves the list of global definition sets that are “inherited”
(included indirectly) by the specified chart.

stm_r_line_width Retrieve line-width of arrows and boxes

stm_r_md_implementation Retrieves the implementation type for the specified module.

stm_r_md_purpose Returns the purpose of the module.

stm_r_msg_all Returns the textual information associated with a specified
element.

stm_r_msg_defined_in_scen Returns the list of messages in chronological order that are
part of a scene, defined by a separator.

stm_r_msg_graphic Returns the graphical information associated with the
specified element.

stm_r_msg_included_in_ord_insig Returns a list of messages that are bounded by an order-
insignificant element.

stm_r_msg_where_tc_begins Returns the message where the timing constraint begins.

stm_r_msg_where_tc_ends Returns the message where the timing constraint ends.

stm_r_next_msg Returns the message after (in time) the decomposed
sequence diagram.
42 Data Port Reference Guide

List of Functions
stm_r_nt_body Returns a list of strings.

stm_r_oactor Retrieve id of the actor that corresponds to the actor
occurrence

stm_r_omd Returns the ID of the module that corresponds to the module
occurrence.

stm_r_ord_insig_all Returns the textual information associated with a specified
element

stm_r_ord_insig_graphic Returns the graphical information associated with the
specified element.

stm_r_ouc Retrieve id of the use-case that corresponds to the use-case
occurrence

stm_r_ouc Returns the parameter expression from generic charts and
components.

stm_r_previous_msg Returns the message previous (in time) to the decomposed
sequence diagram.

stm_r_sb_action_lang Retrieves the action language of the specified subroutine.

stm_r_sb_action_lang_expression Retrieves the action language expression of the specified
subroutine.

stm_r_sb_action_lang_local_data Retrieves the action language local data associated with the
specified subroutine.

stm_r_sb_ada_user_code Returns the Ada code that was manually written for the
specified subroutine.

stm_r_sb_ansi_c_user_code Returns the ANSI C code that was manually written for the
specified subroutine.

stm_r_sb_connected_chart Returns the ID of the procedural statechart connected to the
specified subroutine.

stm_r_sb_connected_flowchart Returns the global data associated with the specified
subroutine.

stm_r_sb_global_data_mode Returns the mode of a subroutine’s global variable.

stm_r_sb_kr_c_user_code Returns the K&R C code that was manually written by the
user for the specified subroutine.

stm_r_sb_parameters Retrieves the parameters of the subroutine.

stm_r_sb_proc_sch_local_data Retrieves the local data of the procedural statechart
implemented by the specified subroutine.

stm_r_sb_proc_fch_local_data Retrieves the subroutine’s return type.

stm_r_sb_return_user_type Retrieves the user-defined type ID returned by the
subroutine.

stm_r_sb_return_user_type_name_type Retrieves the subroutine’s return user type and name type.

stm_r_sep_all Returns the textual information associated with a specified
element

stm_r_sep_graphic Returns the graphical information associated with the
specified element.

stm_r_st_andlines Returns a list of the and-lines associated with the specified
state.
Rational Statemate 43

Single-Element Functions
stm_r_st_static_reactions Returns the static reactions defined for the specified state
element.

stm_r_st_static_reactions_hyper Returns a string with the static reactions, including hyperlinks
to referenced elements.

stm_r_stubs_name Returns the list of stub names for an instance of a
component.

stm_r_tc_all Returns the textual information associated with a specified
element.

stm_r_tc_graphic Returns the graphical information associated with the
specified element.

stm_r_tr_attr_enforced Returns the enforced attributes specified by
attr_name.

stm_r_tr_attr_name Returns the names of attributes associated with the specified
element. Attributes are associated with elements through
element forms.

stm_r_tr_attr_val Returns the values associated with a particular attribute
name for the specified element.

stm_r_tr_longdes Returns the long description of the specified Transition.

stm_r_tr_notes Returns a list of strings each one is a line in the Transition
Note related to the specified Transition

stm_r_tt_cell Returns the string of the specified cell (row & column) in a
Truth-Table associated with the specified element.

stm_r_tt_cell_hyper Retrieves the contents of the specified cell in the given truth
table, including hyperlinks to referenced elements.

stm_r_tt_cell_type Returns the type of the specified cell (row & column) in a
Truth-Table associated with the specified element.

stm_r_tt_num_of_col Retrieves the number of columns (including blank ones) in
the specified truth table, as viewed in the truth table editor.

stm_r_tt_num_of_in Retrieves the number of input columns in the specified truth
table.

stm_r_tt_num_of_out Retrieves the number of output columns in the specified truth
table.

stm_r_tt_num_of_row Retrieves the number of rows (including blank ones) in the
specified truth table, as viewed in the truth table editor

stm_r_tt_row Retrieves the values in the specified row in the truth table.

stm_r_tt_row_hyper Returns a list of strings that represents a row in the truth
table, including hyperlinks to referenced elements.

stm_r_xx Retrieves the element ID of the specified element.

stm_r_xx_all Returns both the textual and graphical information
associated with a specified element.

stm_r_xx_array_lindex Returns the left index of an element array.

stm_r_xx_array_rindex Returns the right index of an element array.

stm_r_xx_attr_enforced Returns the enforced attributes specified by attr_name.
44 Data Port Reference Guide

List of Functions
stm_r_xx_attr_name Returns the names of attributes associated with the specified
element.

stm_r_xx_attr_val Retrieves attribute values associated with a particular
attribute name for the specified element.

stm_r_xx_bit_array_lindex Returns the left index of a bit array.

stm_r_xx_bit_array_rindex Returns the right index of a bit array.

stm_r_xx_cbk_binding Retrieves the callback binding for specified elements.

stm_r_xx_cbk_binding_enable Retrieves the enabled callback bindings.

stm_r_xx_cbk_binding_expression Retrieves the callback binding expressions.

stm_r_xx_chart Returns the chart ID for the specified element.

stm_r_xx_combinationals Returns a list of strings.

stm_r_xx_containing_fields Returns the list of union or record elements that contain
fields.

stm_r_xx_data_type Returns the element subtype, including its data type and
data structure.

stm_r_xx_default_val() Returns the default value associated with the specified
element.

stm_r_xx_definition_type Returns the definition type of the specified textual element.

stm_r_xx_des_attr_name Returns the names of Design-Attributes associated with the
specified element.

stm_r_xx_des_attr_val Retrieves the values of a given Design-Attribute values
associated with the specified element.

stm_r_xx_description Returns the short description of the specified element.

stm_r_xx_displayed_name Returns the name of a chart, as it appears in the graphic
editor where the specified element is located.

stm_r_xx_explicit_defined_xx Returns the definition expression of the specified element
found in the Definition field of the element’s form, including
hyperlinks to referenced elements.

stm_r_xx_expression Returns the definition expression of the specified element
found in the Definition field of the element’s form.

stm_r_xx_ext_link Returns the file name associated with the "Link to External
File" entry in the element's properties of the specified
element.

stm_r_xx_graphic Returns the graphical information associated with the
specified element.

stm_r_xx_instance_name Returns the name of the instance as it appears in the chart
for a specific hierarchical Rational Statemate element.

stm_r_xx_keyword Retrieves a portion of the element’s long description.

stm_r_xx_labels Returns a list of strings that consists of all the labels of the
specified compound transition or message.

stm_r_xx_labels_hyper Returns a list of strings of message or transition labels, with
hyperlinks to referenced elements.
Rational Statemate 45

Single-Element Functions
stm_r_xx_longdes Retrieves the long description attached to the specified
element.

stm_r_xx_max_val Returns the maximum value of the specified element.

stm_r_xx_min_val Returns the minimum value of the specified element.

stm_r_xx_mini_spec Returns a string with mini-spec reactions or actions.

stm_r_xx_mode Returns the parameter or router mode.

stm_r_xx_name Returns the element name.

stm_r_xx_note Returns the notes from a requirement record or timing
constraint.

stm_r_xx_notes Returns the notes in the specified element.

stm_r_xx_number_of_bits Returns the number of bits in the element.

stm_r_xx_of_enum_type Retrieves the enumerated type ID (a user-defined type) for
the specified element.

stm_r_xx_of_enum_type_name_type Retrieves the enumerated name type for the specified
elements.

stm_r_xx_parameter_mode Retrieves the parameter mode, including subroutine
parameters and the parameters of generic charts and
components.

stm_r_xx_reactions Returns the static reactions of the specified state.

stm_r_xx_select_implementation Retrieves the implementation type of the specified element.

stm_r_xx_string_length Retrieves the string length of the specified element.

stm_r_xx_structure_type Returns the structure or type of the specified textual element.
The structure or type can be single, array, or queue.

stm_r_xx_synonym Retrieves the synonym of the specified element. The
synonym is defined in the element’s form.

stm_r_xx_text Returns the textual information associated with a specified
element.

stm_r_xx_truth_table Returns the elements that are implemented as truth tables.

stm_r_xx_truth_table_expression Returns the truth table expression for all named elements.

stm_r_xx_truth_table_local_data Returns the list of local data elements defined in the truth
table related to the input subroutine.

stm_r_xx_type Retrieves element subtypes for the specified element.

stm_r_xx_type_expression Returns the type expression for the specified element.

stm_r_xx_uniquename Returns the unique path name for the specified element.

stm_r_xx_user_type Returns the user-defined type ID referenced by the element.

stm_r_xx_user_type_name_type Returns the user-defined type ID referenced by the element.
46 Data Port Reference Guide

List of Functions
stm_check_out_item

Function Type

None

Description

Checks out a chart file (or any other configuration item file) into the current workarea.

Note
If the version string parameter is an empty string or NULL, the function regards the latest
version of the chart/file in the Databank.

Syntax

stm_check_out_item (file_name, ext, version, with_lock, error_func, &status)

Status Codes

� stm_success
� stm_error_in_load_operation

Arguments

Argument
Name Input/Output Argument

Type Argument Description

item_name Input char * Name of chart/file to check-out
Rational Statemate 47

Single-Element Functions
ext Input char * Rational Statemate chart/file extensions. The
possible values are as follows:
• sch – Statechart
• ach - Activity charts
• mch - Module-charts
• fch – Flowcharts
• dic - Global Definition Set files
• qch - Sequence-Diagrams
• uch - Use-Case-Diagrams
• vsm - Continuous Diagrams
• pnl – Panel files
• scp - Simulation SCL files
• cnf - Simulation status files
• wpf - Waveform Profiles
• dyn_set - Simulation analysis profiles
• mon - Monitor files
• chk_mdl_set - Check Model Profiles
² dgl - Documentor templates
• inc - Documentor include files
• pnl - Prototype panels
• config - Configuration files
• tv - Task View files
• mak - Makefiles
• oil - OIL files
• cfg - CFG files
• c - Source(c) files
• h - Header (h) files
• rgenset - Rapid Prototyper Profiles
• trg - Target files
• rtrg - Rapid Target files
• crd - Card files
• rconfig - Rhapsody block Configuration files
• ccf - Component Configuration files
• dat - VSM Data files
• wav - VSM Wave files
• mat - VSM Mat. Files
• m - VSM M. files

version Input char * Version of the chart/file

with_lock Input int A Boolean argument that indicates whether to lock
the chart/file
48 Data Port Reference Guide

List of Functions
error_func input void (*)
(const char*
err_msg).

pointer to a function of the following prototype:

void err_func(const char* err_msg)

If the error_func pointer is not NULL, this
function will be called with an error message string,
when the returned status is not stm_success. The
error function may be called more than once during
one checkout operation, with different error
messages.

status output int The function status code.
Rational Statemate 49

Single-Element Functions
stm_check_in_item

Function Type

None

Description

Checks in a chart file (or any other configuration item file) from the current workarea.

Syntax

stm_check_in_item (file_name, ext, with_lock, error_func, &status)

Status Codes

� stm_success
� stm_error_in_load_operation

Arguments

see arguments for stm_check_out_item
50 Data Port Reference Guide

List of Functions
stm_lock_item

Function Type

None

Description

Lock a chart file (or any other configuration item file) in the current workarea.

Syntax

stm_lock_item (file_name, ext, error_func, &status)

Status Codes

� stm_success
� stm_error_in_load_operation

Arguments

see arguments for stm_check_out_item
Rational Statemate 51

Single-Element Functions
stm_unlock_item

Function Type

None

Description

Unlock a chart file (or any other configuration item file) in the current workarea.

Syntax

stm_unlock_item (file_name, ext, error_func, &status)

Status Codes

� stm_success
� stm_error_in_load_operation

Arguments

see arguments for stm_check_out_item
52 Data Port Reference Guide

List of Functions
stm_r_ac_mini_spec_hyper

Returns a string with the mini-spec, including hyperlinks to referenced elements.

Function Type

stm_expression

For Elements

Syntax

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

activity ac

Argument Input/
Output Type Description

elem In stm_id The element ID.

format In char * Either FrameMaker or Microsoft
Word.

status Out int The function status code.
Rational Statemate 53

Single-Element Functions
stm_r_ac_subroutine_bind

Returns the subroutine binding connected to the specified activity.

Function Type

stm_list

For Elements

Syntax

stm_r_ac_subroutine_bind (ac_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

� stm_missing_subroutine_binding

activity ac

Argument Input/
Output Type Description

ac_id In stm_id The element ID.

status Out int The function status
code.
54 Data Port Reference Guide

List of Functions
stm_r_ac_subroutine_bind_enable

Determines whether the subroutine bound to the specified activity is enabled or disabled.

Function Type

int (predefined constant)

For Elements

Syntax

stm_r_ac_subroutine_bind_enable (ac_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Return Values

Although the return value of this function is of type int, Dataport enables you to reference this
value by name. The possible values are as follows:

� stm_ac_cbk_enable

� stm_ac_cbk_disable

� stm_ac_cbk_bind_missing

activity ac

Argument Input/
Output Type Description

ac_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 55

Single-Element Functions
stm_r_ac_subroutine_bind_expr

Returns the subroutine binding expression that is connected to the specified activity.

Function Type

stm_expression

For Elements

Syntax

stm_r_ac_subroutine_bind_expr (ac_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_missing_subroutine_binding

activity ac

Argument Input/
Output Type Description

ac_id In stm_id The element ID.

status Out int The function status code.
56 Data Port Reference Guide

List of Functions
stm_r_ac_termination

Returns the activity termination type specified in the activity form.

Function Type

stm_activity_termination

For Elements

Syntax

stm_r_ac_termination (act_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

Return Values

The function output has an enumerated type, stm_activity_termination, with three
possible values:

� stm_ac_self_termination

� stm_ac_controlled_termination

� stm_ac_missing

activity ac

Argument Input/
Output Type Description

act_id In stm_id The activity whose termination type you want to
retrieve.

status Out int Function status code.
Rational Statemate 57

Single-Element Functions
Example

To determine the termination type of the activity A1 and if the activity is self-terminated write
the activity’s name, use the following statements:

stm_id act_id;
stm_activity_termination act_term_type;
int status;
 .
 .
act_id = stm_r_ac ("A1", &status);
act_term_type = stm_r_ac_termination (act_id, &status);
if(act_term_type == stm_ac_self_termination)
 printf ("\n Self-terminated activity:", "A1");
 .
 .
 .
58 Data Port Reference Guide

List of Functions
stm_r_ac_xx_ac

Provides a list of activities.

Funtion type:

stm_list

For Elements:

Syntax:

STM_R_AC_XX_AC (IN el_list: LIST OF ACTIVITY, OUT status: INTEGER):LIST OF
XX;

Arguments:

Status Codes:

� stm_success
� stm_nil_list

actor

boundary box bb

ext_ll

external
router

lifeline ll

router router

use case use

Argument Input/
Output Type Description

activities_list in stm_list List of Activities

status out int Function Status Code
Rational Statemate 59

Single-Element Functions
stm_r_actual_parameter_exp

Returns the actual binding of the formal parameter name in the specified instance chart or
component.

Function Type

stm_expression

For Elements

Syntax

stm_r_actual_parameter_exp (xx_inst_boxid,formal_param_name, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_name_not_found

activity ac

condition co

data-item di

event ev

Argument Input/
Output Type Description

xx_inst_boxid In stm_id The element ID.

formal_param_name In String The formal parameter name.
If this is a data-element (from the
information stub matrix in the DDE), the
function returns the corresponding data-
element. If this argument is the stub’s name,
the function returns the information flowing
on the arrow connected to that stub.

status Out int The function status code.
60 Data Port Reference Guide

List of Functions
stm_r_actual_parameter_type

Returns the type of the formal parameter name in the specified instance chart or component.

Note
If there is an information-flow stub, the function returns stm_information_flow.

Function Type

stm_element_type

For Elements

Syntax

stm_r_actual_parameter_type (inst_boxid, formal_param_name, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_name_not_found

activity ac

condition co

data-item di

event ev

Argument Input/
Output Type Description

inst_boxid In stm_id The element ID.

formal_param_name In string The formal parameter
name.

status Out int The function status code.
Rational Statemate 61

Single-Element Functions
stm_r_cd_info

Retrieves the description of the specified continuous chart.

Function Type

stm_expression

For Elements

Syntax

stm_r_cd_info (ch, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_null_string

� stm_success

chart ch

Argument Input/
Output Type Description

cd In stm_id The chart.

status Out int The function status code.
62 Data Port Reference Guide

List of Functions
stm_r_changes_log

Documents all the changes made to the specified charts in a log file.

Function Type

stm_list

For Elements

Syntax

stm_r_changes_log (ch_lst, ascending, per_date,dont_format, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_not_chart_id

� stm_id_not_found

� stm_success

chart ch

Argument Input/
Output Type Description

ch_lst In stm_id LIST OF CHART The list of charts to track.

ascending In stm_boolean BOOLEAN Determines whether the changes
are listed in ascending order
TRUE).

per_date In stm_boolean BOOLEAN Determines whether the changes
are listed chronologically (TRUE).

dont_format In stm_boolean BOOLEAN Determines whether the log file is
formatted. If this is TRUE, each
log entry is inserted into a
returned list element. If it is
FALSE, each field of the log entry
is inserted into a returned list
element.

status Out int The function status code.
Rational Statemate 63

Single-Element Functions
stm_r_ch_access_status

Returns the status of charts in the workarea, that is, Read, Update, or New.

Function Type

stm_chart_access_status

Syntax

stm_r_ch_access_status (ch_id, int *status)

Status Codes

� stm_success

� stm_id_out_of_range

� stm_name_not_found

Return Values

� stm_chac_readonly

� stm_chac_update

� stm_chac_new
64 Data Port Reference Guide

List of Functions
stm_r_ch_creation_date

Returns the date (as a string) on which the specified chart was created.

Note: This function is relevant only for charts that were explicitly defined using one
of the graphic editors.

Function Type

stm_date

For Elements

Syntax

stm_r_ch_creation_date (ch_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_unresolved

Example

To return the chart date, use the following statements:

stm_id chart_id;
int status;
 .
 .
chart_id = stm_r_ch ("TOP", &status);
printf ("\n Chart created on: %s",
 stm_r_ch_creation_date (chart_id, &status));
 .
 .
The date output is the date on which the chart named TOP was created.

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 65

Single-Element Functions
stm_r_ch_creator

Returns the name of the Rational Statemate user who created the specified chart.

Note: This function is relevant only for charts that were explicitly created using one
of the graphic editors.

Function Type

stm_user_name

For Elements

Syntax

stm_r_ch_creator (ch_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

Example

To return the name of the user who created the chart, use the following statements:

stm_id chart_id;
int status;
 .
 .
 .
chart_id = stm_r_ch ("TOP", &status);
printf ("\n Chart created by: %s",
 stm_r_ch_creator (chart_id, &status));
 .
 .
 .
The name output is the name of the user who created the chart named
TOP.

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The element ID.

status Out int The function status code.
66 Data Port Reference Guide

List of Functions
stm_r_ch_modification_date

Returns the date in which the version of the chart in the workarea was saved in the databank.

Note: This function is relevant only for charts that were explicitly defined using one
of the graphics editors.

Function Type

stm_date

For Elements

Syntax

stm_r_ch_modification_date (ch_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

Example

To return the date of the last modification for a chart, use the following statements:

stm_id chart_id;
 int status;
 .
 .
chart_id = stm_r_ch ("TOP", &status);
printf ("\n Chart modified on: %s",
 stm_r_ch_modification_date (chart_id, &status));
 .
 .
The date output is the date on which the chart named TOP was last
modified.

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 67

Single-Element Functions
stm_r_ch_modification_status

Returns the chart modification status of the specified chart. The possible values are:

� U—Unmodified
� M—Modified
� N—New
� D—Deleted

Function Type

stm_chart_mod_status

For Elements

Syntax

stm_r_ch_modification_status (ch_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_unresolved

chart ch

Argument
Input/
Outpu

t
Type Description

ch_id In stm_id The element ID.

status Out int The function status code.
68 Data Port Reference Guide

List of Functions
stm_r_ch_usage_type

Returns the usage type for a chart.

Function Type

stm_chart_usage

For Elements

Syntax

stm_r_ch_usage_type (ch_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Return Value

Although the return value of this function is of type int, Dataport enables you to reference
this value by name. The possible values are:

� stm_ch_usage_generic

� stm_ch_usage_normal

� stm_ch_usage_ref_generic

� stm_ch_usage_ref_offpage

� stm_ch_usage_ref_describing

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 69

Single-Element Functions
stm_r_ch_version

Returns the version of the specified chart.

Function Type

char *

For Elements

Syntax

stm_r_ch_version (ch, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_unresolved

chart ch

Argument Input/
Output Type Description

ch In stm_id The chart whose version you want to
retrieve.

status Out int The function status code.
70 Data Port Reference Guide

List of Functions
stm_r_cn_value

Returns a value associated with a diagram connector. The value is a string (maximum 32
characters) reflecting an associated number or label. The input argument cn_id is an element
ID of a diagram connector.

Function Type

char *

For Elements

Syntax

stm_r_cn_value (cn_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_not_diagram_connector

Example

To assign (to cn_value) the label of a specific diagram connector (identified by cn_id), use
the following statement:

.
 .
cn_value = stm_r_cn_value (cn_id, &status);
 .
 .

diagram connector

Argument Input/
Output Type Description

cn_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 71

Single-Element Functions
stm_r_co_default_val

Returns the default value associated with the specified element.

Function Type

char *

Syntax

stm_r_co_default_val (st_id, int &status)

Arguments

Status Codes

stm_success

Argument Input/
Output Type Description

status Out int The function status code.
72 Data Port Reference Guide

List of Functions
stm_r_ddb_list_names

Returns the names of the lists created by the properties browser.

Function Type

stm_list

Syntax

stm_r_ddb_list_names (&status)

Arguments

Status Codes

stm_success

Argument Input/
Output Type Description

status Out int The function status code.
Rational Statemate 73

Single-Element Functions
stm_r_design_attr

Retrieves the information on the element’s Design-Attributes as would appear when using the
Info tool within Rational Statemate.

Syntax

stm_r_design_attr (stm_id, int *status)

Arguments

Argument Input/
Output Type Description

stm_id In The ID of the element being
queried.

int Out The status of the query.

status Out int The function status code.
74 Data Port Reference Guide

List of Functions
stm_r_dt_enum_values

Returns a list of the enum values ids for the specified User Defined Type.

Function Type

stm_list

For Elements

User-defined type

Syntax

stm_r_dt_enum_values (dt_id, &status)

Arguments

Status Codes

� stm_success
� stm_id_out_of_range

Argument Input/
Output Type Description

dt_id In stm_id The User-Defined Type ID.

status Out int The function status code.
Rational Statemate 75

Single-Element Functions
stm_r_element_type

Returns the element type of the specified element.

Function Type

stm_element_type

For Elements

All types

Syntax

stm_r_element_type (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Return Values

The return value belongs to the enumerated type stm_element_type. This type has the
following values corresponding to the Rational Statemate element types:

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.

Element Type Value

a-flow-line (basic) stm_a_flow_line

a-flow-line (compound) stm_compound_a_flow_lin
e

action stm_action

activity stm_activity

chart stm_chart

condition stm_condition

connector in activity-chart stm_a_connector

connector in module-chart stm_m_connector
76 Data Port Reference Guide

List of Functions
connector in statechart stm_s_connector

data-item stm_data_item

data-store stm_data_store

decomposed sequence diagram stm_decomposed_sd

event stm_event

external lifeline stm_external_lifeline

flow label stm_flow_label

information-flow stm_information_flow

lifeline stm_lifeline

m-flow-line (basic) stm_label

m-flow-line (compound) stm_m_flow_line

message stm_message

module stm_compound_m_flow_lin
e

module occurrence stm_module

order insignificant stm_order_insignificant

Element Type Value
Rational Statemate 77

Single-Element Functions
Example

To list all the conditions appearing in the Definition field for the condition C1, generate a list
of elements (of type mixed) using the query function stm_r_mx_in_definition_of_co.
Elements in this list are all the elements (not necessarily conditions) appearing in the
Definition field of the condition C1. Search this list for conditions and if any are found, print
them.

The program contains the following statements:

stm_id cond_id;
stm_list elmnt_list, co_list;
stm_id el;
stm_element_type el_type;
int status;
 .
 .
cond_id = stm_r_co ("C1", &status);
co_list = stm_list_create (cond_id, end_of_list,
 &status);
elmnt_list = stm_r_mx_in_definition_of_co (co_list,
 &status);
for (el = (stm_id)
 stm_list_first_element (elmnt_list, &status);
 status == stm_success;
 el = (stm_id)
 stm_list_next_element (elmnt_list, &status))
 {
 el_type = stm_r_element_type (el, &status);
 if (el_type == stm_condition)
 printf ("\n Condition Name:%s",
 stm_r_co_name (el, &status));
 }
 .
 .
 .

router stm_router
stm_external_router

separator stm_separator

subroutine stm_subroutine

state stm_module_occurrence

timing constraint stm_timing_constraint

transition (basic) stm_state

transition (compound) stm_transition

transition label stm_compound_transition

Element Type Value
78 Data Port Reference Guide

List of Functions
stm_r_elem_in_ddb_list

Return a list of stm_id's stored in a specified list_name.

Function Type

stm_list

Syntax

stm_r_elem_in_ddb_list (list_name, &status)

Arguments

Status Codes

� stm_success
� stm_no_such_list

Argument Input/
Output Type Description

list_name In Path name to the list.

status Out int The function status code.
Rational Statemate 79

Single-Element Functions
stm_r_formal_parameter_names

Returns a list of names of formal parameters that appear in bindings of instance boxes and
components.

Function Type

stm_list

For Elements

Syntax

stm_r_formal_parameter_names (inst_box_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

action an

condition co

data-item di

event ev

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
80 Data Port Reference Guide

List of Functions
stm_r_gds_visibility_mode

Returns the visibility mode for the specified Global Definition Set (GDS).

Function Type

int

For Elements

Syntax

stm_r_gds_visibility_mode (gds_id, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_success

Return Values

Although the return value of this function is of type INTEGER, the Dataport enables you to
reference this value by name. The name is internally defined as a predefined constant in DGL.
The possible values are as follows:

� stm_explicit_usage

� stm_public_usage

element ID

Argument Input/
Output Type Description

gds_id In stm_id CHART The GDS whose visibility you want to retrieve.

status Out int The function status code.
Rational Statemate 81

Single-Element Functions
stm_r_hyper_key

Retrieves the unique key for the specified element.

Function Type

char *

For Elements

Syntax

stm_r_hyper_key (el, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_success

element ID ac

Argument Input/
Output Type Description

el In stm_id The element ID whose key you want.

status Out int The function status code.
82 Data Port Reference Guide

List of Functions
stm_r_self_hyper_key

Retrieves the unique key for the specified element, but for id's of instance-boxes (offpage
or generic), returns the hyper-key of the instance-box, and not of the connected chart.

Function Type

char *

For Elements

Syntax

stm_r_self_hyper_key (el, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_success

element ID ac

Argument Input/
Output Type Description

el In stm_id The element ID whose key you want.

status Out int The function status code.
Rational Statemate 83

Single-Element Functions
stm_r_included_gds

Returns the list of global definition sets contained in the specified chart.

Function Type

stm_list

For Elements

Syntax

stm_r_included_gds (ch_id, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_use_all_public_gds

� stm_success

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The chart

status Out int The function status code
84 Data Port Reference Guide

List of Functions
stm_r_inherited_gds

Retrieves the list of global definition sets that are “inherited” (included indirectly) by the
specified chart.

Function Type

stm_list

For Elements

Syntax

stm_r_inherited_gds (ch_id, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_use_all_public_gds

� stm_success

chart ch

Argument Input/
Output Type Description

ch_id In stm_id The chart.

status Out int The function status code.
Rational Statemate 85

Single-Element Functions
stm_r_md_implementation

Retrieves the implementation type for the specified module.

Function Type

char *

For Elements

Syntax

stm_r_md_implementation (md_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_not_instance

module md

Argument Input/
Output Type Description

md_id In stm_id The module ID.

status Out int The function status code.
86 Data Port Reference Guide

List of Functions
stm_r_md_purpose

Returns the purpose of the module.

Function Type

stm_module_purpose_type

For Elements

Syntax

stm_r_md_purpose (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

module md

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 87

Single-Element Functions
stm_r_msg_all

Returns the textual information associated with a specified element.

The information is retrieved into a structured data type (record) that varies according to the
type of element referenced.

Function Type

stm_msg_all_ptr

For Elements

Message

Syntax

stm_r_msg_all (msg_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

msg_id In stm_id The element ID.

status Out int The function status code.
88 Data Port Reference Guide

List of Functions
stm_r_msg_defined_in_scen

Returns the list of messages in chronological order that are part of a scene, defined by a
separator.

Function Type

stm_list

For Elements

Syntax

stm_r_msg_defined_in_scen (sep_list, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

List of separators sep_lst

Argument Input/
Output Type Description

sep_lst In stm_list A list of element IDs

status Out int The function status code
Rational Statemate 89

Single-Element Functions
stm_r_msg_graphic

Returns the graphical information associated with the specified element.

Function Type

stm_msg_graphic_pt

For Elements

Message

Syntax

stm_r_msg_graphic (msg_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

msg_id In stm_id The element ID.

status Out int The function status code.
90 Data Port Reference Guide

List of Functions
stm_r_msg_included_in_ord_insig

Returns a list of messages that are bounded by an order-insignificant element.

Function Type

stm_list

For Elements

Syntax

stm_r_msg_included_in_ord_insig (ord_insig_list, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_order_insignificant

List of order insignificance ord_insig_list

Argument Input/
Output Type Description

ord_insig_list In stm_list A list of elements

status Out int The function status code
Rational Statemate 91

Single-Element Functions
stm_r_msg_where_tc_begins

Returns the message where the timing constraint begins.

Function Type

stm_id

For Elements

Syntax

stm_r_msg_where_tc_begins (tc_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_timing_constraint

message msg

Argument Input/
Output Type Description

tc_id In stm_id TIMING CONSTRAINT The timing constraint.

status Out int The function status code.
92 Data Port Reference Guide

List of Functions
stm_r_msg_where_tc_ends

Returns the message where the timing constraint ends.

Function Type

stm_id

For Elements

Syntax

stm_r_msg_where_tc_ends (tc_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_timing_constraint

message msg

Argument Input/
Output Type Description

tc_id In stm_id The timing constraint.

status Out int The function status code.
Rational Statemate 93

Single-Element Functions
stm_r_next_msg

Returns the message after (in time) the decomposed sequence diagram.

Function Type

stm_id

For Elements

Syntax

stm_r_next_msg (dec_sd_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_decomposed_sd

� stm_message_not_found

decomposed SD dec_sd

Argument Input/
Output Type Description

dec_sd_id In stm_id REFERENCED_SD The element ID.

status Out int The function status code.
94 Data Port Reference Guide

List of Functions
stm_r_nt_body

Returns a string, the context of the note.

Function Type

char *

For Elements

Syntax

stm_r_nt_body (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

notes nt

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
Rational Statemate 95

Single-Element Functions
stm_r_oactor

Returns the ID of actor that corresponds to the actor occurrence.

Function Type

stm_id

For Elements

Syntax

stm_r_oactor (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

actor actor

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.
96 Data Port Reference Guide

List of Functions
stm_r_omd

Returns the ID of the module that corresponds to the module occurrence.

Function Type

stm_id

For Elements

Syntax

stm_r_omd (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Example

To determine the module occurrences for each module, use the following statements:

 stm_list md_list, om_list;
 stm_id om_id;
 int status;
 .
 .
om_list = stm_r_om_of_md (md_list, &status);
for(om_id = (stm_id)
 stm_list_first_element (om_list, &status);
 status == stm_success;
 om_id = (stm_id)
 stm_list_next_element (om_list, &status))
printf ("module occurrence %d corresponds to
 module %s", om_id, stm_r_md_name (
 stm_r_omd (om_id, &status), &status));

module
occurrence

om

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 97

Single-Element Functions
stm_r_ord_insig_all

Returns the textual information associated with a specified element.

The information is retrieved into a structured data type (record) that varies according to the
type of element referenced.

Function Type

stm_ord_insig_all_ptr

For Elements

Order Insignificant Line

Syntax

stm_r_ord_insig_all (ord_insig_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

ord_insig_i
d

In stm_id The element ID.

status Out int The function status code.
98 Data Port Reference Guide

List of Functions
stm_r_ord_insig_graphic

Returns the graphical information associated with the specified element.

Function Type

stm_ord_insig_graphic_ptr

For Elements

Order Insignificant Line

Syntax

stm_r_ord_insig_graphic (ord_insig_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

ord_insig_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 99

Single-Element Functions
stm_r_ouc

Returns the ID of use-case that corresponds to the use-case occurrence.

Function Type

stm_id

For Elements

Syntax

stm_r_ouc (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

use-case uc

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.
100 Data Port Reference Guide

List of Functions
stm_r_parameter_binding

Returns the parameter expression from generic charts and components.

Function Type

stm_expression

For Elements

Syntax

stm_r_parameter_binding (xx_paramid_in_gen, inst_boxid,&status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_param_not_compatible

� stm_name_not_found

� stm_not_a_parameter

chart ch

Argument Input/
Output Type Description

xx_paramid_in_gen In stm_id The element ID.

inst_boxid In stm_id The element ID.

status Out int The function status code.
Rational Statemate 101

Single-Element Functions
stm_r_previous_msg

Returns the message previous (in time) to the decomposed sequence diagram.

Function Type

stm_id

For Elements

Syntax

stm_r_previous_msg (dec_sd_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_decomposed_sd

� stm_message_not_found

decomposed SD dec_sd

Argument Input/
Output Type Description

dec_sd_id In stm_id The element ID.

status Out int The function status code.
102 Data Port Reference Guide

List of Functions
stm_r_sb_action_lang

Retrieves the action language of the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_action_lang (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_statemate_action_lang

� stm_unresolved

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 103

Single-Element Functions
stm_r_sb_action_lang_expression

Retrieves the action language expression of the specified subroutine.

Function Type

stm_expression

For Elements

Syntax

stm_r_sb_action_lang_expression (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_missing_statemate_action_lang

� stm_unresolved

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
104 Data Port Reference Guide

List of Functions
stm_r_sb_action_lang_local_data

Retrieves the action language local data associated with the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_action_lang_local_data (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_local_data

� stm_id_not_found

� stm_id_out_of_range

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 105

Single-Element Functions
stm_r_sb_ada_user_code

Returns the Ada code that was manually written for the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_ada_user_code (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_global_data

� stm_missing_local_data

� stm_missing_subroutine_params

� stm_missing_user_code

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
106 Data Port Reference Guide

List of Functions
stm_r_sb_ansi_c_user_code

Returns the ANSI C code that was manually written for the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_ansi_c_user_code (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_missing_user_code

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 107

Single-Element Functions
stm_r_sb_connected_chart

Returns the ID of the procedural statechart connected to the specified subroutine.

Function Type

stm_id

For Element

Syntax

stm_r_sb_connected_chart (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
108 Data Port Reference Guide

List of Functions
stm_r_sb_connected_statechart

Returns the ID of the procedural statechart connected to the specified subroutine.

Function Type

stm_list

For Element

Syntax

stm_r_sb_connected_statechart(sb_id, &status);

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 109

Single-Element Functions
stm_r_sb_connected_flowchart

Returns the ID of the Flowchart connected to the specified subroutine.

Function Type

stm_list

For Element

Syntax

stm_r_sb_connected_flowhart (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
110 Data Port Reference Guide

List of Functions
stm_r_sb_global_data

Function Type

stm_list

For Elements

Syntax

stm_r_sb_global_data (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_global_data

� stm_id_out_of_range

� stm_id_not_found

subroutine sb

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 111

Single-Element Functions
stm_r_sb_global_data_mode

Returns the mode of a subroutine’s global variable.

Function Type

stm_parameter_mode

For Elements

Syntax

stm_r_sb_global_data_mode (fn_id, stm_id pd_id, int *status)

Arguments

Status Codes

� stm_success

� stm_missing_global_data

� stm_id_out_of_range

� stm_id_not_found

subroutine sb

Argument Input/
Output Type Description

fn_id The subroutine ID.

pd_id The global variable ID.

status Out int The function status code.
112 Data Port Reference Guide

List of Functions
stm_r_sb_kr_c_user_code

Returns the K&R C code that was manually written by the user for the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_kr_c_user_code (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_missing_user_code

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 113

Single-Element Functions
stm_r_sb_parameters

Retrieves the parameters of the subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_paramaters (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_a_parameter

� stm_missing_subroutine_params

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
114 Data Port Reference Guide

List of Functions
stm_r_sb_proc_sch_local_data

Retrieves the local data of the procedural statechart implemented by the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_proc_sch_local_data (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_local_data

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 115

Single-Element Functions
stm_r_sb_proc_fch_local_data

Retrieves the local data of the Flowchart implemented by the specified subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_sb_proc_fch_local_data (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_local_data

� stm_no_connected_chart

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
116 Data Port Reference Guide

List of Functions
stm_r_sb_return_type

Retrieves the subroutine’s return type.

Function Type

stm_sb_return_type

For Elements

Syntax

stm_r_sb_return_type (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 117

Single-Element Functions
stm_r_sb_return_user_type

Retrieves the user-defined type ID returned by the subroutine.

Function Type

stm_id

For Elements

Syntax

stm_r_sb_return_user_type (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_user_type

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
118 Data Port Reference Guide

List of Functions
stm_r_sb_return_user_type_name_type

Retrieves the subroutine’s return user type and name type.

Function Type

stm_name_type

For Elements

Syntax

stm_r_sb_return_user_type_name_type (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_user_type

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 119

Single-Element Functions
stm_r_sep_all

Returns the textual information associated with a specified element.

The information is retrieved into a structured data type (record) that varies according to the
type of element referenced.

Function Type

stm_sep_all_ptr

For Elements

Partition Line

Syntax

stm_r_sep_all (sep_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

sep_id In stm_id The element ID.

status Out int The function status code.
120 Data Port Reference Guide

List of Functions
stm_r_sep_graphic

Returns the graphical information associated with the specified element.

Function Type

stm_sep_graphic_ptr

For Elements

Partition Line

Syntax

stm_r_sep_graphic (sep_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

sep_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 121

Single-Element Functions
stm_r_st_andlines

Returns a list of the and-lines associated with the specified state. The input argument ID is an
element ID of an and-state.

Function Type

stm_and_line_list

For Elements

Syntax

stm_r_st_andlines (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_not_an_and_state

� stm_unresolved

Note
Refer to Data Types for the exact structure of the returned value.

Example

To return a list of the and-lines for a specified state_id, use the following call:

stm_id state_id;
int status;
stm_and_line_list st_list;
 .
 .
if (stm_r_st_type (state_id, &status) == stm_st_and)
st_list = stm_r_st_andlines (state_id, &status);

and-state

Argument Input/
Output Type Description

id In stm_id The element ID.

status Out int The function status code.
122 Data Port Reference Guide

List of Functions
stm_r_st_static_reactions

Returns the static reactions defined for the specified state element.

Function Type

stm_expression

For Elements

Syntax

stm_r_st_static_reactions (st_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_unresolved

� stm_missing_label

state st

Argument Input/
Output Type Description

st_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 123

Single-Element Functions
stm_r_st_static_reactions_hyper

Returns a string with the static reactions, including hyperlinks to referenced elements.

Function Type

STRING

For Elements

Syntax

stm_r_st_static_reactions_hyper (elem, format, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

state st

Argument Input/
Output Type Description

elem In stm_id The element ID.

format In STRING Either FrameMaker or Word.

status Out int The function status code.
124 Data Port Reference Guide

List of Functions
stm_r_stubs_name

Returns the list of stub names for an instance of a component.

Function Type

stm_list

For Elements

Syntax

stm_r_stubs_name (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_id_out_of_range

� stm_illegal_parameter

� stm_id_not_found

� stm_file_not_found

� stm_missing_name

� stm_missing_field

activity ac

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 125

Single-Element Functions
stm_r_tc_all

Returns the textual information associated with a specified element.

The information is retrieved into a structured data type (record) that varies according to the
type of element referenced.

Function Type

stm_tc_all_ptr

For Elements

Timing Constraint

Syntax

stm_r_tc_all (tc_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Argument Input/
Output Type Description

tc_id In stm_id The element ID.

status Out int The function status code.
126 Data Port Reference Guide

List of Functions
stm_r_tc_graphic

Returns the graphical information associated with the specified element.

Function Type

stm_tc_graphic_ptr

For Elements

Timing Constraint

Syntax

stm_r_tc_graphic (tc_id, &status)

Arguments

Status Codes

� stm_success
� stm_id_out_of_range
� stm_unresolved
� stm_id_not_found

Argument Input/
Output Type Description

tc_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 127

Single-Element Functions
stm_r_tr_attr_enforced

Returns the enforced attributes specified by attr_name.

Function Type

stm_boolean

For Elements

Transition

Syntax

stm_r_tr_attr_enfoced(stm_id st_id, stm_attr_name st_attr_name, stm_name
st_attr_val int *status)

Arguments

Argument Input/
Output Type Description

status Out int The function status code.
128 Data Port Reference Guide

List of Functions
stm_r_tr_attr_name

Returns the names of attributes associated with the specified element. Attributes are associated
with elements through element forms.

Function Type

stm_list

For Elements

Transition

Syntax

stm_r_tr_attr_name(stm_id st_id, int *status)

Arguments

Argument Input/
Output Type Description

status Out int The function status code.
Rational Statemate 129

Single-Element Functions
stm_r_tr_attr_val

Returns the values associated with a particular attribute name for the specified element.

Function Type

stm_list

For Elements

Transition

Syntax

stm_r_tr_attr_val(stm_id st_id, stm_attr_name st_attr_name, int *status)

Arguments

Argument Input/
Output Type Description

status Out int The function status code.
130 Data Port Reference Guide

List of Functions
stm_r_tr_longdes

Returns the long description of the specified Transition.

Function Type

char *

For Elements

Transition

Syntax

stm_r_tr_longdes(stm_id st_id, stm_filename st_file, int *status)

Arguments

Argument Input/
Output Type Description

status Out int The function status code.
Rational Statemate 131

Single-Element Functions
stm_r_tr_notes

Returns a list of strings each one is a line in the Transition Note related to the specified
Transition.

Function Type

stm_list

For Elements

Transition

Syntax

stm_r_tr_notes (tr_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_missing_note

Argument Input/
Output Type Description

tr_id In stm_id The Transition ID.

status Out int The function status code.
132 Data Port Reference Guide

List of Functions
stm_r_tt_cell

Retrieves the contents of the specified cell in the given truth table.

Function Type

char *

For Elements

Syntax

stm_r_tt_cell (el, row_num, col_num, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_missing_truth_table

� stm_truth_table_invalid_row

� stm_truth_table_invalid_column

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

el In stm_id The element ID

row_num In int The row number of the cell

col_num In int The column number of the cell

status Out int The function status code
Rational Statemate 133

Single-Element Functions
stm_r_tt_cell_hyper

Retrieves the contents of the specified cell in the given truth table, including hyperlinks to
referenced elements.

Function Type

char *

For Elements

Syntax

stm_r_tt_cell_hyper (el, row_num, col_num, format, &status);

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_missing_truth_table

� stm_truth_table_invalid_row

� stm_truth_table_invalid_column

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

el In stm_id The element ID

row_num In int The row number of the cell

col_num In int The column number of the cell

format

status Out int The function status code
134 Data Port Reference Guide

List of Functions
stm_r_tt_cell_type

Retrieves the data-type of the specified cell in the given truth table.

Function Type

char

For Elements

Syntax

stm_r_tt_cell_type (el, row_num, col_num, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_missing_truth_table

� stm_truth_table_invalid_row

� stm_truth_table_invalid_column

Return Values

Although the return value of this function is of type int, Dataport allows you to reference this
value by name. The name is internally defined as a predefined constant. The possible values
are:

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

el In stm_id The element ID

row_num In int The row number of the cell

col_num In int The column number of the cell

status Out int The function status code
Rational Statemate 135

Single-Element Functions
� stm_tt_cell_type_missing

� stm_tt_cell_rpn_same_as_down

� stm_tt_cell_rpn

� stm_tt_cell_dont_care

� stm_tt_is_generate_ev

� stm_tt_is_not_generate_ev

� stm_tt_cell_empty_same_as_up

� stm_tt_cell_empty_same_as_up_and_down

� stm_tt_is_empty_cell

stm_r_tt_num_of_col

Retrieves the number of columns (including blank ones) in the specified truth table, as viewed
in the truth table editor.

Function Type

int

For Elements

Syntax

function stm_r_tt_num_of_col (el, &status)

Arguments

Status Codes

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el In stm_id The element ID.

status Out int The function status code.
136 Data Port Reference Guide

List of Functions
stm_r_tt_num_of_in

Retrieves the number of input columns in the specified truth table.

Function Type

int

For Elements

Syntax

stm_r_tt_num_of_in (el_id, &status)

Arguments

Status Codes

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 137

Single-Element Functions
stm_r_tt_num_of_out

Retrieves the number of output columns in the specified truth table.

Function Type

int

For Elements

Syntax

stm_r_tt_num_of_out (el_id, &status)

Arguments

Status Codes

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status code.
138 Data Port Reference Guide

List of Functions
stm_r_tt_num_of_row

Retrieves the number of rows (including blank ones) in the specified truth table, as viewed in
the truth table editor.

Function Type

int

For Elements

Syntax

stm_r_tt_num_of_row (el_id, &status)

Arguments

Status Codes

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status
code.
Rational Statemate 139

Single-Element Functions
stm_r_tt_row

Returns a list of strings that represents a row in the truth table. Each string in the list includes
the text in the truth table cell. The row’s index range is [0..num_of_rows-1]. Row 0 returns
the list of table header strings.

Function Type

stm_list

For Elements

Syntax

stm_r_tt_row (el, row_num, &status)

Arguments

Status Codes

� stm_truth_table_invalid_row

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el In stm_id The element ID.

row_num In int The row number to
retrieve.

status Out int The function status code.
140 Data Port Reference Guide

List of Functions
stm_r_tt_row_hyper

Returns a list of strings that represents a row in the truth table, including hyperlinks to
referenced elements. Each string in the list includes the text in the truth table cell. The row’s
index range is [0..num_of_rows-1]. Row 0 returns the list of table header strings.

Function Type

stm_list

For Elements

Syntax

stm_r_tt_row (el, row_num, format &status)

Arguments

Status Codes

� stm_truth_table_invalid_row

� stm_missing_truth_table

� stm_success

truth table tt

Argument Input/
Output Type Description

el In stm_id The element ID.

row_num In int The row number to
retrieve.

format

status Out int The function status code.
Rational Statemate 141

Single-Element Functions
stm_r_xx

Retrieves the element ID of the specified element. This ID is an internal representation that
Rational Statemate uses to identify each element in the database. Because Rational Statemate
requires the ID to locate elements, this function is very often the first one called when using
dataport functions.

Function Type

stm_id

For Elements

Syntax

stm_r_xx (name, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

enumerated value en

event ev

field fd

function fn

information-flow if

lifeline ll

local data ld

module md

off-page activity chart oac

off-page module omd

router router

state st

subroutine sb

subroutine parameter sp

use case uc

user_defined_type dt
142 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_illegal_address

� stm_illegal_name

� stm_name_not_found

� stm_name_not_unique

Example

Identify the ID of an event EV1. Once the ID has been determined, you can use it to retrieve
information about EV1 from the database, as follows:

stm_id ev_id;
int status;
stm_short_name synonym;
 .
 .
ev_id = stm_r_ev ("EV1", &status);
IF (status == stm_success)
 synonym = stm_r_ev_synonym (ev_id, &status);
 .
 .
 .

The ID for EV1 is assigned to the variable ev_id.

Note: ev_id is declared to be of type stm_id.

Argument
Input/
Outpu

t
Type Description

name In stm_element_name
or stm_pathname

A Rational Statemate element name or
synonym.
Note the following:

• This can be an element name (path name)
or synonym. Hierarchical elements must be
identified uniquely by specifying a unique
path name.

• The name can include the chart name (for
example, A:B).

• The name is not case-sensitive.

status Out int The function status code.
Rational Statemate 143

Single-Element Functions
stm_r_xx_all

Description

Returns both the textual and graphical information associated with a specified element.

Note

� You can call this function without indicating its specific element type, as follows:
stm_r_all (id, &status)

� The information is retrieved into a structured data type (record) that varies according to
the type of element referenced.

Function Type

stm_xx_all_ptr

For Elements

Syntax

stm_r_xx_all (xx_id, &status)

activity ac

a-flow-line (basic) ba

combinational
assignment

ca

connector cn

data-store ds

m-flow-line (basic) bm

module md

module-occurrence om

note nt

off-page activity oa

state st

transition (basic) bt
144 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

Note
When stm_unresolved is returned, a record is received with the fields name, unique name,
type, and chart. The remainder of the text fields are empty. The remainder of the graphical
fields contain -1.

Example

To retrieve several fields (graphical and textual) attached to a specific state whose ID is st_id,
use the first statement to retrieve all the information regarding the specific state (st_id), then
extract the particular fields from the record.

 stm_id st_id;
 int status;
 stm_st_all_ptr st_record;
 stm_element_name name;
 stm_short_name synonym;
 stm_color color;
 .
 .
st_record = stm_r_st_all (st_id, &status);
name = st_record->st_name;
synonym = st_record->st_synonym;
color = st_record->st_color;

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 145

Single-Element Functions
stm_r_xx_array_lindex

Returns the right index of an element array.

You can call this function without indicating the specific element type, as follows:

stm_r_array_rindex (id, &status)

Function Type

stm_const_expression

For Elements

Syntax

stm_r_xx_array_rindex (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

condition co

data-item di

event ev

field fd

local data ld

subroutine parameter sp

user-defined type dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
146 Data Port Reference Guide

List of Functions
stm_r_xx_array_rindex

Returns the right index of an element array.

You can call this function without indicating the specific element type, as follows:

stm_r_array_rindex (id, &status)

Function Type

stm_const_expression

For Elements

Syntax

stm_r_xx_array_rindex (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

condition co

data-item di

event ev

field fd

local data ld

subroutine parameter sp

user-defined type dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 147

Single-Element Functions
stm_r_xx_attr_enforced

Returns the enforced attributes specified by attr_name.

You can call this function without indicating the specific type, as follows:

stm_r_attr_enforced (id, attr_name, attr_val, status)

Function Type

stm_boolean

For Elements

Syntax

stm_r_xx_attr_enforced (xx_id, attr_name, attr_val,&status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

module md

router router

state st

subroutine sb

transition tr

use case uc

user-defined type dt
148 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_attribute_name_not_found

� stm_id_not_found

� stm_id_out_of_range

� stm_illegal_name

� stm_unresolved

Argument
Input/
Outpu

t
Type Description

xx_id In stm_id The element ID.

attr_name In string The attribute name.

attr_val In string The attribute value.

status Out int The function status code.
If no attributes exist for the specified element,
status receives the value
stm_attribute_name_not_found.
Rational Statemate 149

Single-Element Functions
stm_r_xx_attr_name

Returns the names of attributes associated with the specified element. Attributes are associated
with elements via element forms.

You can call this function without indicating the specific element type, as follows:

stm_r_attr_name (id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_attr_name (xx_id, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-
flow

if

lifeline ll

module md

router router

state st

subroutine sb

transition tr

use case uc

user-defined
type

dt
150 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_attribute_name_not_found

� stm_id_not_found

� stm_id_out_of_range

� stm_unresolved

Example

To perform operations on the attributes of the state WAIT, retrieve a list of its attribute names
using the following statements:

stm_id st_id;
 stm_attr_name attrib;
 stm_list attr_list;
 int status;
 .
 .
 st_id = stm_r_st ("WAIT", &status);
 attr_list = stm_r_st_attr_name (st_id, &status);
 for (attrib = (stm_attr_name)
 stm_list_first_element (attr_list, &status);
 status == stm_success;
 attrib = (stm_attr_name)
 stm_list_next_element (attr_list, &status))
 .
 .
 .
attr_list contains a list of attribute names for WAIT. In the for loop,
perform the operations on each item in the list of attributes (such as
retrieving and printing the corresponding values).

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
If no attributes exist for the specified element, status
receives the value
stm_attribute_name_not_found.
Rational Statemate 151

Single-Element Functions
stm_r_xx_attr_val

Retrieves attribute values associated with a particular attribute name for the specified element.
You can call this function without indicating the specific element type, as follows:

stm_r_attr_val (id, attr_name, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_attr_val (xx_id, attr_name, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

module md

router router

state st

subroutine sb

transition tr

use case uc

user-defined type dt
152 Data Port Reference Guide

List of Functions
Arguments

� Attribute values may exist for attributes with no name. If you supply contiguous
apostrophes (’’) for attr_name, you retrieve all values for unnamed attributes.

� In most cases, attributes have only one value. However, there are some cases where more
than one attribute value is simultaneously meaningful. For example, a module has an
attribute implementation. The attributes software and hardware might both be
meaningful for some modules. Therefore, Rational Statemate provides the capability of
assigning multiple values to attributes, and the function returns a list of these values.
When there is a single value, the list consists of one component.

Status Codes

� stm_success

� stm_attribute_name_not_found

� stm_id_not_found

� stm_id_out_of_range

� stm_illegal_name

� stm_unresolved

Example

To extract the attribute values of the attribute refer for the state WAIT and perform several
operations on each of these values, use the following statements:

stm_id st_id;
stm_attr_val attrib;
stm_list attr_list;
int status;
 .
 .
st_id = stm_r_st("WAIT", &status);
attr_list = stm_r_st_attr_val (st_id, "refer", &status);
for (attrib = (stm_attr_val)
 stm_list_first_element (attr_list, &status);
 status == stm_success;
 attrib = (stm_attr_val)
 stm_list_next_element (attr_list, &status))

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

attr_name In stm_attr_name The attribute name. The attribute name is not case-sensitive.

status Out int The function status code.
If attr_name does not exist for the specified element,
status receives the value
stm_attribute_name_not_found.
Rational Statemate 153

Single-Element Functions
stm_r_xx_bit_array_lindex

Returns the left index of a bit array.

You can call this function without indicating the specific element type, as follows:

stm_r_bit_array_lindex (id, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_bit_array_lindex (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
154 Data Port Reference Guide

List of Functions
stm_r_xx_bit_array_rindex

Returns the right index of a bit array.

You can call this function without indicating the specific element type, as follows:

stm_r_bit_array_rindex (id, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_bit_array_rindex (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
Rational Statemate 155

Single-Element Functions
stm_r_xx_cbk_binding

Retrieves the callback binding for specified elements.

You can call this function without indicating the specific element type, as follows:

stm_r_cbk_binding (id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_cbk_binding (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_missing_cbk_binding

� stm_unresolved

activity ac

condition co

data-item di

event ev

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
156 Data Port Reference Guide

List of Functions
stm_r_xx_cbk_binding_enable

Retrieves the enabled callback bindings.

You can call this function without indicating the specific element type, as follows:

stm_r_cbk_binding_enable (id, &status)

Function Type

char

For Elements

Syntax

stm_r_xx_cbk_binding_enable (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_missing_cbk_binding

Return Values

Although the return value of this function is of type int, dataport enables you to reference this
value by name. The following table lists the possible values allowed by each Rational
Statemate element subtype.

activity ac

condition co

data-item di

event ev

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 157

Single-Element Functions
Element Element Subtype

activity stm_ac_cbk_enable

stm_ac_cbk_disable

stm_ac_cbk_bind_missing

condition stm_co_cbk_enable

stm_co_cbk_disable

stm_ac_cbk_bind_missing

data-item stm_di_cbk_enable

stm_di_cbk_disable

stm_di_cbk_bind_missing

event stm_ev_cbk_enable

stm_ev_cbk_disable

stm_ev_cbk_bind_missing

state stm_st_cbk_enable

stm_st_cbk_disable

stm_st_cbk_bind_missing
158 Data Port Reference Guide

List of Functions
stm_r_xx_cbk_binding_expression

Retrieves the callback binding expressions.

You can call this function without indicating the specific element type, as follows:

stm_r_cbk_binding_expression (id, &status)

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_cbk_binding_expression (id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_missing_cbk_binding

� stm_unresolved

activity ac

condition co

data-item di

event ev

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 159

Single-Element Functions
stm_r_xx_cbk_binding_expression_hyper

Retrieves the callback binding expressions, with hyperlinks to referenced elements.

You can call this function without indicating the specific element type, as follows:

stm_r_cbk_binding_expression_hyper (id, &status)

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_cbk_binding_expression_hyper (id, char* formator int*status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_missing_cbk_binding

� stm_unresolved

activity ac

condition co

data-item di

event ev

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

format In string Either FrameMaker or Word.

status Out int The function status code.
160 Data Port Reference Guide

List of Functions
stm_r_xx_chart

Returns the chart ID for the specified element.

� You can call this function without indicating the specific element type, as follows:
stm_r_chart (id, &status)

� For compound arrows, this function retrieves the chart only when all the arrow segments
are in the same element. Otherwise, it returns the value 0.

Function Type

stm_id

Syntax

stm_r_xx_chart (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Example

To return the name of the chart in which state S1 is found, use the following statements:

stm_id state_id, chart_id;
 int status;
 .
 .
 .
state_id = stm_r_st ("S1", &status);
chart_id = stm_r_st_chart (state_id, &status);
printf ("chart name is: %s", stm_r_ch_name (chart_id,
 &status));
 .
 .

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
Rational Statemate 161

Single-Element Functions
For Elements

a-flow-line (basic) ba

a-flow-line (compound) af

action an

activity ac

actor actor

boundary box bb

condition co

connector cn

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

lifeline ll

local data ld

m-flow-line (basic) bm

m-flow-line (compound) mf

module md

module-occurrence om

note nt

router router

state st

subroutine sb

subroutine parameter sp

transition (basic) bt

transition (compound) tr
162 Data Port Reference Guide

List of Functions
stm_r_xx_combinationals

Returns a list of strings. Each element of the list holds one combinational assignment, which is
connected to the specified element.

You can call this function without indicating the specific element type:

stm_r_combinationals (id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_combinationals (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_missing_field

� stm_missing_label

� stm_missing_name

� stm_file_not_found

� stm_id_not_found

� stm_id_out_of_range

� stm_illegal_parameter

activity ac

chart ch

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 163

Single-Element Functions
stm_r_xx_containing_fields

Returns the list of union or record elements that contain fields.

You can call this function without indicating the specific element type:

stm_r_containing_fields (id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_containing_fields (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_missing_field

� stm_unresolved

data-item di

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
164 Data Port Reference Guide

List of Functions
stm_r_xx_data_type

Returns the element subtype, including its data type and data structure. For example:

stm_xx_union_array, stm_xx_integer, stm_xx_real_queue

You can call this function without indicating the specific element type:

stm_r_data_type (id, &status)

Function Type

char

For Elements

Syntax

stm_r_xx_data_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_file_not_found

� stm_illegal_parameter

� stm_missing_field

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
Rational Statemate 165

Single-Element Functions
stm_r_xx_default_val()

Returns the default value associated with the specified element. You can call this function
without indicating the specific element type: stm_r_default_val (id, &status).

Function Type

char*

For Elements

Syntax

stm_r_xx_default_val(xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

di data item

dt user-defined type

fd field

co condition

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function code status.
166 Data Port Reference Guide

List of Functions
stm_r_xx_definition_type

Returns the definition type of the specified textual element.

Note

� You can call this function without indicating the specific element type:
stm_r_definition_type (id, &status)

� The enumerated type that reflects whether the textual element has a form. The nature of
the definition field in the form is stm_definition_type, whose values are:
� stm_reference—The element has no form.
� stm_primitive—The definition field is empty.
� stm_compound—The definition field contains a compound expression.
� stm_constant—The definition field contains a constant.
� stm_alias—The definition field contains an identifier, a bit array, a component,

or a slice (relevant for di only).
� stm_explicit—The info_flow has a form.
� stm_predefined—Predefined function.

Function Type

stm_definition_type

For Elements

Note: These types are not explicitly specified, but derived from the specification.

action an

condition co

data-item di

enumerated value en

event ev

function fn

information-flow if

local data ld

subroutine sb

subroutine
parameter

sp
Rational Statemate 167

Single-Element Functions
Syntax

stm_r_xx_definition_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

Return Values

Although the return value of this function is of type int, Dataport allows you to reference this
value by name. The name is internally defined as a predefined constant The following table
lists the possible values allowed for each Rational Statemate element subtype.

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.

Element Abbreviation Element Sub-Type

action an stm_an_reference

stm_an_primitive

stm_an_compound

condition co stm_co_reference

stm_co_primitive

stm_co_compound

stm_co_constant

data-item di stm_di_reference

stm_di_primitive

stm_di_compound

stm_di_constant

stm_di_alias

event ev stm_ev_reference

stm_ev_primitive

stm_ev_compound

field fd stm_fd_primitive
168 Data Port Reference Guide

List of Functions
information-
flow

if stm_if_reference

stm_if_explicit

local data ld stm_sp_defined

subroutine sb stm_sb_reference

stm_sb_predefined

stm_sb_function

stm_sb_procedure

stm_sb_task

subroutine
parameter

sp stm_sp_defined

user-defined
type

dt stm_dt_reference

stm_dt_primitive
Rational Statemate 169

Single-Element Functions
stm_r_xx_des_attr_name

Returns the names of Design-Attributes associated with the specified element.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_des_attr_name (xx_id, &status)

activity ac

chart ch

condition co

data-item di

data-type dt

field fd

subroutine sb

data-store ds

block bl

event ev

information-flow if

actions an

module md

state st

transition tr

subroutine
parameter

sp

local data ld
170 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_auto_defined

� stm_attribute_name_not_found

Argument Input/
Output Type Description

xx_id In stm_id The Element ID.

status Out int The function status code.
Rational Statemate 171

Single-Element Functions
stm_r_xx_des_attr_val

Retrieves the values of a given Design-Attribute values associated with the specified element.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_des_attr_val (xx_id st_id, xx_attr_name &status)

activity ac

chart ch

condition co

data-item di

data-type dt

field fd

subroutine sb

data-store ds

block bl

event ev

information-flow if

actions an

module md

state st

transition tr

subroutine
parameter

sp

local data ld
172 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_auto_defined

� stm_attribute_name_not_found

Argument Input/
Output Type Description

xx_id In stm_id The Element ID.

xx_attr_name In stm_attr_name The Design Attribute Name.

status Out int The function status code.
Rational Statemate 173

Single-Element Functions
stm_r_xx_description

Returns the short description of the specified element. The short description is defined in the
element’s form.

You can call this function without indicating the specific element type:

stm_r_description (id, &status)

Function Type

stm_description

For Elements

Syntax

stm_r_xx_description (xx_id, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

local data ld

module md

router router

state st

subroutine sb

subroutine
parameter

sp

user-defined
type

dt
174 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_unresolved

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_short_description

Example

To retrieve the contents of the short description field in the form of state SSS.S1, use the
following statements.

stm_id state_id;
stm_description state_desc;
int status;
 .
 .
state_id = stm_r_st ("SSS.S1", &status);
state_desc = stm_r_st_description (state_id, &status);
 .
 .
 .

state_desc contains the short description for the state SSS.S1 (whose ID is
state_id).

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
If no description exists in the element’s
form, status receives the value
stm_missing_short_description.
Rational Statemate 175

Single-Element Functions
stm_r_xx_displayed_name

Returns the name of a chart, as it appears in the graphic editor where the specified element is
located.

You can call this function without indicating the specific element type, as follows:

stm_r_displayed_name (id, &status)

Function Type

stm_id

For Elements

Syntax

stm_r_xx_displayed_name (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

activity ac

data-store ds

module md

module-
occurrence

om

off-page
activity

oa

router router

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
176 Data Port Reference Guide

List of Functions
stm_r_xx_explicit_defined_xx

Provides a status list.

Function type:

For Elements

Syntax:

stm_list stm_r_xx_explicit_defined_xx(stm_list xx_list, int* status)

Arguments

Status Codes:

� stm_success
� stm_nil_list

actor ac

boundary box bb

use case uc

Arguement Input/
Ouput Type Description

xx_list Input stm_list List of elements of type xx.

status Output int Function of the status code.
Rational Statemate 177

Single-Element Functions
stm_r_xx_expr_hyper

Returns the definition expression of the specified element found in the Definition field of the
element’s form, including hyperlinks to referenced elements.

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_expr_hyper (elem, format, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_primitive_element

a-flow-lines (basic) ba

action an

condition co

data-item di

event ev

m-flow-line (basic) bm

subroutine action
language

sb_action_la
ng

transitions (basic) bt

user-defined type dt

Argument Input/
Output Type Description

elem In st_id The element ID.

format In char* Either FrameMaker or Word.

status Out int The function status code.
178 Data Port Reference Guide

List of Functions
stm_r_xx_expression

Returns the definition expression of the specified element found in the Definition field of the
element’s form. For arrows, this function returns the label attached to the arrow. The function
is performed for basic arrows (arrow segments that connect boxes and connectors).

� You can call this function without indicating the specific element type:
stm_r_expression (id, &status)

� This function is valid for compound textual elements, which are defined as an expression
using the Definition field of its form.

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_expression (xx_id, &status)

Arguments

a-flow-line (basic) ba

action an

condition co

data-item di

event ev

field fd

m-flow-line (basic) bm

transition (basic) bt

user-defined type dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
If xx_id belongs to a primitive (not a compound)
element, status receives the value
stm_primitive_element.
Rational Statemate 179

Single-Element Functions
Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_primitive_element

Example

To retrieve the definition of C1 from the database for a system that contains a condition C1
(where C1 is defined as C2 or C3 in the form of C1), use the following function calls:

stm_id cond_id;
stm_expression cond_def;
int status;
 .
 .
cond_id = stm_r_co ("C1", &status);
cond_def = stm_r_co_expression (cond_id, &status);
 .
 .
 .

cond_def is assigned as the string value "C2 or C3".
180 Data Port Reference Guide

List of Functions
stm_r_xx_ext_link

Returns the file name associated with the "Link to External File" entry in the element's
properties of the specified element.

Note
You can call this function without indicating its specific element type, as follows:

stm_r_ext_link (id, &status)

Function Type

char*

For Elements

Syntax

stm_r_sb_ext_link(xx_id,&status)

action an

activity ac

actor actor

block bl

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

router router

subroutine sb

use case uc

user-defined
type

dt
Rational Statemate 181

Single-Element Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_name_not_found

� stm_id_not_found

� stm_auto_defined

� stm_missing_external_link

Argument Input/
Output Type Description

xx_is In stm_id The element ID.

Status Out int The function status code.
182 Data Port Reference Guide

List of Functions
stm_r_xx_graphic

Returns the graphical information associated with the specified element.

Note

� You can call this function without indicating the specific element type, as follows:
stm_r_graphic(id,&status)

� The information is retrieved into a structured data type (record), which varies according to
the type of element referenced.

� Each environment module can have several occurrences with the same name in a chart.
Call the query function stm_r_om_of_md to get the graphical information of its
occurrences, then use the function stm_r_om_graphic for each occurrence.

Function Type

stm_xx_graphic_ptr

For Elements

Syntax

stm_r_xx_graphic (xx_id, &status)

activity ac

basic a-flow-line ba

basic m-flow-line bm

basic transition bt

combinational
assignment

ca

connector cn

data-store ds

module md

module-occurence om

note nt

off-page activity oa

state st
Rational Statemate 183

Single-Element Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_unresolved

� stm_id_not_found

� stm_missing_graphic_data

Note
When stm_unresolved is returned, no record is received.

Example

To retrieve graphical information attached to a specific state whose ID is st_id, use the first
statement regarding the specific state (st_id), then extract the particular fields from the
record.

stm_id st_id;
 int status;
 stm_st_graphic_ptr st_record;
 stm_color color;
 .
 .
st_record = stm_r_st_graphic (st_id, &status);
 .
color = st_record->st_color;
 .
 .

Refer to Sample Program for a more detailed example of how the fields of the graphical record
are used.

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
184 Data Port Reference Guide

List of Functions
stm_r_xx_instance_name

Returns the name of the instance as it appears in the chart for a specific hierarchical Rational
Statemate element.

� You can call this function without indicating the specific element type:
stm_r_instance_name (id, &status)

� This function is relevant only for states, internal modules, and regular or control activities,
because only these elements can have instances.

Function Type

stm_instance_name

For Elements

Syntax

stm_r_xx_instance_name (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_not_instance

activity ac

module md

state st

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 185

Single-Element Functions
Example

To return the name of an instance for state named S1@S1_def, use the following statements:

stm_id state_id;
int status;
 .
 .
 .
state_id = stm_r_st ("S1", &status);
printf ("\n Instance Name: %s",
 stm_r_st_instance_name (state_id, &status));
 .
 .
 .
The name is written to the output is S1@S1_def.
186 Data Port Reference Guide

List of Functions
stm_r_xx_keyword

Retrieves a portion of the element’s long description. An element’s long description is attached
to its form.

You can call this function without indicating the specific element type:

stm_r_keyword (id, begin_keyword, end_keyword, filename, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_keyword (xx_id, begin_keyword, end_keyword,filename, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

module md

router router

state st

subroutine sb

use case uc

user-defined type dt
Rational Statemate 187

Single-Element Functions
Arguments

Note

� The arguments begin_keyword and end_keyword are strings of text appearing in the
element’s long description. The portion extracted from the database begins with the line
following begin_keyword and extends to the line preceding end_keyword.

� If the value of begin_keyword does not appear in the long description, the function creates an
empty file; status then receives the value stm_starting_keyword_not_found.

� If the value of end_keyword does not appear in the long description, the entire long description
(from the line following the value of begin_keyword) is retrieved; status receives the value
stm_ending_keyword_not_found.

� The values of begin_keyword and end_keyword must appear at the beginning of a line in the
long description.

� filename follows the conventions of the operating system. It returns the value of the
argument filename (when one is specified). If an empty string ’’ (two contiguous quotation
marks) is specified for filename, Rational Statemate creates a temporary file where it
stores the text. The name of this temporary file is returned by this function.

� If no long description exists for the element, status receives the value
stm_missing_long_description.

Argument Input/
Output Type Description

xx_id In stm_id The element ID

begin_keyword In char * The beginning of the portion of the string in
the long description to extract

end_keyword In char * The end of the portion of the string in the long
description to extract

filename In stm_filena
me

The name of the file to contain the long
description

status Out int The function status code
188 Data Port Reference Guide

List of Functions
Status Codes

� stm_success

� stm_unresolved

� stm_id_out_of_range

� stm_id_not_found

� stm_can_not_open_file

� stm_name_not_found

� stm_missing_long_description

� stm_starting_keyword_not_found

� stm_ending_keyword_not_found

Example

The long description for the state WAIT contains the following section:

!BHV_DESCR
When the assembly process reaches the critical stage where all parts
must be carefully selected, mounted and assembled, we wait for the
interrupt signal to tell us that all the required parts are in place
before continuing. This state acts as a synchronization point in the
assembly process.
!END_DESCR

To extract the portion of the long description beginning with “When the ...” and ending with
“... assembly process” using the following function call:

stm_id state_id;
stm_filename descr_file;
int status;
 .
 .
 .
state_id = stm_r_st ("WAIT", &status);
descr_file = stm_r_st_keyword (state_id, "!BHV_DESCR",
 "!END_DESCR", "", &status);
 .
 .
 .

The portion of the long description is written to a file. The name of the file is returned in
descr_file.
Rational Statemate 189

Single-Element Functions
stm_r_xx_labels

Returns a list of strings that consists of all the labels of the specified compound transition or
message. The labels appear on the transition segments that comprise the specified compound
transition, or on the message. The syntax of these labels is trigger/action.

Note
To divide the labels into their trigger and action parts, use the utility routines
stm_trigger_of_reaction and stm_action_of_reaction.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_labels (tr_id, &status)

Arguments

Status Codes

� stm_success

� stm_unresolved

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_label

message msg

transition tr

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
190 Data Port Reference Guide

List of Functions
Example

To extract all labels of messages exiting from state L1, use the following statements:

stm_id lifeline_id;
int status;
stm_list labels, ll_lst;
stm_list messages;
stm_id msg;
stm_expression lab;
 .
 .
lifeline_id = stm_r_ll ("L1", &status);

ll_lst = stm_list_create (lifeline_id, end_of_list,
 &status);

messages = stm_r_msg_from_source_ll (ll_lst, &status);

for (msg = (stm_id) stm_list_first_element (messages,
 &status);
 status == stm_success;
 msg = (stm_id) stm_list_next_element (messages,
 &status))
 {
 labels = stm_r_msg_labels (msg, &status);
 if (status == stm_success)

 {
 for (lab = (char*) stm_list_first_element
 (labels, &status);
 status == stm_success;
 lab = (char*) stm_list_next_element
 (labels, &status))
 .
 .
 }
 }
Rational Statemate 191

Single-Element Functions
stm_r_xx_labels_hyper

Returns a list of strings of message or transition labels, with hyperlinks to referenced elements.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_labels_hyper (message, format, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

message msg

transition tr

Argument Input/
Output Type Description

elem_id In stm_id The element ID.

format In string Either FramrMaker or Word.

status Out int The function status code.
192 Data Port Reference Guide

List of Functions
stm_r_xx_longdes

Retrieves the long description attached to the specified element.

You can call this function without indicating the specific element type:

stm_r_longdes (id, filename, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_longdes (xx_id, filename, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-flow if

lifeline ll

module md

requirement rt

router router

state st

subroutine sb

transition tr

use case uc

user-defined type dt
Rational Statemate 193

Single-Element Functions
Arguments

� The filename follows the conventions of the host operating system.
� This function returns the value of the argument filename when one is specified. If an

empty string ’’(two contiguous quotation marks) is specified, Rational Statemate creates
a temporary file where it stores the text. The name of this temporary file is returned by the
function.

� If no long description exists for the element, status receives the value
stm_missing_long_description.

Status Codes

� stm_unresolved

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_can_not_open_file

� stm_missing_long_description

Example

To retrieve the long description for the activity A1, use the following statements:

stm_id act_id;
stm_filename long_des_file;
int status;
 .
 .
act_id = stm_r_ac ("A1", &status);
long_des_file = stm_r_ac_longdes (act_id, "text.txt",
 &status);
 .
 .
 .

The long description for the activity A1 is written to the system file text.txt. This file resides
in the directory that is the current workarea. The variable long_des_file contains the string
’text.txt’ following statement execution.

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

filename In stm_filename The name of the file that contains the long
description.

status Out int The function status code.
194 Data Port Reference Guide

List of Functions
stm_r_xx_max_val

Returns the maximum value of the specified element.

You can call this function without indicating the specific element type:

stm_r_max_val (id, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_max_val (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 195

Single-Element Functions
stm_r_xx_min_val

Returns the minimum value of the specified element.

You can call this function without indicating the specific element type:

stm_r_min_val (id, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_min_val (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
196 Data Port Reference Guide

List of Functions
stm_r_xx_mini_spec

Returns a string with mini-spec reactions or actions.

You can call this function without indicating the specific element type:

stm_r_mini_spec (id, &status)

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_mini_spec (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

� stm_missing_label

activit
y

ac

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 197

Single-Element Functions
stm_r_xx_mode

Returns the parameter or router mode.

Function Type

stm_xx_mode

For Elements

Syntax

stm_r_xx_mode (elem_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

parameter parameter

router router

Argument Input/
Output Type Description

elem_id In stm_id The element ID.

status Out int The function status code.
198 Data Port Reference Guide

List of Functions
stm_r_xx_name

Returns the element name. For hierarchical elements, the function returns the name associated
with the box. Because hierarchical elements can share the same name, the return value does
not necessarily uniquely identify an element. To return a unique name, use the function
stm_r_xx_uniquename.

� This function returns a pointer to a static area of memory. Subsequent calls to this
procedure overwrite the old string. If the name needs to be preserved, use the strdup()
function from the string library.

� You can call this function without indicating the specific element type:
stm_r_name (id, &status)

� For boxes that have no names, this function returns the definition chart name. For example,
for box @ABC, this function returns ABC.

Function Type

stm_element_name

Syntax

stm_r_xx_name (xx_id, &status)

Arguments

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 199

Single-Element Functions
For Elements

Status Codes

� stm_success

� stm_error_in_file

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_name

� stm_missing_field

� stm_illegal_parameter

� stm_file_not_found

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

enumerated value en

event ev

field fd

function fn

information-flow if

lifeline ll

local data ld

module md

router router

state st

subroutine sb

subroutine parameter sp

use case uc

user-defined type dt
200 Data Port Reference Guide

List of Functions
Example

To retrieve and print the name of a state in a statechart, use the following statements:

stm_id state_id;
int status;
 .
 .
state_id = stm_r_st ("S1.S3", &status);
printf ("%s", stm_r_st_name (state_id, &status));
 .
 .

In this example, the state name is provided and this value is used to retrieve the same state
name from the database. The purpose of this example is to demonstrate the value returned by
this function, in contrast to the value returned by the function stm_r_xx_uniquename.
Rational Statemate 201

Single-Element Functions
stm_r_xx_note

Returns the notes from a requirement record or timing constraint.

Function Type

char *

For Elements

Syntax

stm_r_xx_note (rt_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_field

� stm_illegal_parameter

� stm_file_not_found

� stm_error_in_file

requirement rt

timing
constraint

tc

Argument Input/
Output Type Description

rt_id In stm_id The element ID.

status Out int The function status code.
202 Data Port Reference Guide

List of Functions
stm_r_xx_notes

Returns the note for the specified input transition.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_notes (tr_id, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_missing_note

� stm_success

chart ch

Argument Input/
Output Type Description

tr_id In stm_id The transition ID.

status Out int The function status code.
Rational Statemate 203

Single-Element Functions
stm_r_xx_number_of_bits

Returns the number of bits in the element.

You can call this function without indicating the specific element type, as follows:

stm_r_number_of_bits (id, &status)

Function Type

char *

For Elements

Syntax

stm_r_xx_number_of_bits (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
204 Data Port Reference Guide

List of Functions
stm_r_xx_of_enum_type

Retrieves the enumerated type ID (a user-defined type) for the specified element.

You can call this function without indicating the specific element type:

stm_r_of_enum_type (id, &status)

Function Type

stm_id

For Elements

Syntax

stm_r_xx_of_enum_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_of_enum_type

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 205

Single-Element Functions
stm_r_xx_of_enum_type_name_type

Retrieves the enumerated name type for the specified elements.

You can call this function without indicating the specific element type:

stm_r_of_enum_type_name_type (id, &status)

Function Type

stm_name_type

For Elements

Syntax

stm_r_xx_of_enum_type_name_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_of_enum_type

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
206 Data Port Reference Guide

List of Functions
stm_r_xx_parameter_mode

Retrieves the parameter mode, including subroutine parameters and the parameters of generic
charts and components.

You can call this function without indicating the specific element type:

stm_r_parameter_mode (xx_id, &status)

Function Type

stm_parameter_mode

For Elements

Syntax

stm_r_xx_parameter_mode (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_not_a_parameter

Return Values

Although the return value of this function is of type int, Dataport enables you to reference this
value by name. The possible values are:

� stm_in_parameter

� stm_out_parameter

� stm_inout_parameter

� stm_constant_parameter

chart ch

subroutine
parameter

sp

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 207

Single-Element Functions
stm_r_xx_reactions

Returns the static reactions of the specified state. The syntax of these reactions is trigger/
action.

� To divide the static reactions into their trigger and action parts, use the utility routines
stm_trigger_of_reaction and stm_action_of_reaction.

� You can call this function without indicating the specific element type:
stm_r_reactions (st_id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_reactions (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_unresolved

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_label

activity ac

state st

Argument Input/
Output Type Description

xx_st_id In stm_id The state ID.

status Out int The function status code.
208 Data Port Reference Guide

List of Functions
Example

To extract all static reactions of state S1, use the following statements:

 stm_id state_id;
 int status;
 stm_list reactions;
 stm_expression react;
 .
 .
 state_id = stm_r_st ("S1", &status);
 reactions = stm_r_st_reactions (state_id, &status);
 if(status == stm_success)
 for(react = (string)
 stm_list_first_element (reactions, &status);
 status == stm_success;
 react = (string)
 stm_list_next_element (reactions, &status)){
 .
 .
 }
Rational Statemate 209

Single-Element Functions
stm_r_xx_select_implementation

Retrieves the implementation type of the specified element.

Function Type

stm_sb_select_implementation

For Elements

Syntax

stm_r_xx_select_implementation (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_out_of_range

� stm_id_not_found

Return Values

Although the return value of this function is of type int, Dataport enables you to reference this
value by name. The possible values are as follows:

� stm_sb_action_lang

� stm_sb_procedural_sch

� stm_sb_kr_c_code

� stm_sb_ansi_c_code

� stm_sb_ada_code

� stm_sb_vhdl_code

� stm_sb_verilog_code

� stm_sb_truth_table_code

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
210 Data Port Reference Guide

List of Functions
� stm_sb_best_match

� stm_sb_none

stm_r_xx_string_length

Retrieves the string length of the specified element.

You can call this function without indicating the specific element type:

stm_r_string_length (id, &status)

Function Type

stm_const_exp

For Elements

Syntax

stm_r_xx_string_length (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_field

� stm_illegal_parameter

� stm_file_not_found

� stm_error_in_file

field fd

local data ld

subroutine parameter sp

user-defined type dt

Argument Input/Output Type Description

xx_id In stm_id The element ID

status Out int The function status code
Rational Statemate 211

Single-Element Functions
stm_r_xx_structure_type

Returns the structure or type of the specified textual element. The structure or type can be
single, array, or queue.

You can call this function without specifying an element type:

stm_r_structure_type (id, &status)

Function Type

stm_list

For Elements

Syntax

stm_r_xx_structure_type (xx_id, &status)

Arguments

condition co

data-item di

event ev

field fd

local data ld

subroutine
parameter

sp

user-defined type dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
212 Data Port Reference Guide

List of Functions
Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Return Values

Although the return value of this function is of type int, Dataport enables you to reference this
value by name. The following are all possible values allowed for each Rational Statemate element
subtype.

Element Type Element Subtype

condition stm_co_array

stm_co_missing

stm_co_single

data-item stm_di_array

stm_di_queue

stm_di_single

event stm_ev_array

stm_ev_missing

stm_ev_single

field stm_fd_array

stm_fd_queue

stm_fd_single

local data stm_ld_array

stm_ld_queue

stm_ld_single

subroutine parameter stm_sp_array

stm_sp_queue

stm_sp_single

user-defined type stm_dt_array

stm_dt_queue

stm_dt_single
Rational Statemate 213

Single-Element Functions
stm_r_xx_synonym

Retrieves the synonym of the specified element. The synonym is defined in the element’s
form.

You can call this function without indicating the specific element type:

stm_r_synonym (id, &status)

Function Type

stm_short_name

For Elements

Syntax

stm_r_xx_synonym (xx_id, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

information-
flow

if

lifeline ll

module md

router router

state st

subroutine sb

use case uc

user-defined
type

dt
214 Data Port Reference Guide

List of Functions
Arguments

Status Codes

� stm_success

� stm_unresolved

� stm_missing_subroutine_params

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_synonym

Example

To write out the synonym of activity A1, use the following statements:

stm_id act_id;
int status;
 .
 .
act_id = stm_r_ac ("A1", &status);
printf ("Synonym:%s", stm_r_ac_synonym (act_id,
 &status));
 .
 .
 .

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
If no synonym is defined in the element’s
form, status receives the value
stm_missing_synonym.
Rational Statemate 215

Single-Element Functions
stm_r_xx_text

Returns the textual information associated with a specified element.

You can call this function without indicating the specific element type:

stm_r_text(id,&status)

The information is retrieved into a structured data type (record), which varies according to the
type of element referenced.

Function Type

stm_xx_text_ptr

For Elements

a-flow-line (basic) ba

action an

activity ac

block bl

chart ch

connector cn

combinational
assignment

ca

condition co

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

local data ld

module md

note nt

state st

subroutine sb

subroutine parameter sp

user-defined type dt
216 Data Port Reference Guide

List of Functions
Syntax

stm_r_xx_text (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_file_not_found

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_synonym

� stm_error_in_file

� stm_unresolved

� stm_illegal_parameter —When this status code is returned, a record is received with
the fields name, unique name, type, and chart. The rest of the text fields are empty.

Example

To retrieve several fields attached to a specific state whose ID is st_id, use the first
statement. Thereafter, extract from this record the particular fields.

 stm_id st_id;
 int status;
 stm_st_text_ptr st_record;
 stm_element_name name;
 stm_short_name synonym;
 .
 .
st_record = stm_r_st_text (st_id, &status);
 .
name = st_record->st_name;
synonym = st_record->st_synonym;
 .
 .

When retrieved, the information is assigned to a specific record that can be examined
thereafter for the desired information.

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 217

Single-Element Functions
stm_r_xx_truth_table

Returns the elements that are implemented as truth tables.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_truth_table (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_id_out_of_range

� stm_illegal_parameter

� stm_id_not_found

� stm_file_not_found

� stm_missing_name

� stm_missing_field

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
218 Data Port Reference Guide

List of Functions
stm_r_xx_truth_table_expression

Returns the truth table expression for all named elements.

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_truth_table_expression (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_id_out_of_range

� stm_illegal_parameter

� stm_id_not_found

� stm_file_not_found

� stm_missing_name

� stm_missing_field

action an

activity ac

subroutine sb

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 219

Single-Element Functions
stm_r_xx_truth_table_local_data

Returns the list of local data elements defined in the truth table related to the input subroutine.

Function Type

stm_list

For Elements

Syntax

stm_r_xx_truth_table_local_data (sb_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_file

� stm_id_out_of_range

� stm_illegal_parameter

� stm_id_not_found

� stm_file_not_found

� stm_missing_name

� stm_missing_field

subroutine sb

Argument Input/
Output Type Description

sb_id In stm_id The element ID.

status Out int The function status code.
220 Data Port Reference Guide

List of Functions
stm_r_xx_type

Function Type

stm_element_type

For Elements

a-flow-line (basic) ba

a-flow-line
(compound)

af

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

connector cn

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

lifeline ll

module md

module-occurrence om

note nt

off-page activity oa

router router

state st

subroutine sb

use case uc

user-defined type dt
Rational Statemate 221

Single-Element Functions
Description

Retrieves element subtypes for the specified element. Most Rational Statemate elements are
divided into classes, referred to as subtypes. For example, a state might belong to one of a
number of subtypes, such as and, or, basic, diagram, instance, or reference.

You can call this function without indicating the specific element type:

stm_r_type (id, &status)

Syntax

stm_r_xx_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
222 Data Port Reference Guide

List of Functions
Return Values

The return value of the function belongs to an enumerated type. The enumerated type depends
on the particular element type for which the function is performed. The enumerated type is
named stm_element_type, where element varies as shown in the following table.

Element Type Function Type Element Subtype

a-flow-line stm_a_flow_line_type stm_af_control

stm_af_data

action stm_action_type stm_an_compound

stm_an_reference

activity stm_activity_type stm_ac_control

stm_ac_control_instance

stm_ac_diagram

stm_ac_external

stm_ac_instance

stm_ac_internal

stm_ac_reference

ba-flow-line stm_ba_flow_line_type stm_ba_control

stm_ba_data

chart stm_chart_type stm_ch_activity

stm_ch_module

stm_ch_reference
_activity

stm_ch_reference_module

stm_ch_reference_state

stm_ch_state

condition stm_condition_type stm_co_compound

stm_co_primitive

stm_co_reference
Rational Statemate 223

Single-Element Functions
connector stm_connector_type stm_cn_composition

stm_cn_condition

stm_cn_control

stm_cn_deep_history

stm_cn_default

stm_cn_diagram

stm_cn_history

stm_cn_joint

stm_cn_junction

stm_cn_selection

stm_cn_termination

data-item stm_data_item_type stm_di_compound

stm_di_alias

stm_di_constant

stm_di_primitive

stm_di_reference

data-store stm_data_store_type stm_ds_internal

stm_ds_reference

event stm_event_type stm_ev_compound

stm_ev_primitive

stm_ev_reference

field stm_field_type stm_fd_primitive

information-
flow

stm_information_flow
_type

stm_if_explicit

stm_if_reference

module stm_module_type stm_md_diagram

stm_md_subsystem

stm_md_environment

stm_md_reference

stm_md_instance

stm_md_storage_module

router stm_router_type stm_router_external

stm_router_internal

Element Type Function Type Element Subtype
224 Data Port Reference Guide

List of Functions
Note
The value stm_st_component is not used.

Example

To retrieve the type of state Ready and execute some statements if the state is an or state, use
the following statements:

stm_id st_id;
stm_state_type st_type;
int status;
 .
 .
st_id = stm_r_st ("READY", &status);
st_type = stm_r_st_type (st_id, &status);
if(st_type == stm_st_or)
 .
 .
 .

state stm_state_type stm_st_diagram

stm_st_and

stm_st_or

stm_st_instance

stm_st_reference

stm_st_basic

subroutine stm_subroutine_type stm_sb_reference

user-defined
type

stm_dt_primitive

stm_dt_reference

Element Type Function Type Element Subtype
Rational Statemate 225

Single-Element Functions
stm_r_xx_type_expression

Returns the type expression for the specified element. The expression is the same as used in
the properties, reports, and Info.

You can call this function without indicating the specific type:

stm_r_type_expression (id, &status)

Function Type

stm_expression

For Elements

Syntax

stm_r_xx_type_expression (xx_id, status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_unresolved

condition co

data-item di

data-store ds

event ev

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
226 Data Port Reference Guide

List of Functions
stm_r_xx_uniquename

Returns the unique path name for the specified element. The name returned by the function
contains the minimum number of levels necessary to uniquely identify an element in its chart.
It is especially relevant to boxes.

You can call this function without indicating the specific element type:

stm_r_uniquename (id, &status)

Function Type

har *

For Elements

Syntax

stm_r_xx_uniquename (xx_id, &status)

action an

activity ac

actor actor

boundary box bb

chart ch

condition co

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

lifeline ll

local data ld

module md

router router

state st

subroutine sb

subroutine parameter sp

use case uc

user-defined type dt
Rational Statemate 227

Single-Element Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_synonym

Example

Consider the following statechart:

To retrieve the unique name of the highlighted state, use the following statements:

stm_id state_id;
int status;
 .
 .
state_id = stm_r_st ("S1.S3", &status);
printf ("Unique Name:%s", stm_r_st_uniquename (
 state_id, &status));
 .
 .
 .

The state name printed is S1.S3 (not S.S1.S3 or S3). In this example, a unique state name is
provided, and this value is used to retrieve the same unique state name from the database. This
example demonstrates the value returned by this function, in contrast to the value returned by
the function stm_r_xx_name.

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.

S

S3S3

S2S1
228 Data Port Reference Guide

List of Functions
stm_r_xx_user_type

Function Type

stm_id

For Elements

Description

Returns the user-defined type ID referenced by the element.

You can call this function without indicating the specific element type:

stm_r_user_type (id, &status)

Syntax

stm_r_xx_user_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_user_type

� stm_success

� stm_ntc_name

� stm_ntc_synonym

� stm_ntc_unknown

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined type dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 229

Single-Element Functions
stm_r_xx_user_type_name_type

Returns the name type of the user-defined type referenced by the element.

You can call this function without indicating the specific element type:

stm_r_user_type_name_type (id, &status)

Function Type

stm_name_type

For Elements

Syntax

stm_r_xx_user_type_name_type (xx_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_missing_user_type

data-item di

field fd

local data ld

subroutine
parameter

sp

user-defined
type

dt

Argument Input/
Output Type Description

xx_id In stm_id The element ID.

status Out int The function status code.
230 Data Port Reference Guide

List of Functions
stm_open_truth_table

Opens a Truth-Table which is connected to the specified element and highlights the specifies
line in it. Returns stm_success if request was successfully sent, and stm_id_out_of_range
otherwise.

Function Type

stm_boolean

For Elements

Syntax

stm_open_truth_table(stm_id id, int line, int *status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

action an

activity ac

Subroutine sb

Argument Input/
Output Type Description

id In stm_id The element ID.

line In int The line in the Truth-Table to be
Highlighted.

status Out int The function status code.
Rational Statemate 231

Single-Element Functions
stm_calculate_element_magic_number

Returns a number that reflects a status of a specified element. A change in the element's
definition is reflected by a change in the returned number.

Function Type

long

For Elements

All types

Syntax

stm_calculate_element_magic_number(el_id, &status)

Arguments

Status Codes

� stm_success

� stm_missing_local_data

� stm_no_connected_chart

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status code.
232 Data Port Reference Guide

List of Functions
stm_get_element_create_stamp

Returns a number that reflects a creation time of a specified element.

Function Type

long

For Elements

All types

Syntax

stm_get_element_create_stamp(el_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

� stm_no_connected_chart

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status code.
Rational Statemate 233

Single-Element Functions
stm_r_line_width

Returns the line width of a specified element.

Function Type

int

For Elements

arrows and boxes

Syntax

stm_r_line_width(el_id, &status)

Arguments

Status Codes

� stm_success

� stm_id_not_found

� stm_id_out_of_range

Argument Input/
Output Type Description

el_id In stm_id The element ID.

status Out int The function status code.
234 Data Port Reference Guide

Query Functions
This section describes the query functions. The functions are organized into sections by element
types returned by functions. Within each section, functions are organized by type of element in the
input list.

For each query function, the following information is provided:

� Description
� Query (if it exists)

Each function returns an output list. The output argument status is the function status code.

Overview
Query functions extract lists of elements from the database that conform to a specific criterion.

The property sheet enables you to query the Rational Statemate database. This tool uses a
comprehensive set of predefined queries to obtain information. All these queries operate on a list
of Rational Statemate elements, called the input list. Each query generates an output list of elements
that meet a criterion designated by the specific query. Generally, elements in the output list are related to
elements in the input list in one of two ways:

� The output list is a subset of input list elements that have a specific characteristic. For
example, the output list consists of all And-states in the input list.

� Elements in the output list fulfill a specific relationship to elements in the input list. For
example, the output list consists of all states that are descendants of states in the input list.

Most query functions correspond to queries from the property sheet. These functions give you the
same information that the corresponding queries do. Most functions require you to provide an
input list as an input argument. This input list generally consists of elements of a particular type.
The function returns a list of elements of the same or different type (as the input list).
Rational Statemate 235

Query Functions
The retrieval process is as follows:

1. Generate the input list.

2. Specify the query and input list. Receive the input list. Note that other procedures may be
performed before you use the retrieved information.

3. Use the output list.

Most functions require you to provide an input list as an input argument. This input list generally
consists of elements of a particular type. The function returns a list of elements of the same type as
that of the input list, or of a different type.

Calling Query Functions
Most of the query functions use the following calling sequence:

stm_r_yy_relation_xx (xx_list, &status)

In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function.
� yy—The two-character type abbreviation for elements in the output list.
� relation—The relationship between the input and output lists (describes the query to be

applied to the input list).
� xx—The two-character type abbreviation for elements in the input list.
� xx_list—The input list to the function.
� status—The return function status code. There are three possible status codes:

stm_success, stm_nil_list, and stm_missing_element_in_list.
For example:

stm_r_st_and_st (state_list, &status)

This function returns the states from the input list state_list that are and-states.

The following function returns the activities performed throughout the states in state_list:

stm_r_st_ac_throughout_st (state_list, &status)

The following sections document the query functions that use a different calling sequence.
236 Data Port Reference Guide

Calling Query Functions
By Attributes

The by_attributes function returns all elements in the input list that have an attribute
attr_name, whose value is attr_val.

The syntax is as follows:

stm_r_xx_by_attributes_xx (xx_list, attr_name, attr_val, &status)

In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function.
� xx—The two-character type abbreviation for elements in the input and output lists.
� by_attributes—The criterion to be met by elements in the input list.
� xx_list—The input list to the function.
� attr_name—A pattern for the attribute name.
� attr_val—A pattern for the attribute value to be matched.
� status—The return function status code. There are three possible status codes:

stm_success, stm_nil_list, and stm_missing_element_in_list.
For example:

stm_r_md_by_attributes_md (module_list, "LANGUAGE", "PASCAL", &status)

This function returns all modules in module_list that have an attribute LANGUAGE, whose value is
PASCAL.

Note
If you use stm_r_xx_by_attributes_xx to search for a specific attribute without regard
to the attribute’s value, enter the attribute’s name with an “*” (asterisk). The search returns
all elements with the attribute name and their assigned values. If you need to find an
attribute that has no attribute value (empty), enter the attribute name with empty quotation
marks (“”).
Rational Statemate 237

Query Functions
By Structure Type

The by_structure_type function returns all elements in the input list that have a structure type
xx_structure_type.

The syntax of the by_structure_type function is as follows:

stm_r_xx_by_structure_type_xx (xx_list, xx_structure_type, &status)

In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function
� xx—The two-character type abbreviation for elements in the input and output list
� by_structure_type—The structure type referenced
� xx_list—The input list to the function
� xx_structure_type—The structure type referenced (array, single, or queue in the

element’s form)
� status—The return function status code
For example:

stm_r_di_by_structure_type_di (di_list, stm_di_array, &status)

This function returns all data items in di_list that have an array structure type.

Name and Synonym Patterns

The name_of and synonym_of functions search the entire database for elements whose name (or
synonym) matches the pattern specified in the argument pattern.

The syntax is as follows:

stm_r_xx_name_of_xx (pattern, &status)

stm_r_xx_synonym_of_xx (pattern, &status)
238 Data Port Reference Guide

Calling Query Functions
In this syntax:

� stm_r_—Designates the function as a Rational Statemate database retrieval function

� xx—The two-character type abbreviation of elements in the output list
� name_of or synonym_of—The criterion to be met (specifies that the query “Element

whose name matches a pattern” or “Element whose synonym matches a pattern” is to be
applied)

� pattern—A character string you supply as an input argument
� status—The return function status code

These functions search the entire database for elements whose names (or synonyms) match the
pattern specified in the argument pattern.

For example:

stm_r_ev_name_of_ev ("EV*", &status)

This function returns all events from the database whose names begin with the string EV.

In another example, to retrieve all the charts in the database use the following:

stm_r_ch_name_of_ch ("*", &status)

The output list contains all the charts in the database, including reference charts.
Rational Statemate 239

Query Functions
Query Function Input Arguments

The following table lists the input arguments for query functions.

Argument Description Data Type

xx_list An input list of elements upon which you perform a query. stm_list

attribute
name

The name of an attribute defined in the Attribute field
of a Rational Statemate element form. This pattern may
include wildcards (? and *).

stm_attr_name

attribute
value

The value of an attribute defined in the Attribute field
of a Rational Statemate element form.

stm_attr_val

pattern An alphanumeric string to match a Rational Statemate
element name (or synonym). Two special characters can
be used as wildcards:

• A question mark (?) indicates that any character can
occupy this position

• An asterisk (*) indicates that any number of
characters (including 0) can occupy this position.

char * (string)
240 Data Port Reference Guide

Examples of Query Functions
Examples of Query Functions
This section provides several examples of query functions used to extract database information.

Example 1

To build an input list for query functions, use the following statements:

 stm_id act_id;
 stm_list list, act_list;
 int status;
 ...

act_id = stm_r_ac("A1", &status);
list = stm_list_create (act_id, end_of_list, &status);
act_list = stm_r_ac_physical_sub_of_ac (list, &status);
 .
 .

The variable act_id contains the ID of the activity A1. The input list is built by calling the
stm_list_create function. In this case, the input list consists of only one element. You would use
the same function to build a list of multiple elements.

Note that the input list is built from element IDs, not from element names.

Example 2

To return all the basic states that are descendants of states S1, use the following statements:

 stm_id st_id;
 int status;
 stm_list list;
 stm_list descen_states, basic_states;
 .
 .

st_id = stm_r_st ("S1", &status);
list =
 stm_list_create (st_id, end_of_list, &status);
descen_states = stm_r_st_physical_desc_of_st (list,

&status);
basic_states = stm_r_st_basic_st (descen_states,

&status);
 .
 .
Rational Statemate 241

Query Functions
Example 3

To return the name of all events in the database whose names begin with the string EV, use the
following statements:

 stm_id eve;
 stm_list ev_list;
 int status;
 .
 .
 .
ev_list = stm_r_ev_name_of_ev ("EV*", &status);
for (eve = (stm_id)
 stm_list_first_element (ev_list, &status);
 status == stm_success;
 eve = (stm_id) stm_list_next_element (ev_list,
 &status))
 printf ("\n %s", stm_r_ev_name (eve, &status));
242 Data Port Reference Guide

List of Query Functions
List of Query Functions
The query functions are grouped alphabetically first by output list type, then by input list type. The
output types are as follows:

� Activities (ac)
� A-Flow-Lines (af, ba, laf)
� Actions (an)
� Actors (actor)
� Boundary Boxes (bb)
� Callbacks
� Combinational Assignments (ca)
� Charts (ch)
� Connectors (cn)
� Conditions (co)
� Data-Items (di)
� Data-Stores (ds)
� Events (ev)
� Fields (fd)
� Functions (fn)
� Information-Flows (if)
� M-Flow-Lines (bf, lmf, mf)
� Modules (md)
� Mixed (mx)
� Module-Occurrences (om)
� Routers (router)
� Subroutines (sb)
� States (st)
� Timing Constraint (tc)
� Transitions (tr)
Rational Statemate 243

Query Functions
Activities (ac)
This section documents the query functions that return a list of activities.

Input List Type: ac

stm_r_ac_actor_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_actor_ac (stm_list
activities_list, int* status);

stm_r_ac_basic_ac Query: Basic activities

Purpose: Returns the activities in the input list that have
no descendants
Syntax:
stm_r_ac_basic_ac (stm_list in_list, int
*status);

stm_r_ac_boundary_box_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_boundary_box_ac (stm_list
activities_list, int* status);

stm_r_ac_by_attributes_ac Query: Activities by attributes

Purpose: Returns the activities in the input list that
match the specified attribute name and value
Syntax:
stm_r_ac_by_attributes_ac (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_ac_callback_binding_ac Query: Activities with callback bindings

Purpose: Returns the activities in the input list that have
callback bindings
Syntax:
stm_r_ac_callback_binding_ac (stm_list
in_list, int *status);
244 Data Port Reference Guide

Activities (ac)
stm_r_ac_component_instance_ac Query: Activities that are instances of components

Purpose: Returns the activities in the input list that have
instances of components
Syntax:
stm_r_ac_component_ac (stm_list in_list,
int *status);

stm_r_ac_continuous_instance_ac Query: Activities with continuous instances

Purpose: Returns the activities in the input list that have
continuous instances
Syntax:
stm_r_ac_continuous_instance_ac (stm_list
in_list, int *status);

stm_r_ac_control_ac Query: Control activities

Purpose: Returns the activities in the input list that are
control activities
Syntax:
stm_r_ac_control_ac (stm_list in_list,
int *status);

stm_r_ac_control_terminated_ac Query: Controlled-terminated activities

Purpose: Returns the activities in the input list that are
control-terminated activities
Syntax:
stm_r_ac_control_terminated_ac (stm_list
in_list, int *status);

stm_r_ac_data_store_ac Query: Data-stores

Purpose: Returns the activities in the input list that are
data-stores
Syntax:
stm_r_ac_data_store_ac (stm_list in_list,
int *status);

stm_r_ac_def_of_instance_ac Query: Definition activities of a given activity

Purpose: Returns the definition activities (top-level in
the definition chart) for instances in the input list
Syntax:
stm_r_ac_def_of_instance_ac (stm_list
in_list, int *status);

stm_r_ac_defined_environment_ac Query: Environment activities

Purpose: Returns the activities in the input list that were
defined as environment activities
Syntax:
stm_r_ac_defined_environment_ac (stm_list
in_list, int *status);
Rational Statemate 245

Query Functions
stm_r_ac_explicit_defined_ac Query: Activities explicitly defined

Purpose: Returns from the input list those activities that
were explicitly defined
Syntax:
stm_r_ac_explicit_defined_ac (stm_list
in_list, int *status);

stm_r_ac_ext_11_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_ext_11_ac (stm_list
activities_list, int* status);

stm_r_ac_external_ac Query: External activities

Purpose: Returns the activities in the input list that are
external
Syntax:
stm_r_ac_external_ac (stm_list in_list,
int *status);

stm_r_ac_external_router_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_external_router_ac (stm_list
activities_list, int* status);

stm_r_ac_generic_instance_ac Query: Generic instance activities

Purpose: Returns the activities in the input list that are
instances of generic charts
Syntax:
stm_r_ac_generic_instance_ac (stm_list
in_list, int *status);

stm_r_ac_imp_best_match_ac Query: Activities whose selected implementation is
Best Match
Purpose: Returns the activities in the input list that are
implemented as the Best Match using Select
Implementation in the properties
Syntax:
stm_r_ac_imp_best_match_ac (stm_list
in_list, int *status);
246 Data Port Reference Guide

Activities (ac)
stm_r_ac_imp_mini_spec_ac Query: Activities implemented in a mini-spec

Purpose: Returns the activities in the input list that are
implemented in a mini-spec
Syntax:
stm_r_ac_imp_mini_spec_ac (stm_list
in_list, int *status);

stm_r_ac_imp_none_ac Query: Activities whose selected implementation is
None
Purpose: Returns the activities in the input list that are
not implemented
Syntax:
stm_r_ac_imp_none_ac (stm_list in_list,
int *status);

stm_r_ac_imp_sb_bind_ac Query: Activities implemented with subroutine bindings

Purpose: Returns the activities in the input list that are
implemented as Subroutine Binding using Select
Implementation in the properties
Syntax:
stm_r_ac_imp_sb_bind_ac (stm_list
in_list, int *status);

stm_r_ac_imp_truth_table_ac Query: Activities implemented in a truth table

Purpose: Returns the activities in the input list that were
implemented in a truth table
Syntax:
stm_r_ac_imp_truth_table_ac (stm_list
in_list, int *status);

stm_r_ac_instance_ac Query: Instance activities

Purpose: Returns those activities in the input list that
are instances
Syntax:
stm_r_ac_instance_ac (stm_list in_list,
int *status);

stm_r_ac_instance_of_def_ac Query: Instance activities of a given definition activity

Purpose: Returns the instance activities for definition
activities (top-level activities in a definition chart) in the
input list
Syntax:
stm_r_ac_instance_of_def_ac (stm_list
in_list, int *status);
Rational Statemate 247

Query Functions
stm_r_ac_internal_ac Query: Internal activities

Purpose: Returns the activities in the input list that are
internal activities (not external or control)
Syntax:
stm_r_ac_internal_ac (stm_list in_list,
int *status);

stm_r_ac_is_occurrence_of_ac Query: Activity occurrences of a given activity

Purpose: Returns the activities for which the activities in
the input list appear in the Is activity field of their form

Syntax:
stm_r_ac_is_occurrence_of_ac (stm_list
in_list, int *status);

stm_r_ac_is_principal_of_ac Query: Principal activities of a given activity

Purpose: Returns the activities appearing in the Is
activity field of the activities in the input list
Syntax:
stm_r_ac_is_principal_of_ac (stm_list
in_list, int *status);

stm_r_ac_lifeline_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_lifeline_ac (stm_list
activities_list, int* status);

stm_r_ac_logical_desc_of_ac Query: Logical descendants of a given activity

Purpose: Returns the logical descendants of the
activities in the input list, taking into account the
translation of instances to their definition charts
Syntax:
stm_r_ac_logical_desc_of_ac (stm_list
in_list, int *status);

stm_r_ac_logical_parent_of_ac Query: Logical parent activities of a given activity

Purpose: Returns the logical parent activities of the
activities in the input list, taking into account the
translation of instances to their definition charts
Syntax:
stm_r_ac_logical_parent_of_ac (stm_list
in_list, int *status);
248 Data Port Reference Guide

Activities (ac)
stm_r_ac_logical_sub_of_ac Query: Logical subactivities of a given activity

Purpose: Returns the logical subactivities of the
activities in the input list, taking into account the
translation of instances to their definition charts
Syntax:
stm_r_ac_logical_sub_of_ac (stm_list
in_list, int *status);

stm_r_ac_mini_spec_ac Query: Activities having mini-specs

Purpose: Returns the activities in the input list that have
a mini-spec
Syntax:
stm_r_ac_mini_spec_ac (stm_list in_list,
int *status);

stm_r_ac_name_of_ac Query: Activities whose names match a given pattern

Purpose: Returns all the activities whose names match
a given pattern
Syntax:
stm_r_ac_name_of_ac (char* pattern, int
*status);

stm_r_ac_offpage_instance_ac Query: Offpage instance activities

Purpose: Returns the activities in the input list that are
instances of offpage charts
Syntax:
stm_r_ac_offpage_instance_ac (stm_list
in_list, int *status);

stm_r_ac_physical_desc_of_ac Query: Physical descendants of a given activity

Purpose: Returns the physical descendants (those
within the same chart) for the activities in the input list
Syntax:
stm_r_ac_physical_desc_of_ac (stm_list
in_list, int *status);

stm_r_ac_physical_parent_of_ac Query: Physical parent activities of a given activity

Purpose: Returns the physical parent activities (those
within the same chart) for the activities in the input list
Syntax:
stm_r_ac_physical_parent_of_ac (stm_list
in_list, int *status);

stm_r_ac_physical_sub_of_ac Query: Physical subactivities of a given activity

Purpose: Returns the physical subactivities (those
within the same chart) for the activities in the input list
Syntax:
stm_r_ac_physical_sub_of_ac (stm_list
in_list, int *status);
Rational Statemate 249

Query Functions
stm_r_ac_procedure_like_ac Query: Procedure-like activities

Purpose: Returns the activities in the input list that are
procedure-like activities
Syntax:
stm_r_ac_procedure_like_ac (stm_list
in_list, int *status);

stm_r_ac_resolved_to_ext_ac Query: Activities resolved to a given external activity

Purpose: Returns the activities (internal, external, or
environment) to which the external activities in the input
list are resolved
Syntax:
stm_r_ac_resolved_to_ext_ac (stm_list
in_list, int *status);

stm_r_ac_router_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_router_ac (stm_list
activities_list, int* status);

stm_r_ac_self_terminated_ac Query: Self-terminated activities

Purpose: Returns the activities in the input list that are
self-terminated
Syntax:
stm_r_ac_self_terminated_ac (stm_list
in_list, int *status);

stm_r_ac_subroutine_binding_ac Query: Activities with subroutine bindings

Purpose: Returns the activities in the input list that have
subroutine bindings (regardless of the implementation
setting in the properties)
Syntax:
stm_r_ac_subroutine_binding_ac (stm_list
in_list, int *status);

stm_r_ac_synonym_of_ac Query: Activities whose synonyms match a given
pattern
Purpose: Returns all the activities whose synonyms
match the specified pattern
Syntax:
stm_r_ac_synonym_of_ac (char* pattern,
int *status);
250 Data Port Reference Guide

Activities (ac)
Input List Type: af

stm_r_ac_unresolved_ac Query: Unresolved activities

Purpose: Returns the unresolved activities in the input
list
Syntax:
stm_r_ac_unresolved_ac (stm_list in_list,
int *status);

stm_r_ac_use_case_ac Query:
Purpose: Returns a list of activities from the input list
that are of the requested type
Syntax:
stm_r_ac_use_case_ac (stm_list
activities_list, int* status);

stm_r_ac_source_of_af Query: Activities that are sources for a given a-flow-line

Purpose: Returns the activities that are sources of a-
flow-lines in the input list
Syntax:
stm_r_ac_source_of_af (stm_list in_list,
int *status);

stm_r_ac_target_of_af Query: Activities that are targets of a given a-flow-line

Purpose: Returns the activities that are targets for a-flow-
lines in the input list
Syntax:
stm_r_ac_target_of_af (stm_list in_list,
int *status);
Rational Statemate 251

Query Functions
Input List Type: ch

stm_r_ac_def_or_unres_in_ch Query: Activities defined or unresolved in a given chart

Purpose: Returns activities that are explicitly defined or
unresolved in the charts of the input list
Syntax:
stm_r_ac_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_ac_defined_in_ch Query: Activities defined in a given chart

Purpose: Returns the activities that are explicitly defined
in the charts of the input list
Syntax:
stm_r_ac_defined_in_ch (stm_list in_list,
int *status);

stm_r_ac_described_by_ch Query: Control activities described by a given statechart

Purpose: Returns the control activities described by
statecharts in the input list
Syntax:
stm_r_ac_described_by_ch (stm_list
in_list, int *status);

stm_r_ac_instance_of_ch Query: Activities instance of a given chart

Purpose: Returns the instance activities defined by the
charts in the input list
Syntax:
stm_r_ac_instance_of_ch (stm_list in_list,
int *status);

stm_r_ac_root_in_ch Query: Root activities of a given chart

Purpose: Returns the internally defined activities (of type
diagram) attached to the charts in the input list
Syntax:
stm_r_ac_root_in_ch (stm_list in_list, int
*status);
252 Data Port Reference Guide

Activities (ac)
Input List Type: ds

Input List Type: md

stm_r_ac_top_level_in_ch Query: Top-level activities of a given chart

Purpose: Returns the top-level activities (not contained
in any box) of the charts in the input list
Syntax:
stm_r_ac_top_level_in_ch (stm_list
in_list, int *status);

stm_r_ac_unresolved_in_ch Query: Activities unresolved in a given chart

Purpose: Returns activities that are unresolved in the
charts of the input list
Syntax:
stm_r_ac_unresolved_in_ch (stm_list
in_list, int *status);

stm_r_ac_parent_of_ds Query: Parent activities of a given data-store

Purpose: Returns the activities that encapsulate the
specified data-stores from the input list
Syntax:
stm_r_ac_parent_of_ds (stm_list in_list,
int *status);

stm_r_ac_carried_out_by_md Query: Activities carried out by a given module.

Purpose: Returns the activities carried out by modules in
the input list. The module appears in the Implemented
by Module field of the activity’s form.

Syntax:
stm_r_ac_carried_out_by_md (stm_list
in_list, int *status);
Rational Statemate 253

Query Functions
Input List Type: mx

stm_r_ac_affecting_mx Query: Activities in which a given element is affected.

Purpose: Returns the activities that affect (modify,
generate, or activate) the elements (for example, events,
data-items, or activities) in the input list.
Syntax:
stm_r_ac_affecting_mx (stm_list in_list,
int *status);

stm_r_ac_meaningly_affecting_mx Query: Activities in which a given element is affected.
Purpose: Identical to stm_r_ac_affecting_mx, but when
the input list includes an ID of a record/union,
stm_r_ac_meaningly_affecting_mx will also return
elements that affect a field of the record/union, and not
necessarily the whole record/union element.
Syntax:
stm_r_ac_meaningly_affecting_mx (stm_list
in_list, int *status);

stm_r_ac_meaningly_using_mx Query: Activities in which a given element is used.

Purpose: Identical to stm_r_ac_using_mx, but when the
input list includes an ID of a record/union,
stm_r_ac_meaningly_using_mx will also return elements
that use a field of the record/union, and not necessarily
the whole record/union element.
Syntax:
stm_r_ac_meaningly_using_mx (stm_list
in_list, int *status);

stm_r_ac_using_mx Query: Activities in which a given element is used.

Purpose: Returns the activities that use (evaluate) the
elements (basic events, conditions, data-items, states,
and activities) in the input list.
Syntax:
stm_r_ac_using_mx (stm_list in_list, int
*status);
254 Data Port Reference Guide

Activities (ac)
Input List Type: router

Input List Type: st

stm_r_ac_parent_of_router Query: Parent activities of a given router

Purpose: Returns the activities that encapsulate the
specified routers from the input list
Syntax:
stm_r_ac_parent_of_router (stm_list
in_list, int *status);

stm_r_ac_throughout_st Query: Activities performed throughout a given state

Purpose: Returns the activities performed throughout
states in the input list (as defined in the Activities
Within/Throughout field of the state’s form)
Syntax:
stm_r_ac_throughout_st (stm_list in_list,
int *status);

stm_r_ac_within_st Query: Activities performed within a given state

Purpose: Returns the activities performed within states
in the input list (as defined in the Activities Within/
Throughout field of the state’s form)
Syntax:
stm_r_ac_within_st (stm_list in_list, int
*status);
Rational Statemate 255

Query Functions
Input List Type: uc

stm_r_ac_associates_uc Query: Activities performed throughout a given state

Purpose: Returns the activities that associate with use-
cases in the input list.
Syntax:
stm_r_ac_associates_uc (stm_list in_list,
int *status);

stm_r_uc_associates_ac Query: Activities performed throughout a given state

Purpose: Returns the use cases that associate with
activities in the input list.
Syntax:
stm_r_uc_associates_ac (stm_list in_list,
int *status);

stm_r_uc_explicit_defined_uc Query:
Purpose: Extracts a list of elements from the input list
that are explictly defined elements of the requested type
Syntax:
stm_r_bb_explicit_defined_uc (stm_list
bb_list, int *status);

stm_r_ouc_of_uc Query:
Purpose: Retrieve ids of all occurrences of use-cases in
the input list
Syntax:
stm_r_ouc_of_uc(stm_list in_list,int
*status);
256 Data Port Reference Guide

A-Flow-Lines (af, ba, laf)
A-Flow-Lines (af, ba, laf)
This section lists the query functions that return a list of a-flow-lines.

Two abbreviations are used in these functions:

� af—Global (compound) a-flow-lines
� ba—Basic a-flow-lines
� laf—Local a-flow-lines

Output List Type: af

Input List Type: ac

stm_r_af_from_source_ac Query: A-flow-lines whose source is a given activity

Purpose: Returns global compound a-flow-lines that
originate at activities in the input list
Syntax:
stm_r_af_from_source_ac (stm_list
in_list, int *status);

stm_r_af_input_to_ac Query: A-flow-lines input to a given activity within chart

Purpose: Returns all local compound a-flow-lines that
originate outside and terminate at (or inside) activities in
the input list
Syntax:
stm_r_af_input_to_ac (stm_list in_list,
int *status);

stm_r_af_output_from_ac Query: A-flow-lines output from a given activity

Purpose: Returns all global compound a-flow-lines that
originate at (or inside) and terminate outside activities in
the input list
Syntax:
stm_r_af_output_from_ac (stm_list
in_list, int *status);

stm_r_af_to_target_ac Query: A-flow-lines whose target is a given activity

Purpose: Returns global a-flow-lines that terminate at
activities in the input list
Syntax:
stm_r_af_to_target_ac (stm_list in_list,
int *status);
Rational Statemate 257

Query Functions
Input List Type: co

Input List Type: di

stm_r_af_within_flows_co Query: A-flow-lines through which a given condition
flows
Purpose: Returns the a-flow-lines through which
conditions in the input list actually flow
Syntax:
stm_r_af_within_flows_co (stm_list
in_list, int *status);

stm_r_af_within_labels_co Query: A-flow-lines labeled with a given condition

Purpose: Returns the a-flow-lines labeled with
conditions in the input list
Syntax:
stm_r_af_within_labels_co (stm_list
in_list, int *status);

stm_r_af_within_flows_di Query: A-flow-lines through which a given data-item
flows
Purpose: Returns the a-flow-lines through which data-
items in the input list actually flow
Syntax:
stm_r_af_within_flows_di (stm_list
in_list, int *status);

stm_r_af_within_labels_di Query: A-flow-lines labeled by a given data-item

Purpose: Returns the a-flow-lines labeled with data-
items in the input list
Syntax:
stm_r_af_within_labels_di (stm_list
in_list, int *status);
258 Data Port Reference Guide

A-Flow-Lines (af, ba, laf)
Input List Type: ds

Input List Type: ev

stm_r_af_from_source_ds Query: A-flow-lines whose source is a given data-store

Purpose: Returns global compound a-flow-lines that
originate at data-stores in the input list
Syntax:
stm_r_af_from_source_ds (stm_list
in_list, int *status);

stm_r_af_to_target_ds Query: A-flow-lines whose target is a given data-store

Purpose: Returns global compound a-flow-lines that
terminate at data-stores in the input list
Syntax:
stm_r_af_to_target_ds (stm_list in_list,
int *status);

stm_r_af_within_flows_ev Query: A-flow-lines through which a given event flows

Purpose: Returns the a-flow-lines through which events
in the input list actually flow
Syntax:
stm_r_af_within_flows_ev (stm_list
in_list, int *status);

stm_r_af_within_labels_ev Query: A-flow-lines through which a given event flows

Purpose: Returns the a-flow-lines labeled with events in
the input list
Syntax:
stm_r_af_within_labels_ev (stm_list
in_list, int *status);
Rational Statemate 259

Query Functions
Input List Type: if

Input List Type: laf

stm_r_af_within_flows_if Query: A-flow-lines through which a given information-
flow flows
Purpose: Returns the a-flow-lines through which
information-flows in the input list actually flow
Syntax:
stm_r_af_within_flows_if (stm_list
in_list, int *status);

stm_r_af_within_labels_if Query: A-flow-lines labeled with a given information-
flow
Purpose: Returns the a-flow-lines labeled with
information-flows in the input list
Syntax:
stm_r_af_within_labels_if (stm_list
in_list, int *status);

stm_r_af_containing_laf Query: None

Purpose: Returns the global a-flow-lines (which might
spread over several charts) that contain the local a-flow-
lines (those within charts) in the input list
Syntax:
stm_r_af_containing_laf (stm_list l, int
*status);
260 Data Port Reference Guide

A-Flow-Lines (af, ba, laf)
Input List Type: mx

Input List Type: router

stm_r_af_from_source_mx Query: A-flow-lines whose source is a given element

Purpose: Returns global compound a-flow-lines whose
source is an element from the input list
Syntax:
stm_r_af_from_source_mx (stm_list in_list,
int *status);

stm_r_af_to_target_mx Query: A-flow-lines whose target is given element

Purpose: Returns global compound a-flow-lines whose
target is an element from the input list
Syntax:
stm_r_af_to_target_mx (stm_list in_list,
int *status);

stm_r_af_within_flows_mx Query: A-flow-lines through which a given element flows

Purpose: Returns the a-flow-lines through which
elements in the input list actually flow
Syntax:
stm_r_af_within_flows_mx (stm_list
in_list, int *status);

stm_r_af_within_labels_mx Query: A-flow-lines labeled by a given element

Purpose: Returns the a-flow-lines labeled with elements
in the input list
Syntax:
stm_r_af_within_labels_mx (stm_list
in_list, int *status);

stm_r_af_from_source_router Query: A-flow-lines whose source is a given router

Purpose: Returns global compound a-flow-lines whose
source is a router from the input list
Syntax:
stm_r_af_from_source_ router (stm_list
in_list, int *status);

stm_r_af_to_target_router Query: A-flow-lines whose target is given router

Purpose: Returns global compound a-flow-lines whose
target is a router from the input list
Syntax:
stm_r_af_to_target_router (stm_list
in_list, int *status);
Rational Statemate 261

Query Functions
Output List Type: ba

Input List Type: af

Output List Type: ba

Input List Type: ch

Output List Type: bt

Input List Type: ch

stm_r_ba_contained_in_af Query: None

Purpose: Returns the basic a-flow-lines that contain the
a-flow-lines in the input list
Syntax:
stm_r_ba_contained_in_af (stm_list l, int
*status);

stm_r_ba_defined_in_ch Query: None

Purpose: Returns the a-flow-lines defined in the input list
of charts
Syntax:
stm_r_ba_defined_in_ch (stm stm_list
in_list, int *status);

stm_r_bt_defined_in_ch Query: None

Purpose: Returns the basic transitions defined in the
input list of charts
Syntax:
stm_r_bt_defined_in_ch (stm stm_list
in_list, int *status);
262 Data Port Reference Guide

A-Flow-Lines (af, ba, laf)
Output List Type: laf

Input List Type: ac

Input List Type: af

stm_r_laf_from_source_ac Query: A-flow-lines whose source is a given activity

Purpose: Returns local compound a-flow-lines that
originate at activities in the input list
Syntax:
stm_r_laf_from_source_ac (stm_list
in_list, int *status);

stm_r_laf_input_to_ac Query: A-flow-lines input to a given activity

Purpose: Returns all the local a-flow-lines

Syntax:
stm_r_laf_input_to_ac (stm_list in_list,
int *status);

stm_r_laf_output_from_ac Query: A-flow-lines output from a given activity within
chart
Purpose: Returns all local compound a-flow-lines that
originate at (or inside) and terminate outside activities in
the input list
Syntax:
stm_r_laf_output_from_ac (stm_list
in_list, int *status);

stm_r_laf_to_target_ac Query: A-flow-lines whose target is a given activity
within chart
Purpose: Returns local a-flow-lines (those within charts)
that terminate at activities in the input list
Syntax:
stm_r_laf_to_target_ac (stm_list in_list,
int *status);

stm_r_laf_contained_in_af Query: None

Purpose: Returns the local a-flow-lines that contain the
global a-flow-lines in the input list
Syntax:
stm_r_laf_contained_in_af (stm_list l, int
*status);
Rational Statemate 263

Query Functions
Input List Type: ds

Input List Type: mx

stm_r_laf_from_source_ds Query: A-flow-lines whose source is a given data-store
within chart
Purpose: Returns local compound a-flow-lines that
originate at data-stores in the input list
Syntax:
stm_r_laf_from_source_ds (stm_list
in_list, int *status);

stm_r_laf_to_target_ds Query: A-flow-lines whose target is a given data-store
within chart
Purpose: Returns local compound a-flow-lines that
terminate at data-stores in the input list
Syntax:
stm_r_laf_to_target_ds (stm_list in_list,
int *status);

stm_r_laf_from_source_mx Query: A-flow-lines whose source is a given element
within chart
Purpose: Returns local compound a-flow-lines whose
source is an element from the input list
Syntax:
stm_r_laf_from_source_mx (stm_list in_list,
int *status);

stm_r_laf_to_target_mx Query: A-flow-lines whose target is given element within
chart
Purpose: Returns local compound a-flow-lines whose
target is an element from the input list
Syntax:
stm_r_laf_to_target_mx (stm_list in_list,
int *status);
264 Data Port Reference Guide

A-Flow-Lines (af, ba, laf)
Input List Type: router

stm_r_laf_from_source_router Query: A-flow-lines whose source is a given router within
chart
Purpose: Returns local compound a-flow-lines whose
source is a router from the input list
Syntax:
stm_r_laf_from_source_ router (stm_list
in_list, int *status);

stm_r_laf_to_target_router Query: A-flow-lines whose target is given router within
chart
Purpose: Returns local compound a-flow-lines whose
target is a router from the input list
Syntax:
stm_r_laf_to_target_router (stm_list
in_list, int *status);
Rational Statemate 265

Query Functions
Actions (an)
This section documents the query functions that return a list of actions.

Input List Type: an

stm_r_an_by_attributes_an Query: Actions by attribute

Purpose: Returns the actions in the input list that match
a given attribute and value
Syntax: stm_r_an_by_attributes_an
(stm_list in_list, char* attr_name, char*
attr_value, int *status);

stm_r_an_explicit_defined_an Query: Actions explicitly defined

Purpose: Returns the actions of the input list that were
explicitly defined
Syntax:
stm_r_an_explicit_defined_an (stm_list
in_list, int *status);

stm_r_an_imp_best_match_an Query: Actions whose selected implementation is Best
Match
Purpose: Returns the actions in the input list
implemented as the Best Match using Select
Implementation in the properties
Syntax:
stm_r_an_imp_best_match_an (stm_list
in_list, int *status);

stm_r_an_imp_definition_an Query: Actions with a defined implementation

Purpose: Returns the actions in the input list that have a
defined implementation in the properties
Syntax:
stm_r_an_imp_definition_an (stm_list
in_list, int *status);

stm_r_an_imp_none_an Query: Actions whose selected implementation is None
Purpose: Returns the actions in the input list that are not
implemented using Select Implementation
Syntax:
stm_r_an_imp_none_an (stm_list in_list,
int *status);
266 Data Port Reference Guide

Actions (an)
stm_r_an_imp_truth_table_an Query: Actions implemented in a truth table

Purpose: Returns the actions in the input list that are
implemented with a truth table in the properties
Syntax:
stm_r_an_imp_truth_table_ an (stm_list
in_list, int *status);

stm_r_an_name_of_an Query: Actions whose names match a given pattern

Purpose: Returns all the actions whose names match a
specified pattern
Syntax:
stm_r_an_name_of_an (char* pattern, int
*status);

stm_r_an_synonym_of_an Query: Actions whose synonyms match a given pattern

Purpose: Returns all the actions whose synonyms
match a specified pattern
Syntax:
stm_r_an_synonym_of_an (char* pattern, int
*status);

stm_r_an_unresolved_an Query: Unresolved actions

Purpose: Returns the unresolved actions in the input list

Syntax:
stm_r_an_unresolved_an (stm_list in_list,
int *status);
Rational Statemate 267

Query Functions
Input List Type: ch

stm_r_an_def_or_unres_in_ch Query: Actions defined or unresolved in a given chart

Purpose: Returns the actions that are explicitly defined
or unresolved in the charts of the input list
Syntax:
stm_r_an_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_an_defined_in_ch Query: Actions defined in a given chart

Purpose: Returns the actions that are explicitly defined
in the charts of the input list
Syntax:
stm_r_an_defined_in_ch (stm_list in_list,
int *status);

stm_r_an_unresolved_in_ch Query: Actions unresolved in a given chart

Purpose: Returns the actions that are unresolved in the
charts of the input list
Syntax:
stm_r_an_unresolved_in_ch (stm_list
in_list, int *status);
268 Data Port Reference Guide

Actors (actor)
Actors (actor)
This section documents the query function that returns a list of actors.

Input List Type: actor

Input List Type: ch

stm_r_actor_explicit_defined_actor Query:
Purpose: Extracts a list of elements from the input list
that are explictly defined elements of the requested type
Syntax:
stm_r_actor_explicit_defined_actor
(stm_list actor_list, int *status);

stm_r_oactor_of_actor Query:
Purpose: Retrieve ids of all occurrences of actors in the
input list
Syntax:
stm_r_oactor_of_actor(stm_list in_list,int
*status);

stm_r_actor_defined_in_ch Query: Actors of a given chart

Purpose: Returns the actors of the charts in the input list

Syntax:
stm_r_actor_defined_in_ch (stm_list
in_list, int *status);
Rational Statemate 269

Query Functions
Basic relation(br)
This section documents the query functions that return a list of basic relations.

Input List Type: ch

Input List Type: actor

stm_r_br_defined_in_ch Query: Basic relations of a given chart

Purpose: Retrieve ids of all relations defined in the input
list charts
Syntax:
stm_r_br_defined_in_ch(stm_list in_list,
int *status)

stm_r_br_enter_actor Query: Basic relations entering actors

Purpose: Retrieve ids of all relations entering the actors
in the input list
Syntax:
stm_r_br_enter_actor(stm_list in_list,int
*status)

stm_r_br_exit_from_actor Query: Basic relations exiting actors

Purpose: Retrieve ids of all relations exiting the actors in
the input list
Syntax:
stm_r_br_exit_from_actor(stm_list
in_list,int *status)
270 Data Port Reference Guide

Basic relation(br)
Input List Type: uc

stm_r_br_enter_uc Query: Basic relations entering use-cases

Purpose: Retrieve ids of all relations entering the use-
cases in the input list
Syntax:
stm_r_br_enter_uc(stm_list in_list,int
*status)

stm_r_br_exit_from_uc Query: Basic relations exiting use-cases

Purpose: Retrieve ids of all relations exiting the use-
cases in the input list
Syntax:
stm_r_br_exit_from_uc(stm_list in_list,int
*status)
Rational Statemate 271

Query Functions
Boundary Boxes (bb)
This section documents the query function that returns a list of boundary boxes.

Output List Type: bb

Output List Type: ch

Combinational Assignments (ca)
This section documents the query function that returns a list of combinational assignments.

Output List Type: mx

stm_r_bb_explicit_defined_bb Query:
Purpose: Extracts a list of elements from the input list
that are explictly defined elements of the requested type
Syntax:
stm_r_bb_explicit_defined_bb (stm_list
bb_list, int *status);

stm_r_bb_defined_in_ch Query: Boundary boxes of a given chart

Purpose: Returns the boundary boxes of the charts in
the input list
Syntax:
stm_r_bb_defined_in_ch (stm_list in_list,
int *status);

stm_r_ca_contained_in_mx Syntax:
stm_r_ca_contained_in_mx (stm_list mx_l,
int *status);
272 Data Port Reference Guide

Charts (ch)
Charts (ch)
This section documents the query functions that return a list of charts.

Input List Type: ac

Input List Type: an

stm_r_ch_define_ac Query: Charts in which a given activity is defined

Purpose: Returns the charts in which the activities in the
input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_ac (stm_list in_list, int
*status);

stm_r_ch_defining_ac Query: Activity-charts defining a given activity

Purpose: Returns the activity-charts that define the
instance activities in the input list
Syntax:
stm_r_ch_defining_ac (stm_list in_list,
int *status);

stm_r_ch_defining_cd_inst_ac Query:
Purpose:
Syntax:
stm_r_ch_defining_cd_inst_ac (stm_list
in_list, int *status);

stm_r_ch_describing_ac Query: Statecharts / Flowchars describing a given
control activity
Purpose: Returns the statecharts / Flowchars that
describe the control activities in the input list
Syntax:
stm_r_ch_describing_ac (stm_list in_list,
int *status);

stm_r_ch_define_an Query: Charts in which a given action is defined

Purpose: Returns the charts in which the actions in the
input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_an (stm_list in_list, int
*status);
Rational Statemate 273

Query Functions
Input List Type: ch

stm_r_ch_activitychart_ch Query: Activity-charts

Purpose: Returns the activity-charts in the input list

Syntax:
stm_r_ch_activitychart_ch (stm_list
in_list, int *status);

stm_r_ch_ancestors_of_ch Query: Ancestors of a given chart

Purpose: Returns the ancestors (in the static structure)
of the charts in the input list
Syntax:
stm_r_ch_ancestors_of_ch (stm_list
in_list, int *status);

stm_r_ch_by_attributes_ch Query: Chart by attribute

Purpose: Returns the charts in the input list that match
the specified attribute name and value
Syntax:
stm_r_ch_by_attributes_ch (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_ch_descendants_of_ch Query: Descendants of a given chart

Purpose: Returns the descendants (in the static
structure) of the charts in the input list
Syntax:
stm_r_ch_descendants_of_ch (stm_list
in_list, int *status);

stm_r_ch_dictionary_ch Query: Global definition sets (GDSs)

Purpose: Returns the GDSs in the input list

Syntax:
stm_r_ch_dictionary_ch (stm_list in_list,
int *status);

stm_r_ch_explicit_defined_ch Query: Charts explicitly defined

Purpose: Returns the charts of the input list that were
explicitly defined
Syntax:
stm_r_ch_explicit_defined_ch (stm_list
in_list, int *status);
274 Data Port Reference Guide

Charts (ch)
stm_r_ch_flowchart_ch Query:
Purpose:
Syntax:
stm_r_ch_flowchart_ch (stm_list in_list,
int *status);

stm_r_ch_generic_ch Query: Generic charts

Purpose: Returns the generic charts in the input list

Syntax:
stm_r_ch_generic_ch (stm_list in_list, int
*status);

stm_r_ch_modulechart_ch Query: Module-charts

Purpose: Returns the charts in the input list that are
module-charts
Syntax:
stm_r_ch_modulechart_ch (stm_list in_list,
int *status);

stm_r_ch_name_of_ch Query: Charts whose names match a given pattern

Purpose: Returns all the charts whose names match the
specified pattern
Syntax:
stm_r_ch_name_of_ch (char* pattern, int
*status);

stm_r_ch_offpage_ch Query: Offpage charts

Purpose: Returns the offpage charts in the input list

Syntax:
stm_r_ch_offpage_ch (stm_list in_list, int
*status);

stm_r_ch_parent_ch Query: Returns the parent charts of a given chart

Purpose: Returns the parents (in the static structure) of
the charts in the input list
Syntax:
stm_r_ch_parent_ch (stm_list in_list, int
*status);

stm_r_ch_procedural_sch_ch Query: Procedural statecharts

Purpose: Returns the charts in the input list that are
procedural statecharts
Syntax:
stm_r_ch_procedural_sch_ch (stm_list
in_list, int *status);
Rational Statemate 275

Query Functions
stm_r_ch_referenced_all_by_ch Query: Charts referenced in all levels by a given chart

Purpose: Returns all charts referenced (instantiated) by
all levels of charts in the input list
Syntax:
stm_r_ch_referenced_all_by_ch (stm_list
in_list, int *status);

stm_r_ch_referenced_by_ch Query: Charts referenced by a given chart

Purpose: Returns all charts referenced (instantiated) by
the charts in the input list
Syntax:
stm_r_ch_referenced_by_ch (stm_list
in_list, int *status);

stm_r_ch_root_ch Query: Root charts

Purpose: Returns the root-level charts (that have no
parent) in the input list
Syntax:
stm_r_ch_root_ch (stm_list in_list, int
*status);

stm_r_ch_seq_diag_ch Query:
Purpose:
Syntax:
stm_r_ch_seq_diag_ch (stm_list in_list,
int *status);

stm_r_ch_statechart_ch Query: Statecharts

Purpose: Returns the charts in the input list that are
statecharts
Syntax:
stm_r_ch_statechart_ch (stm_list in_list,
int *status);

stm_r_ch_subchart_ch Query: Subchart of the specified chart

Purpose: Returns the subcharts (in the static structure)
of the charts in the input list
Syntax:
stm_r_ch_subchart_ch (stm_list in_list,
int *status);

stm_r_ch_unresolved_ch Query: Unresolved charts

Purpose: Returns the unresolved charts (used but not
defined) in the input list
Syntax:
stm_r_ch_unresolved_ch (stm_list in_list,
int *status);
276 Data Port Reference Guide

Charts (ch)
Input List Type: co

Input List Type: di

Input List Type: ds

stm_r_ch_use_case_ch Query:
Purpose:
Syntax:
stm_r_ch_use_case_ch (stm_list in_list,
int *status);

stm_r_ch_with_notes_ch Query:
Purpose:
Syntax:
stm_r_ch_with_notes_ch (stm_list in_list,
int *status);

stm_r_ch_define_co Query: Charts in which a given condition is defined

Purpose: Returns the charts in which the conditions in
the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_co (stm_list in_list, int
*status);

stm_r_ch_define_di Query: Charts in which a given data-item is defined

Purpose: Returns the charts in which the data-items in
the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_di (stm_list in_list, int
*status);

stm_r_ch_define_ds Query: Charts in which a given data-store is defined

Purpose: Returns the charts in which the data-stores in
the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_ds (stm_list in_list, int
*status);
Rational Statemate 277

Query Functions
Input List Type: dt

Input List Type: ev

Input List Type: fd

stm_r_ch_define_dt Query: Charts and GDSs in which a given user-defined
type is defined
Purpose: Returns the charts in which the user-defined
types in the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_dt (stm_list in_list, int
*status);

stm_r_ch_define_ev Query: Charts in which a given event is defined

Purpose: Returns the charts in which the events in the
input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_ev (stm_list in_list, int
*status));

stm_r_ch_define_fd Query: Charts and GDSs in which a given field is defined

Purpose: Returns the charts in which the fields in the
input list are defined (in a structured data-item or user-
defined type)
Syntax:
stm_r_ch_define_fd (stm_list in_list, int
*status);
278 Data Port Reference Guide

Charts (ch)
Input List Type: if

Input List Type: md

stm_r_ch_define_if Query: Charts in which a given information-flow is
defined
Purpose: Returns the charts in which the information-
flows in the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_if (stm_list in_list, int
*status);

stm_r_ch_define_md Query: Charts in which a given module is defined

Purpose: Returns charts in which the modules in the input
list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_md (stm_list in_list, int
*status);

stm_r_ch_defining_md Query: Module-charts defining a given module

Purpose: Returns the module-charts that define the
instance modules in the input list
Syntax:
stm_r_ch_defining_md (stm_list in_list, int
*status);

stm_r_ch_describing_md Query: Activity-charts describing a given module

Purpose: Returns the activity-charts that describe the
modules in the input list
Syntax:
stm_r_ch_describing_md (stm_list in_list,
int *status);
Rational Statemate 279

Query Functions
Input List Type: mx

Input List Type: nt

Input List Type: router

stm_r_ch_define_mx Query: Charts in which a given element is defined

Purpose: Returns the charts in which the elements in
the input list are explicitly defined
Syntax:
stm_r_ch_define_mx (stm_list in_list, int
*status);

stm_r_ch_defining_mx Query: Charts defining a given element

Purpose: Returns the charts that define the elements in
the input list
Syntax:
stm_r_ch_defining_mx (stm_list in_list,
int *status);

stm_r_ch_describing_mx Query: Statecharts / Flowchars describing a given
control activity
Purpose: Returns the charts that describe the elements
in the input list
Syntax:
stm_r_ch_describing_mx (stm_list in_list,
int *status);

stm_r_ch_with_nt Query: Charts in which a given note is defined

Purpose: Returns the charts in which the notes in the
input list are defined
Syntax:
stm_r_ch_with_nt (stm_list in_list, int
*status);

stm_r_ch_define_router Query: Charts in which a given router is defined

Purpose: Returns the charts in which the routers in the
input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_router (stm_list in_list,
int *status);
280 Data Port Reference Guide

Charts (ch)
Input List Type: sb

Input List Type: st

stm_r_ch_connected_to_sb Query: Charts connected to a given subroutine

Purpose: Returns the procedural Statecharts that are
connected to the subroutines in the input list
Syntax:
stm_r_ch_connected_to_sb (stm_list
in_list, int *status);

stm_r_sch_connected_to_sb Query: Statecharts connected to a given subroutine

Purpose: Returns the procedural Statecharts that are
connected to the subroutines in the input list
Syntax:
stm_r_sch_connected_to_sb (stm_list
in_list, int *status);

stm_r_fch_connected_to_sb Query: Flowcharts connected to a given subroutine

Purpose: Returns the Flowcharts that are connected to
the subroutines in the input list
Syntax:
stm_r_fch_connected_to_sb (stm_list
in_list, int *status);

stm_r_ch_define_sb Query: Charts in which a given subroutine is defined

Purpose: Returns the charts in which the subroutines in
the input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_sb (stm_list in_list, int
*status);

stm_r_ch_define_st Query: Charts in which a given state is defined

Purpose: Returns the charts in which the states in the
input list are explicitly defined or unresolved
Syntax:
stm_r_ch_define_st (stm_list in_list, int *status);

stm_r_ch_defining_st Query: Statecharts defining a given state

Purpose: Returns the statecharts that define the
instance states in the input list
Syntax:
stm_r_ch_defining_st (stm_list in_list, int *status);
Rational Statemate 281

Query Functions
Connectors (cn)
This section documents the queries that return a list of connectors.

Input List Type: ba

Input List Type: bm

stm_r_cn_source_of_ba Query: History connectors sources of a given transition

Purpose: Returns the connectors that are sources of
basic a-flow-lines in the input list
Syntax:
stm_r_cn_source_of_ba (stm_list in_list,
int *status);

stm_r_cn_target_of_ba Query: Termination or history connectors targets of a
given transition
Purpose: Returns the connectors that are targets of
basic a-flow-lines in the input list
Syntax:
stm_r_cn_target_of_ba (stm_list in_list,
int *status);

stm_r_cn_source_of_bm Query: History connectors sources of a given transition

Purpose: Returns the connectors that are sources of
basic m-flow-lines in the input list
Syntax:
stm_r_cn_source_of_bm (stm_list in_list,
int *status);

stm_r_cn_target_of_bm Query: Termination or history connectors targets of a
given transition
Purpose: Returns the connectors that are targets of
basic m-flow-lines in the input list
Syntax:
stm_r_cn_target_of_bm (stm_list in_list,
int *status);
282 Data Port Reference Guide

Connectors (cn)
Input List Type: bt

Input List Type: cn

stm_r_cn_source_of_bt Query: History connectors sources of a given transition

Purpose: Returns the connectors that are sources of
basic transitions in the input list
Syntax:
stm_r_cn_source_of_bt (stm_list in_list,
int *status);

stm_r_cn_target_of_bt Query: Termination or history connectors targets of a
given transition
Purpose: Returns the connectors that are targets of
basic transitions in the input list
Syntax:
stm_r_cn_target_of_bt (stm_list in_list,
int *status);

stm_r_cn_deep_history_cn Query: Deep history connectors

Purpose: Returns all the deep history connectors in the
input list
Syntax:
stm_r_cn_deep_history_cn (stm_list
in_list, int *status);

stm_r_cn_history_cn Query: History connectors

Purpose: Returns all the history connectors in the input
list
Syntax:
stm_r_cn_history_cn (stm_list in_list,
int *status);

stm_r_cn_termination_cn Query: Termination connectors

Purpose: Returns all the history connectors in the input
list
Syntax:
stm_r_cn_termination_cn (stm_list
in_list, int *status);
Rational Statemate 283

Query Functions
Input List Type: st

Input List Type: tr

• stm_r_cn_history_or_term_in_st Query: Termination or history connectors in a given state

Purpose: Returns the termination and history connectors
contained in the states in the input list
Syntax:
stm_r_cn_history_or_term_in_st (stm_list
in_list, int *status);

• stm_r_cn_in_st Query: Connectors in a given state

Purpose: Returns the connectors contained in the states
in the input list
Syntax:
stm_r_cn_in_st (stm_list in_list, int
*status);

stm_r_cn_source_of_tr Query: History connectors sources of a given transition

Purpose: Returns the history connectors that are
sources of transitions in the input list
Syntax:
stm_r_cn_source_of_tr (stm_list in_list,
int *status);

stm_r_cn_target_of_tr Query: Termination or history connectors targets of a
given transition
Purpose: Returns the termination and history connectors
that are targets of transitions in the input list
Syntax:
stm_r_cn_target_of_tr (stm_list in_list,
int *status);
284 Data Port Reference Guide

Conditions (co)
Conditions (co)
This section documents the query functions that return a list of conditions.

Input List Type: af

stm_r_co_flowing_through_af Query: Conditions flowing through a given a-flow-line

Purpose: Returns the conditions actually flowing
through a-flow-lines in the input list
Syntax:
stm_r_co_flowing_through_af (stm_list
in_list, int *status);

stm_r_co_labeling_af Query: Conditions labeling a given a-flow-line

Purpose: Returns the conditions which label the a-flow-
lines in the input list
Syntax:
stm_r_co_labeling_af (stm_list in_list,
int *status);
Rational Statemate 285

Query Functions
Input List Type: ch

stm_r_co_def_or_unres_in_ch Query: Conditions defined or unresolved in a given
chart
Purpose: Returns conditions that are explicitly defined
or unresolved in the charts of the input list
Syntax:
stm_r_co_def_or_unres_in_ch (stm_list
in_list, int *status);

stm_r_co_defined_in_ch Query: Conditions defined in a given chart

Purpose: Returns the conditions that are explicitly
defined in the charts of the input list
Syntax:
stm_r_co_defined_in_ch (stm_list in_list,
int *status);

stm_r_co_unresolved_in_ch Query: Conditions unresolved in a given chart

Purpose: Returns conditions that are unresolved in the
charts of the input list
Syntax:
stm_r_co_unresolved_in_ch (stm_list
in_list, int *status);
286 Data Port Reference Guide

Conditions (co)
Input List Type: co

stm_r_co_array_co Query: Conditions by subtype

Purpose: Returns the conditions in the input list that are
defined as array
Syntax:
stm_r_co_array_co (stm_list in_list, int
*status);

stm_r_co_by_attributes_co Query: Conditions by attributes

Purpose: Returns the conditions in the input list that
match the specified attribute name and value
Syntax: stm_r_co_by_attributes_co
(stm_list in_list, char* attr_name, char*
attr_value, int *status);

stm_r_co_by_structure_type_co Query: None

Purpose: Returns the conditions in the input list that
have the specified structure type (for example, single or
array)
Syntax:
stm_r_co_by_structure_type_co (stm_list
in_list, char structure_type, int
*status);

stm_r_co_callback_binding_co Query: Conditions with callback bindings

Purpose: Returns the conditions of the input list that
have callback bindings
Syntax:
stm_r_co_callback_binding_co (stm_list
in_list, int *status);

stm_r_co_explicit_defined_co Query: Conditions explicitly defined

Purpose: Returns the conditions of the input list that
were explicitly defined
Syntax:
stm_r_co_explicit_defined_co (stm_list
in_list, int *status);

stm_r_co_name_of_co Query: Conditions whose names match a given pattern

Purpose: Returns all the conditions whose names
match the specified pattern
Syntax:
stm_r_co_name_of_co (char* pattern, int
*status);
Rational Statemate 287

Query Functions
Input List Type: di

Input List Type: if

stm_r_co_single_co Query: Conditions by subtype

Purpose: Returns the conditions in the input list that are
defined as single
Syntax:
stm_r_co_single_co (stm_list in_list, int
*status);

stm_r_co_synonym_of_co Query: Conditions whose synonyms match a given
pattern
Purpose: Returns all the conditions whose synonyms
match the specified pattern
Syntax:
stm_r_co_synonym_of_co (char* pattern,
int *status);

stm_r_co_unresolved_co Query: Unresolved conditions

Purpose: Returns the unresolved conditions in the input
list
Syntax:
stm_r_co_unresolved_co (stm_list in_list,
int *status);

stm_r_co_contained_in_di Query: Conditions contained in a given data-item

Purpose: Returns the conditions contained in data-
items from the input list (conditions appearing in the
Consists of field of a data-item)

Syntax:
stm_r_co_contained_in_di (stm_list
in_list, int *status);

stm_r_co_contained_in_if Query: Conditions contained in a given information-flow

Purpose: Returns the conditions contained in
information-flows from the input list (conditions appearing
in the Consists of field of an information-flow)

Syntax:
stm_r_co_contained_in_if (stm_list
in_list, int *status);
288 Data Port Reference Guide

Conditions (co)
Input List Type: mf

stm_r_co_flowing_through_mf Query: Conditions flowing through a given m-flow-line

Purpose: Returns the conditions actually flowing
through m-flow-lines in the input list
Syntax:
stm_r_co_flowing_through_mf (stm_list
in_list, int *status);

stm_r_co_labeling_mf Query: Conditions labeling a given m-flow-line

Purpose: Returns the conditions that label the m-flow-
lines in the input list
Syntax:
stm_r_co_labeling_mf (stm_list in_list,
int *status);
Rational Statemate 289

Query Functions
Data-Items (di)
This section documents the query functions that return a list of data-items.

Input List Type: af

stm_r_di_flowing_through_af Query: Data-items flowing through a given a-flow-line

Purpose: Returns the data-items actually flowing
through a-flow-lines in the input list
Syntax:
stm_r_di_flowing_through_af (stm_list
in_list, int *status);

stm_r_di_labeling_af Query: Data-items labeling a given a-flow-line

Purpose: Returns the data-items which label the a-flow-
lines in the input list
Syntax:
stm_r_di_labeling_af (stm_list in_list,
int *status);
290 Data Port Reference Guide

Data-Items (di)
Input List Type: ch

Input List Type: co

stm_r_di_def_or_unres_in_ch Query: Data-items defined or unresolved in a given
chart
Purpose: Returns the data-items explicitly defined or
unresolved in the charts of the input list
Syntax:
stm_r_di_def_or_unres_in_ch (stm_list
in_list, int *status);

stm_r_di_defined_in_ch Query: Data-items defined in a given chart

Purpose: Returns the data-items explicitly defined in
the charts of the input list
Syntax:
stm_r_di_defined_in_ch (stm_list in_list,
int *status);

stm_r_di_unresolved_in_ch Query: Data-items unresolved in a given chart

Purpose: Returns the data-items that are unresolved in
the charts of the input list
Syntax:
stm_r_di_unresolved_in_ch (stm_list
in_list, int *status);

stm_r_di_containing_co Query: Data-item containing a given condition

Purpose: Returns the data-items containing the
conditions in the input list (as defined in the Consists of
field of the data-item’s form)
Syntax:
stm_r_di_containing_co (stm_list in_list,
int *status);
Rational Statemate 291

Query Functions
Input List Type: di

stm_r_di_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as array
Syntax:
stm_r_di_array_di (stm_list in_list, int
*status);

stm_r_di_array_missing_di Query: Array of data-items by subtype

Purpose: Returns the arrays of data-items in the input
list for which no type is defined
Syntax:
stm_r_di_array_missing_di (stm_list
in_list, int *status);

stm_r_di_basic_di Query: Basic data-items

Purpose: Returns the data-items in the input list that are
basic (not defined using other data-items)
Syntax:
stm_r_di_basic_di (stm_list in_list, int
*status);

stm_r_di_bit_di Query: Basic data-items

Purpose: Returns the data-items in the input list that
are defined as Bit in the Structure/Type field of the
data-item form
Syntax:
stm_r_di_bit_di (stm_list in_list, int
*status);

stm_r_di_bit_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as queue of bits
Syntax:
stm_r_di_bit_queue_di (stm_list in_list,
int *status);

stm_r_di_bits_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as array of bit array
Syntax:
stm_r_di_bits_array_di (stm_list in_list,
int *status);
292 Data Port Reference Guide

Data-Items (di)
stm_r_di_bits_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as bit-array in the Structure/Type field of the
data-item form
Syntax:
stm_r_di_bits_di (stm_list in_list, int
*status);

stm_r_di_bits_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as queue of bit array
Syntax:
stm_r_di_bits_queue_di (stm_list in_list,
int *status);

stm_r_di_by_attributes_di Query: Data-items by attributes

Purpose: Returns the data-items in the input list that
match the specified attribute name and value
Syntax: stm_r_di_by_attributes_di
(stm_list in_list, char* attr_name, char*
attr_value, int *status);

stm_r_di_by_structure_type_di Query: None

Purpose: Returns the data-items in the input list that
have a particular structure type (for example, single,
array, or queue)
Syntax: stm_r_di_by_structure_type_di
(stm_list in_list, char structure_type,
int *status);

stm_r_di_callback_binding_di Query: Data-items with callback bindings

Purpose: Returns the data-items of the input list that
have callback bindings
Syntax:
stm_r_di_callback_binding_di (stm_list
in_list, int *status);

stm_r_di_explicit_defined_di Query: Data-items explicitly defined

Purpose: Returns the data-items of the input list that
were explicitly defined
Syntax:
stm_r_di_explicit_defined_di (stm_list
in_list, int *status);
Rational Statemate 293

Query Functions
stm_r_di_integer_di Query: Integer subtype

Purpose: Returns the data-items in the input list that
are defined as integer in the Structure/Type field of the
data-item’s form
Syntax:
stm_r_di_integer_di (stm_list in_list,
int *status);

stm_r_di_integer_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as array of integer
Syntax:
stm_r_di_integer_array_di (stm_list
in_list, int *status);

stm_r_di_integer_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as queue of integer
Syntax:
stm_r_di_integer_queue_di (stm_list
in_list, int *status);

stm_r_di_list_di Query:
Purpose:
Syntax:
stm_r_di_list_di (stm_list in_list, int
*status);

stm_r_di_missing_di Query: Data-item by subtype

Purpose: Returns the data-items in the input list for
which no type is defined
Syntax:
stm_r_di_missing_di (stm_list in_list,
int *status);

stm_r_di_name_of_di Query: Data-items whose names match a given pattern

Purpose: Returns all the data-items whose names
match the specified pattern
Syntax:
stm_r_di_name_of_di (char* pattern, int
*status);

stm_r_di_parent_of_di Query: Parent data-items of a given data-item

Purpose: Returns the data-items containing the data-
items from the input list (as defined in the Consists of
field of the data-item’s form)
Syntax:
stm_r_di_parent_of_di (stm_list in_list,
int *status);
294 Data Port Reference Guide

Data-Items (di)
stm_r_di_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as queue
Syntax:
stm_r_di_queue_di (stm_list in_list, int
*status);

stm_r_di_queue_missing_di Query: Queues of data-items by subtype

Purpose: Returns the queues of data-items in the input
list for which no type is defined
Syntax:
stm_r_di_queue_missing_di (stm_list
in_list, int *status);

stm_r_di_real_di Query: Real subtype

Purpose: Returns the data-items from the input list that
are defined as Real (Float) in the Structure/Type field of
the data-item’s form
Syntax:
stm_r_di_real_di (stm_list in_list, int
*status);

stm_r_di_real_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as real
Syntax:
stm_r_di_real_array_di (stm_list in_list,
int *status);

stm_r_di_real_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as queue of real
Syntax:
stm_r_di_real_queue_di (stm_list in_list,
int *status);

stm_r_di_record_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as array of record
Syntax:
stm_r_di_record_array_di (stm_list
in_list, int *status);
Rational Statemate 295

Query Functions
stm_r_di_record_di Query: Record subtype

Purpose: Returns the data-items from the input list that
are defined as Record in the Structure/Type field of the
data-item’s form
Syntax:
stm_r_di_record_di (stm_list in_list, int
*status);

stm_r_di_single_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as single
Syntax:
stm_r_di_single_di (stm_list in_list, int
*status);

stm_r_di_string_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as array of string
Syntax:
stm_r_di_string_array_di (stm_list
in_list, int *status);

stm_r_di_string_di Query: String subtype

Purpose: Returns the data-items from the input list that
are defined as String in the Structure/Type field of the
data-item’s form
Syntax:
stm_r_di_string_di (stm_list in_list, int
*status);

stm_r_di_string_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as queue of string
Syntax:
stm_r_di_string_queue_di (stm_list
in_list, int *status);

stm_r_di_subdata_item_of_di Query: Subdata-item of a given data-item

Purpose: Returns the data-items that are components
of data-items in the input list (as defined in the Consists
of field of the data-item’s form)
Syntax:
stm_r_di_subdata_item_of_ di (stm_list
in_list, int *status);
296 Data Port Reference Guide

Data-Items (di)
stm_r_di_synonym_of_di Query: Data-items whose synonyms match a given
pattern
Purpose: Returns all the data-items whose synonyms
match the specified pattern
Syntax:
stm_r_di_synonym_of_di (char* pattern,
int *status);

stm_r_di_union_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as array
Syntax:
stm_r_di_union_array_ di (stm_list
in_list, int *status);

stm_r_di_union_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as union
Syntax:
stm_r_di_union_di (stm_list in_list, int
*status);

stm_r_di_unresolved_di Query: Unresolved data-items

Purpose: Returns the unresolved data-items in the
input list
Syntax:
stm_r_di_unresolved_di (stm_list in_list,
int *status);

stm_r_di_user_type_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as user-defined type
Syntax:
stm_r_di_user_type_di (stm_list in_list,
int *status);

stm_r_di_user_type_array_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that
are defined as array of user-defined type
Syntax:
stm_r_di_user_type_array_ di (stm_list
in_list, int *status);

stm_r_di_user_type_queue_di Query: Data-items by subtype

Purpose: Returns the data-items in the input list that are
defined as queue of user-defined type
Syntax:
stm_r_di_user_type_queue_ di (stm_list
in_list, int *status);
Rational Statemate 297

Query Functions
Input List Type: fd

Input List Type: if

Input List Type: mf

stm_r_di_containing_fd Query: Data-items containing a given field

Purpose: Returns the data-items (records or unions) in
which the fields in the input list are defined
Syntax:
stm_r_di_containing_fd (stm_list in_list,
int *status);

stm_r_di_contained_in_if Query: Data-items contained in a given information-
flow
Purpose: Returns the data-items contained in
information-flow from the input list (as defined in the
Consists of field of the information-flow’s form)

Syntax:
stm_r_di_contained_in_if (stm_list
in_list, int *status);

stm_r_di_flowing_through_mf Query: Data-items flowing through a given m-flow-line

Purpose: Returns the data-items actually flowing
through m-flow-lines in the input list
Syntax:
stm_r_di_flowing_through_mf (stm_list
in_list, int *status);

stm_r_di_labeling_mf Query: Data-items labeling a given m-flow-line

Purpose: Returns the data-items which label the m-flow-
lines in the input list
Syntax:
stm_r_di_labeling_mf (stm_list in_list,
int *status);
298 Data Port Reference Guide

Data-Stores (ds)
Data-Stores (ds)
This section documents the query functions that return a list of data-stores.

Input List Type: ac

Input List Type: af

stm_r_ds_contained_in_ac Query: Data-stores contained in a given activity

Purpose: Returns the data-stores contained directly in
activities from the input list
Syntax:
stm_r_ds_contained_in_ac (stm_list
in_list, int *status);

stm_r_ds_in_ac Query: Data-stores in a given activity

Purpose: Returns the data-stores contained in the
activities from the input list
Syntax:
stm_r_ds_in_ac (stm_list in_list, int
*status);

stm_r_ds_target_of_af Query: Data-stores that are targets of a given a-flow-line

Purpose: Returns the data-stores that are targets of a-
flow-lines in the input list
Syntax:
stm_r_ds_target_of_af (stm_list in_list,
int *status);
Rational Statemate 299

Query Functions
Input List Type: ch

stm_r_ds_def_or_unres_in_ch Query: Data-stores defined or unresolved in a given
chart
Purpose: Returns the data-stores that are explicitly
defined or unresolved in the charts of the input list
Syntax:
stm_r_ds_def_or_unres_in_ch (stm_list
in_list, int *status);

stm_r_ds_defined_in_ch Query: Data-stores defined in a given chart

Purpose: Returns the data-stores that are explicitly
defined in the charts of the input list
Syntax:
stm_r_ds_defined_in_ch (stm_list in_list, int
*status);

stm_r_ds_unresolved_in_ch Query: Data-stores unresolved in a given chart

Purpose: Returns the data-stores that are unresolved in
the charts of the input list
Syntax:
stm_r_ds_unresolved_in_ch (stm_list in_list, int
*status);
300 Data Port Reference Guide

Data-Stores (ds)
Input List Type: ds

stm_r_ds_by_attributes_ds Query: Data-stores by attributes

Purpose: Returns the data-stores in the input list that
match a given attribute name and value
Syntax
stm_r_ds_by_attributes_ds (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_ds_explicit_defined_ds Query: Data-stores explicitly defined

Purpose: Returns the data-stores of the input list that
were explicitly defined
Syntax:
stm_r_ds_explicit_defined_ds (stm_list
in_list, int *status);

stm_r_ds_is_occurrence_of_ds Query: Data-store occurrences of a given data-store

Purpose: Returns the data-stores for which the data-
stores in the input list appear in the Is Data-store field of
their form
Syntax:
stm_r_ds_is_occurrence_of_ds (stm_list
in_list, int *status);

stm_r_ds_is_principal_of_ds Query: Principal data-stores of a given data-store

Purpose: Returns the data-stores for which the data-
stores in the input list appear in the Is Data-store field of
their form
Syntax:
stm_r_ds_is_principal_of_ds (stm_list
in_list, int *status);

stm_r_ds_name_of_ds Query: Data-store whose names match a given pattern

Purpose: Returns all the data-stores whose names
match the specified pattern
Syntax:
stm_r_ds_name_of_ds (char* pattern, int
*status);

stm_r_ds_synonym_of_ds Query: Data-store whose synonyms match a given
pattern
Purpose: Returns all the data-stores whose synonyms
match the specified pattern
Syntax:
stm_r_ds_synonym_of_ds (char* pattern, int
*status);
Rational Statemate 301

Query Functions
Input List Type: md

stm_r_ds_unresolved_ds Query: Unresolved data-stores

Purpose: Returns the unresolved data-stores in the input
list
Syntax:
stm_r_ds_unresolved_ds (stm_list in_list,
int *status);

stm_r_ds_resides_in_md Query: Data-stores residing in a given module.

Purpose: Returns the data-stores residing in modules
from the input list. The module appears in the Resides in
Module field of the data-store’s form.
Syntax:
stm_r_ds_resides_in_md (stm_list in_list,
int *status);
302 Data Port Reference Guide

User-Defined Types (dt)
User-Defined Types (dt)
This section documents the query functions that return a list of data-types.

Input List Type: ch

stm_r_dt_def_or_unres_in_ch Query: User-defined types defined or unresolved in a
given chart
Purpose: Returns the user-defined types that are
explicitly defined or unresolved in the charts in the input
list
Syntax:
stm_r_dt_def_or_unres_in_ch (stm_list
in_list, int *status);

stm_r_dt_defined_in_ch Query: User-defined types defined in a given chart

Purpose: Returns the user-defined types that are
explicitly defined in the charts in the input list
Syntax:
stm_r_dt_defined_in_ch (stm_list in_list,
int *status);

stm_r_dt_unresolved_in_ch Query: User-defined types unresolved in a given chart

Purpose: Returns the user-defined types that are
unresolved in the charts in the input list
Syntax:
stm_r_dt_unresolved_in_ch (stm_list
in_list, int *status);
Rational Statemate 303

Query Functions
Input List Type: dt

stm_r_dt_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array
Syntax:
stm_r_dt_array_dt (stm_list in_list, int
*status);

stm_r_dt_array_missing_dt Query: Arrays of user-defined type by subtype

Purpose: Returns the arrays of user-defined types in the
input list for which no type is defined
Syntax:
stm_r_dt_array_missing_dt (stm_list
in_list, int *status);

 stm_r_dt_bit_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as bit
Syntax:
stm_r_dt_bit_dt (stm_list in_list, int
*status);

stm_r_dt_bit_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of bit
Syntax:
stm_r_dt_bit_queue_dt (stm_list in_list,
int *status);

stm_r_dt_bits_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of bit array
Syntax:
stm_r_dt_bits_array_dt (stm_list in_list,
int *status);

stm_r_dt_bits_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as bit array
Syntax:
stm_r_dt_bits_dt (stm_list in_list, int
*status);
304 Data Port Reference Guide

User-Defined Types (dt)
stm_r_dt_bits_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of bit array
Syntax:
stm_r_dt_bits_queue_dt (stm_list in_list,
int *status);

stm_r_dt_by_attributes_dt Query: User-defined types by attribute

Purpose: Returns the user-defined types in the input list
that match a given attribute and value
Syntax:
stm_r_dt_by_attributes_dt (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_dt_by_structure_type_dt Query: None

Purpose: Returns the user-defined types in the input list
that have a given structure type (for example, single,
array or queue)
Syntax:
stm_r_dt_by_structure_type_dt (stm_list
in_list, char structure_type, int
*status);

stm_r_dt_condition_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of condition
Syntax:
stm_r_dt_condition_array_ dt (stm_list
in_list, int *status);

stm_r_dt_condition_dt Query: User-defined types by subtype

Purpose: Returns the user-defend types in the input list
that are defined as condition
Syntax:
stm_r_dt_condition_dt (stm_list in_list,
int *status);

stm_r_dt_condition_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of condition
Syntax:
stm_r_dt_condition_queue_ dt (stm_list
in_list, int *status);
Rational Statemate 305

Query Functions
stm_r_dt_enums_dt Query: User-defined types defined as enumerated types

Purpose: Returns the user-defined types in the input list
that are defined as enumerated types
Syntax:
stm_r_dt_enums_dt (stm_list in_list, int
*status);

stm_r_dt_explicit_defined_dt Query: User-defined types explicitly defined

Purpose: Returns the user-defined types in the input list
that are explicitly defined
Syntax:
stm_r_dt_explicit_defined_dt (stm_list
in_list, int *status);

stm_r_dt_integer_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as integer
Syntax:
stm_r_dt_integer_dt (stm_list in_list, int
*status);

stm_r_dt_integer_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of integer
Syntax:
stm_r_dt_integer_array_dt (stm_list
in_list, int *status);

stm_r_dt_integer_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of integer
Syntax:
stm_r_dt_integer_queue_dt (stm_list
in_list, int *status);

stm_r_dt_missing_dt Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list
for which no type is defined
Syntax:
stm_r_dt_missing_dt (stm_list in_list, int
*status);

stm_r_dt_name_of_dt Query: User-defined types whose names match a given
pattern
Purpose: Returns all user-defined types whose names
match the specified pattern
Syntax:
stm_r_dt_name_of_dt (char* pattern, int
*status);
306 Data Port Reference Guide

User-Defined Types (dt)
stm_r_dt_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue
Syntax:
stm_r_dt_queue_dt (stm_list in_list, int
*status);

stm_r_dt_queue_missing_dt Query: Queues of user-defined type by subtype

Purpose: Returns the queues of user-defined types in
the input list for which no type is defined
Syntax:
stm_r_dt_queue_missing_dt (stm_list
in_list, int *status);

stm_r_dt_real_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as real
Syntax:
stm_r_dt_real_array_dt (stm_list in_list,
int *status);

stm_r_dt_real_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as real
Syntax:
stm_r_dt_real_dt (stm_list in_list, int
*status);

stm_r_dt_real_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of real
Syntax:
stm_r_dt_real_queue_dt (stm_list in_list,
int *status);

stm_r_dt_record_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of record
Syntax:
stm_r_dt_record_array_dt (stm_list
in_list, int *status);

stm_r_dt_record_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as record
Syntax:
stm_r_dt_record_dt (stm_list in_list, int
*status);
Rational Statemate 307

Query Functions
stm_r_dt_single_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as single
Syntax:
stm_r_dt_single_dt (stm_list in_list, int
*status);

stm_r_dt_string_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of string
Syntax:
stm_r_dt_string_array_dt (stm_list
in_list, int *status);

stm_r_dt_string_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as string
Syntax:
stm_r_dt_string_dt (stm_list in_list, int
*status);

stm_r_dt_string_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of string
Syntax:
stm_r_dt_string_queue_dt (stm_list
in_list, int *status);

stm_r_dt_synonym_of_dt Query: User-defined types whose synonyms match a
given pattern
Purpose: Returns all user-defined types whose
synonyms match the specified pattern
Syntax: stm_r_dt_synonym_of_dt (char*
pattern, int *status);

stm_r_dt_union_dt Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list
that are defined as union
Syntax:
stm_r_dt_union_dt (stm_list in_list, int
*status);

stm_r_dt_union_array_dt Query: User-defined type by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of union
Syntax:
stm_r_dt_union_array_dt (stm_list in_list,
int *status);
308 Data Port Reference Guide

User-Defined Types (dt)
Input List Type: fd

stm_r_dt_unresolved_dt Query: Unresolved user-defined types

Purpose: Returns the unresolved user-defined types in
the input list
Syntax:
stm_r_dt_unresolved_dt (stm_list in_list,
int *status);

stm_r_dt_user_type_array_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as array of another user-defined type
Syntax:
stm_r_dt_user_type_array_ dt (stm_list
in_list, int *status);

stm_r_dt_user_type_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as other user-defined type
Syntax:
stm_r_dt_user_type_dt (stm_list in_list,
int *status);

stm_r_dt_user_type_queue_dt Query: User-defined types by subtype

Purpose: Returns the user-defined types in the input list
that are defined as queue of another user-defined type
Syntax:
stm_r_dt_user_type_queue_ dt (stm_list
in_list, int *status);

stm_r_dt_containing_fd Query: User-defined types containing a given field

Purpose: Returns the user-defined types (records or
unions), in which the fields in the input list are defined
Syntax:
stm_r_dt_containing_fd (stm_list in_list,
int *status);
Rational Statemate 309

Query Functions
Events (ev)
This section documents the query functions that return a list of events.

Input List Type: af

Input List Type: ch

stm_r_ev_flowing_through_af Query: Events flowing through the specified a-flow-line

Purpose: Returns the events actually flowing through a-
flow-lines in the input list
Syntax:
stm_r_ev_flowing_through_ af (stm_list
in_list, int *status);

stm_r_ev_labeling_af Query: Events labeling a given a-flow-line

Purpose: Returns the events that label the a-flow-lines in
the input list
Syntax:
stm_r_ev_labeling_af (stm_list in_list,
int *status);

stm_r_ev_def_or_unres_in_ch Query: Events defined or unresolved in a given chart

Purpose: Returns the events that are explicitly defined or
unresolved in the charts of the input list
Syntax:
stm_r_ev_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_ev_defined_in_ch Query: Events defined in a given chart

Purpose: Returns the events that are explicitly defined in
the charts of the input list
Syntax:
stm_r_ev_defined_in_ch (stm_list in_list,
int *status);

stm_r_ev_unresolved_in_ch Query: Events unresolved in a given chart

Purpose: Returns the events that are unresolved in the
charts of the input list
Syntax:
stm_r_ev_unresolved_in_ch (stm_list
in_list, int *status);
310 Data Port Reference Guide

Events (ev)
Input List Type: ev

stm_r_ev_array_ev Query: Events by subtype

Purpose: Returns the events in the input list that are
defined as array
Syntax:
stm_r_ev_array_ev (stm_list in_list, int
*status);

stm_r_ev_by_attributes_ev Query: Events by attributes

Purpose: Returns the events in the input list that match
the specified attribute name and value
Syntax:
stm_r_ev_by_attributes_ev (stm_list
in_list, char* attr_name, char* attr_value,
int *status);

stm_r_ev_by_structure_type_ev Query: None

Purpose: Returns the events in the input list that have the
specified structure type (for example, single or array)
Syntax:
stm_r_ev_by_structure_type_ev (stm_list
in_list, char structure_type, int *status);

stm_r_ev_callback_binding_ev Query: Events with callback bindings

Purpose: Returns the events in the input list that have
callback bindings
Syntax:
stm_r_ev_callback_binding_ev (stm_list
in_list, int *status);

stm_r_ev_explicit_defined_ev Query: Events explicitly defined

Purpose: Returns the events of the input list that were
explicitly defined
Syntax:
stm_r_ev_explicit_defined_ev (stm_list
in_list, int *status);

stm_r_ev_name_of_ev Query: Events whose names match a given pattern

Purpose: Returns all the events whose names match the
specified pattern
Syntax:
stm_r_ev_name_of_ev (char* pattern, int
*status);
Rational Statemate 311

Query Functions
Input List Type: if

stm_r_ev_single_ev Query: Events by subtype

Purpose: Returns the events in the input list that are
defined as single
Syntax:
stm_r_ev_single_ev (stm_list in_list, int
*status);

stm_r_ev_synonym_of_ev Query: Events whose synonyms match a given pattern

Purpose: Returns all the events whose synonyms match
the specified pattern
Syntax:
stm_r_ev_synonym_of_ev (char* pattern, int
*status);

stm_r_ev_unresolved_ev Query: Unresolved events

Purpose: Returns the unresolved events in the input list

Syntax:
stm_r_ev_unresolved_ev (stm_list in_list,
int *status);

stm_r_ev_contained_in_if Query: Events contained in a given information-flow

Purpose: Returns the events contained in information-
flows from the input list (events used in the Consists of
field of the information-flow’s form)
Syntax:
stm_r_ev_contained_in_if (stm_list
in_list, int *status);
312 Data Port Reference Guide

Events (ev)
Input List Type: mf

stm_r_ev_flowing_through_mf Query: Events flowing through a given m-flow-line

Purpose: Returns the events actually flowing through
m-flow-lines from the input list
Syntax:
stm_r_ev_flowing_through_ f (stm_list
in_list, int *status);

stm_r_ev_labeling_mf Query: Events labeling a given m-flow-line

Purpose: Returns the events that label the m-flow-lines
in the input list
Syntax:
stm_r_ev_labeling_mf (stm_list in_list,
int *status);
Rational Statemate 313

Query Functions
Fields (fd)
This section documents the queries that return a list of fields.

Input List Type: ch

Input List Type: di

Input List Type: dt

stm_r_fd_defined_in_ch Query: Fields defined in a given chart

Purpose: Returns the fields that are part of the
structured data-items in the input list
Syntax:
stm_r_fd_defined_in_ch (stm_list in_list,
int *status);

stm_r_fd_contained_in_di Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array
Syntax:
stm_r_fd_contained_in_di (stm_list
in_list, int *status);

stm_r_fd_contained_in_dt Query: Fields contained in user-defined type (UDT)

Purpose: Returns the fields that are part of the
structured UDTs in the input list
Syntax:
stm_r_fd_contained_in_dt (stm_list
in_list, int *status);
314 Data Port Reference Guide

Fields (fd)
Input List Type: fd

stm_r_fd_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array
Syntax:
stm_r_fd_array_fd (stm_list in_list, int
*status);

stm_r_fd_array_missing_fd Query: Array of fields by subtype

Purpose: Returns the array of fields in the input list for
which no type is defined
Syntax:
stm_r_fd_array_missing_fd (stm_list
in_list, int *status);

stm_r_fd_bit_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as bit
Syntax:
stm_r_fd_bit_fd (stm_list in_list, int
*status);

stm_r_fd_bit_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of bit
Syntax:
stm_r_fd_bit_queue_fd (stm_list in_list,
int *status);

stm_r_fd_bits_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as bit array
Syntax:
stm_r_fd_bits_array_fd (stm_list in_list,
int *status);

stm_r_fd_bits_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as bit array
Syntax:
stm_r_fd_bits_fd (stm_list in_list, int
*status);
Rational Statemate 315

Query Functions
stm_r_fd_bits_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of bit array
Syntax:
stm_r_fd_bits_queue_fd (stm_list in_list,
int *status);

stm_r_fd_by_attributes_fd Query: Fields by attribute

Purpose: Returns the fields in the input list that match
the specified attribute and value
Syntax: stm_r_fd_by_attributes_fd
(stm_list in_list, char* attr_name, char*
attr_value, int *status);

stm_r_fd_by_structure_type_fd Query: None

Purpose: Returns the fields in the input list that have the
specified structure type (for example, single or array)
Syntax:
stm_r_fd_by_structure_type_fd (stm_list
in_list, char structure_type, int
*status);

stm_r_fd_condition_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as condition
Syntax:
stm_r_fd_condition_fd (stm_list in_list,
int *status);

stm_r_fd_condition_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array of condition
Syntax:
stm_r_fd_condition_array_ fd (stm_list
in_list, int *status);

stm_r_fd_condition_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of condition
Syntax:
stm_r_fd_condition_ queue_fd (stm_list
in_list, int *status);

stm_r_fd_explicit_defined_fd Query: Fields explicitly defined

Purpose: Returns the fields in the input list that are
explicitly defined
Syntax:
stm_r_fd_explicit_defined_fd (stm_list
in_list, int *status);
316 Data Port Reference Guide

Fields (fd)
stm_r_fd_integer_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array of integer
Syntax:
stm_r_fd_integer_array_fd (stm_list
in_list, int *status);

stm_r_fd_integer_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as integer
Syntax:
stm_r_fd_integer_fd (stm_list in_list,
int *status);

stm_r_fd_integer_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of integer
Syntax:
stm_r_fd_integer_queue_fd (stm_list
in_list, int *status);

stm_r_fd_missing_fd Query: Fields by subtype

Purpose: Returns the fields in the input list for which no
type is defined
Syntax:
stm_r_fd_missing_fd (stm_list in_list,
int *status);

stm_r_fd_name_of_fd Query: Fields whose names match a given pattern

Purpose: Returns all fields whose name matches the
specified pattern
Syntax:
stm_r_fd_name_of_fd (char* pattern, int
*status);

stm_r_fd_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue
Syntax:
stm_r_fd_queue_fd (stm_list in_list, int
*status);

stm_r_fd_queue_missing_fd Query: Queues of field by subtype

Purpose: Returns the queues of fields in the input list for
which no type is defined
Syntax:
stm_r_fd_queue_missing_fd (stm_list
in_list, int *status);
Rational Statemate 317

Query Functions
stm_r_fd_real_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array of real
Syntax:
stm_r_fd_real_array_fd (stm_list in_list,
int *status);

stm_r_fd_real_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as real
Syntax:
stm_r_fd_real_fd (stm_list in_list, int
*status);

stm_r_fd_real_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of real
Syntax:
stm_r_fd_real_queue_fd (stm_list in_list,
int *status);

stm_r_fd_single_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as single
Syntax:
stm_r_fd_single_fd (stm_list in_list, int
*status);

stm_r_fd_string_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array of string
Syntax:
stm_r_fd_string_array_fd (stm_list
in_list, int *status);

stm_r_fd_string_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as string
Syntax:
stm_r_fd_string_fd (stm_list in_list, int
*status);

stm_r_fd_string_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of string
Syntax:
stm_r_fd_string_queue_fd (stm_list
in_list, int *status);
318 Data Port Reference Guide

Fields (fd)
Input List Type: mx

stm_r_fd_user_type_array_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as array of user-defined type
Syntax:
stm_r_fd_user_type_array_ fd (stm_list
in_list, int *status);

stm_r_fd_user_type_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as user-defined type
Syntax:
stm_r_fd_user_type_fd (stm_list in_list,
int *status);

stm_r_fd_user_type_queue_fd Query: Fields by subtype

Purpose: Returns the fields in the input list that are
defined as queue of user-defined type
Syntax:
stm_r_fd_user_type_queue_ fd (stm_list
in_list, int *status);

stm_r_fd_contained_in_mx Query: Fields contained in a given element

Purpose: Returns the fields that are part of the
structured elements (data-items and user-defined
types) in the input list
Syntax:
stm_r_fd_contained_in_mx (stm_list
in_list, int *status);
Rational Statemate 319

Query Functions
Functions (fn)
This section documents the queries that return a list of functions.

Input List Type: ch

stm_r_fn_name_of_fn Query: Function names that match a given pattern

Purpose: Returns all the functions whose names match
the specified pattern
Syntax:
stm_r_fn_name_of_fn (char* pattern, int
*status);

stm_r_fn_unresolved_in_ch Query: Functions unresolved in a given chart

Purpose: Returns the functions that are unresolved in the
charts of the input list
Syntax: stm_r_fn_unresolved_in_ch (stm_list
in_list, int *status);
320 Data Port Reference Guide

Information-Flows (if)
Information-Flows (if)
This section documents the queries that return a list of information-flows.

Input List Type: af

stm_r_if_basic_flowing_af Query: Basic information-flows flowing through a given
a-flow-line.
Purpose: Returns information-flows that are not
decomposed to other information items, and are flowing
through a-flow-lines in the input list.
Syntax:
stm_r_if_basic_flowing_af (stm_list
in_list, int *status);

stm_r_if_flowing_through_af Query: Information-flows flowing through a given a-flow-
line.
Purpose: Returns the information-flows flowing through
a-flow-lines in the input list.
Note: This function returns the highest information-flows,
as opposed to stm_r_if_basic_ flowing_af,
which returns the lowest level.
Syntax:
stm_r_if_flowing_through_ af (stm_list
in_list, int *status);

stm_r_if_labeling_af Query: Information-flows labeling a given a-flow-line.

Purpose: Returns the information-flows that label a-flow-
lines in the input list.
Syntax:
stm_r_if_labeling_af (stm_list in_list,
int *status);
Rational Statemate 321

Query Functions
Input List Type: ch

Input List Type: co

stm_r_if_def_or_unres_in_ch Query: Information-flows defined or unresolved in a
given chart
Purpose: Returns the information-flows that are
explicitly defined or unresolved in the charts of the input
list
Syntax:
stm_r_if_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_if_defined_in_ch Query: Information-flows defined in a given chart

Purpose: Returns the information-flows that are
explicitly defined in the charts of the input list
Syntax:
stm_r_if_defined_in_ch (stm_list in_list,
int *status);

stm_r_if_unresolved_in_ch Query: Information-flows unresolved in a given chart

Purpose: Returns the information-flows that are
unresolved in the charts of the input list
Syntax:
stm_r_if_unresolved_in_ch (stm_list
in_list, int *status);

stm_r_if_containing_co Query: Information-flows containing a given condition

Purpose: Returns the information-flows containing
conditions from the input list (conditions appearing in the
Consists of field of the information-flow’s form)

Syntax:
stm_r_if_containing_co (stm_list in_list,
int *status);
322 Data Port Reference Guide

Information-Flows (if)
Input List Type: di

Input List Type: ev

stm_r_if_containing_di Query: Information-flows containing a given data-item

Purpose: Returns the information-flows containing
data-items from the input list (data-items appearing in
the Consists of field of the information-flow’s form)

Syntax:
stm_r_if_containing_di (stm_list in_list,
int *status);

stm_r_if_containing_ev Query: Information-flows containing a given event

Purpose: Returns the information-flows containing
events from the input list (events appearing in the
Consists of field of the information-flow’s form)

Syntax:
stm_r_if_containing_ev (stm_list in_list,
int *status);
Rational Statemate 323

Query Functions
Input List Type: if

stm_r_if_basic_if Query: Basic information-flows

Purpose: Returns the information-flows in the input list
that are basic (those not defined using other information-
flows)
Syntax:
stm_r_if_basic_if (stm_list in_list, int
*status);

stm_r_if_by_attributes_if Query: Information-flows by attributes

Purpose: Returns the information-flows in the input list
that match a particular attribute name and value
Syntax:
stm_r_if_by_attributes_if (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_if_contained_in_if Query: Information-flows contained in a given
information-flow
Purpose: Returns the information-flows that are
contained in information-flows from the input list (as
defined in the Consists of field)

Syntax:
stm_r_if_contained_in_if (stm_list
in_list, int *status);

stm_r_if_containing_if Query: Information-flows containing a given information-
flow
Purpose: Returns the information-flows that contain
information-flows from the input list (as defined in the
Consists of field)

Syntax:
stm_r_if_containing_if (stm_list in_list,
int *status);

stm_r_if_explicit_defined_if Query: Information-flows explicitly defined

Purpose: Returns the information-flows of the input list
that were explicitly defined
Syntax:
stm_r_if_explicit_defined_if (stm_list
in_list, int *status);
324 Data Port Reference Guide

Information-Flows (if)
stm_r_if_name_of_if Query: Information-flow names that match a given
pattern
Purpose: Returns all the information-flows whose
names match the specified pattern
Syntax:
stm_r_if_name_of_if (char* pattern, int
*status);

stm_r_if_synonym_of_if Query: Information-flow synonyms that match a given
pattern
Purpose: Returns all the information-flows whose
synonyms match the specified pattern
Syntax:
stm_r_if_synonym_of_if (char* pattern,
int *status);

stm_r_if_unresolved_if Query: Unresolved information-flows

Purpose: Returns the unresolved information-flows in
the input list
Syntax:
stm_r_if_unresolved_if (stm_list in_list,
int *status);
Rational Statemate 325

Query Functions
Input List Type: mf

stm_r_if_basic_flowing_mf Query: Basic information-flows flowing through a given
m-flow-line.
Purpose: Returns the information-flows that are not
decomposed to other information items and are flowing
through m-flow-lines in the input list.
Syntax:
stm_r_if_basic_flowing_mf (stm_list
in_list, int *status);

stm_r_if_flowing_through_mf Query: Information-flows flowing through a given m-
flow-line.
Purpose: Returns the information-flow flowing through
m-flow-lines in the input list.
Note: This function returns the highest information-flows
as opposed to stm_r_if_basic_flowing_mf, which
returns the lowest level.
Syntax:
stm_r_if_flowing_through_ mf (stm_list
in_list, int *status);

stm_r_if_labeling_mf Query: Information-flows labeling a given m-flow-line.

Purpose: Returns the information-flow labeling m-flow-
lines in the input list.
Syntax:
stm_r_if_labeling_mf (stm_list in_list,
int *status);
326 Data Port Reference Guide

M-Flow-Lines (bf, lmf, mf)
M-Flow-Lines (bf, lmf, mf)
This section documents the queries that return a list of m-flow-lines. The types are as follows:

� bf—Basic m-flow-lines
� lmf—Local m-flow-lines
� mf—Global (compound) m-flow-lines

Output List Type: bf

Input List Type: co

Input List Type: di

stm_r_bf_within_flows_co Query: A-flow-lines through which a given condition flows

Purpose: Returns the a-flow-lines through which
conditions from the input list actually flow
Syntax:
stm_r_af_within_flows_co (stm_list
in_list, int *status);

stm_r_bf_within_labels_co Query: A-flow-lines labeled by a given condition

Purpose: Returns the a-flow-lines labeled with conditions
in the input list
Syntax:
stm_r_af_within_labels_co (stm_list
in_list, int *status);

stm_r_bf_within_flows_di Query: A-flow-lines through which a given data-item
flows
Purpose: Returns the a-flow-lines through which data-
items from the input list actually flow
Syntax:
stm_r_af_within_flows_di (stm_list
in_list, int *status);

stm_r_bf_within_labels_di Query: A-flow-lines labeled by a given data-item

Purpose: Returns the a-flow-lines labeled with data-
items in the input list
Syntax:
stm_r_af_within_labels_di (stm_list
in_list, int *status);
Rational Statemate 327

Query Functions
Input List Type: ev

Input List Type: if

stm_r_bf_within_flows_ev Query: A-flow-lines through which a given event flows

Purpose: Returns the a-flow-lines through which events
from the input list actually flow
Syntax:
stm_r_bf_within_flows_ev (stm_list
in_list, int *status);

stm_r_bf_within_labels_ev Query: A-flow-lines labeled by a given event

Purpose: Returns the a-flow-lines labeled with events in
the input list
Syntax:
stm_r_bf_within_labels_ev (stm_list
in_list, int *status);

stm_r_bf_within_flows_if Query: A-flow-lines through which a given information-
flow flows
Purpose: Returns the a-flow-lines through which
information-flows from the input list actually flow
Syntax:
stm_r_bf_within_flows_if (stm_list
in_list, int *status);

stm_r_bf_within_labels_if Query: A-flow-lines labeled by a given information-flow

Purpose: Returns the a-flow-lines labeled with
information-flows in the input list
Syntax:
stm_r_bf_within_labels_if (stm_list
in_list, int *status);
328 Data Port Reference Guide

M-Flow-Lines (bf, lmf, mf)
Input List Type: mx

stm_r_bf_from_source_mx Query: A-flow-lines whose source is a given element

Purpose: Returns basic a-flow-lines that originate at
elements in the input list
Syntax:
stm_r_af_from_source_mx (stm_list in_list,
int *status);

stm_r_bf_to_target_mx Query: A-flow-lines whose target is a given element

Purpose: Returns the basic a-flow-lines whose target is
an element from the input list
Syntax:
stm_r_bf_to_target_mx (stm_list in_list,
int *status);

stm_r_bf_within_flows_mx Query: A-flow-lines through which a given element flows

Purpose: Returns the a-flow-lines through which
elements from the input list actually flow
Syntax:
stm_r_af_within_flows_mx (stm_list
in_list, int *status);

stm_r_bf_within_labels_mx Query: A-flow-lines labeled by a given elements

Purpose: Returns the a-flow-lines labeled with elements
in the input list
Syntax:
stm_r_af_within_labels_mx (stm_list
in_list, int *status);
Rational Statemate 329

Query Functions
Output List Type: lmf

Input List Type: md

Input List Type: mf

stm_r_lmf_from_source_md Query: M-flow-lines whose source is a given module
within chart
Purpose: Returns the local compound m-flow-lines
(those within charts) whose source is a module from the
input list
Syntax:
stm_r_lmf_from_source_md (stm_list
in_list, int *status);

stm_r_lmf_input_to_md Query: M-flow-lines input to a given module within the
chart
Purpose: Returns all the local compound m-flow-lines
that originate outside and terminate at (or inside)
modules in the input list
Syntax:
stm_r_lmf_input_to_md (stm_list in_list,
int *status);

stm_r_lmf_output_from_md Query: M-flow-lines output from a given module within
that chart
Purpose: Returns all the local compound m-flow-lines
that originate at (or inside) and terminate outside
modules in the input list
Syntax:
stm_r_lmf_output_from_md (stm_list
in_list, int *status);

stm_r_lmf_to_target_md Query: M-flow-lines whose target is a given module

Purpose: Returns the local
 m-flow-lines whose target is a module from the input list
Syntax:
stm_r_lmf_to_target_md (stm_list in_list,
int *status);

stm_r_lmf_contained_in_mf Query: None

Purpose: Returns the local m-flow-lines that contain the
global m-flow-lines in the input list
Syntax:
stm_r_lmf_contained_in_mf (stm_list l,
int *status);
330 Data Port Reference Guide

M-Flow-Lines (bf, lmf, mf)
Output List Type: mf

Input List Type: co

Input List Type: di

stm_r_mf_within_flows_co Query: M-flow-lines through which a given condition
flows
Purpose: Returns the m-flow-lines through which
conditions from the input list actually flow
Syntax:
stm_r_mf_within_flows_co (stm_list
in_list, int *status);

stm_r_mf_within_labels_co Query: M-flow-lines labeled by a given condition

Purpose: Returns the m-flow-lines that are labeled by
the conditions in the input list
Syntax:
stm_r_mf_within_labels_co (stm_list
in_list, int *status);

stm_r_mf_within_flows_di Query: M-flow-lines through which a given data-item
flows
Purpose: Returns the m-flow-lines through which data-
items from the input list actually flow
Syntax:
stm_r_mf_within_flows_di (stm_list
in_list, int *status);

stm_r_mf_within_labels_di Query: M-flow-lines labeled by a given data-item

Purpose: Returns the m-flow-lines that are labeled by
the data-items in the input list
Syntax:
stm_r_mf_within_labels_di (stm_list
in_list, int *status);
Rational Statemate 331

Query Functions
Input List Type: ev

Input List Type: if

stm_r_mf_within_flows_ev Query: M-flow-lines through which a given event flows

Purpose: Returns the m-flow-lines through which events
from the input list actually flow
Syntax:
stm_r_mf_within_flows_ev (stm_list
in_list, int *status);

stm_r_mf_within_labels_ev Query: M-flow-lines labeled by a given event

Purpose: Returns the m-flow-lines that are labeled by the
events in the input list
Syntax:
stm_r_mf_within_labels_ev (stm_list
in_list, int *status);

stm_r_mf_within_flows_if Query: M-flow-lines through which a given information-
flow flows
Purpose: Returns the m-flow-lines through which
information-flows from the input list actually flow
Syntax:
stm_r_mf_within_flows_if (stm_list
in_list, int *status);

stm_r_mf_within_labels_if Query: M-flow-lines labeled with a given information-
flow
Purpose: Returns the m-flow-lines that are labeled with
information-flows in the input list
Syntax:
stm_r_mf_within_labels_if (stm_list
in_list, int *status);
332 Data Port Reference Guide

M-Flow-Lines (bf, lmf, mf)
Input List Type: lmf

Input List Type: md

stm_r_mf_containing_lm Query: None

Purpose: Returns the global m-flow-lines (which might
spread over several charts) that contain the local m-flow-
lines (those within charts) in the input list
Syntax:
stm_r_mf_containing_lmf (stm_list l, int
*status);

stm_r_mf_containing_lmf Query: None

Purpose: Returns the global m-flow-lines (which might
spread over several charts) that contain the local m-flow-
lines (those within charts) in the input list
Syntax:
stm_r_mf_containing_lmf (stm_list l, int
*status);

stm_r_mf_from_source_md Query: M-flow-lines whose source is a given module

Purpose: Returns the global compound m-flow-lines
(those that might spread over several charts) whose
source is a module from the input list
Syntax:
stm_r_mf_from_source_md (stm_list in_list,
int *status));

stm_r_mf_input_to_md Query: M-flow-lines input to a given module

Purpose: Returns all the global compound m-flow-lines
that originate outside and terminate at (or inside)
modules in the input list
Syntax:
stm_r_mf_input_to_md (stm_list in_list,
int *status);

stm_r_mf_output_from_md Query: M-flow-lines output from a given module

Purpose: Returns all the global compound m-flow-lines
that originate at (or inside) and terminate outside
modules in the input list
Syntax:
stm_r_mf_output_from_md (stm_list in_list,
int *status);
Rational Statemate 333

Query Functions
Input List Type: mx

stm_r_mf_to_target_md Query: M-flow-lines whose target is a given module

Purpose: Returns the global compound m-flow-lines
whose target is a module from the input list
Syntax:
stm_r_mf_to_target_md (stm_list in_list,
int *status);

stm_r_lmf_to_target_md Query: M-flow-lines whose target is a given module

Purpose: Returns the local compound m-flow-lines
whose target is a module from the input list
Syntax:
stm_r_lmf_to_target_md (stm_list in_list,
int *status);

stm_r_mf_within_flows_mx Query: M-flow-lines through which a given element
flows
Purpose: Returns the m-flow-lines through which
elements from the input list actually flow
Syntax:
stm_r_mf_within_flows_mx (stm_list
in_list, int *status);

stm_r_mf_within_labels_mx Query: M-flow-lines that are labeled by a given
information-flow
Purpose: Returns the m-flow-lines that are labeled with
elements in the input list
Syntax:
stm_r_mf_within_labels_mx (stm_list
in_list, int *status);
334 Data Port Reference Guide

Modules (md)
Modules (md)
This section documents the queries that return a list of modules.

Input List Type: ac

Input List Type: ch

stm_r_md_carrying_out_ac Query: Modules carrying out a given activity.

Purpose: Returns the modules carrying out activities in
the input list. The modules appear in the Implemented
by Module field of an activity’s form.

Syntax:
stm_r_md_carrying_out_ac (stm_list
in_list, int *status);

stm_r_md_def_or_unres_in_ch Query: Modules defined or unresolved in a given chart

Purpose: Returns the modules that are explicitly defined
or unresolved in the charts of the input list
Syntax:
stm_r_md_def_or_unres_in ch (stm_list
in_list, int *status);

stm_r_md_defined_in_ch Query: Modules defined in a given chart

Purpose: Returns the modules that are explicitly defined
in the charts of the input list
Syntax:
stm_r_md_defined_in_ch (stm_list in_list,
int *status);

stm_r_md_described_by_ch Query: Modules described by a given activity-chart

Purpose: Returns the modules described by activity-
charts in the input list
Syntax:
stm_r_md_described_by_ch (stm_list
in_list, int *status);
Rational Statemate 335

Query Functions
Input List Type: ds

stm_r_md_instance_of_ch Query: Modules instance of a given chart

Purpose: Returns the instance modules defined by the
charts in the input list
Syntax:
stm_r_md_instance_of_ch (stm_list in_list,
int *status);

stm_r_md_root_in_ch Query: Root modules of a given chart

Purpose: Returns the internally defined modules (of type
diagram) attached to the charts in the input list
Syntax:
stm_r_md_root_in_ch (stm_list in_list, int
*status);

stm_r_md_top_level_in_ch Query: Top-level modules of a given chart

Purpose: Returns the top level modules (not contained in
any box) of the charts in the input list
Syntax:
stm_r_md_top_level_in_ch (stm_list
in_list, int *status);

stm_r_md_unresolved_in_ch Query: Modules unresolved in a given chart

Purpose: Returns the modules that are unresolved in the
charts of the input list
Syntax:
stm_r_md_unresolved_in_ch (stm_list
in_list, int *status);

stm_r_md_contains_ds Query: Modules in which a given data-store resides.

Purpose: Returns the modules in which data-stores from
the input list resides. The modules appear in the Resides
in Module field of a data-store’s form.
Syntax:
stm_r_md_contains_ds (stm_list in_list,
int *status);
336 Data Port Reference Guide

Modules (md)
Input List Type: md

stm_r_md_basic_md Query: Basic modules

Purpose: Returns the modules in the input list that are
basic modules (those that have no descendants)
Syntax:
stm_r_md_basic_md (stm_list in_list, int
*status);

stm_r_md_bus_md Query: Bus modules

Purpose: Returns the modules in the input list that are
bus modules
Syntax:
stm_r_md_bus_md (stm_list in_list, int
*status);

stm_r_md_by_attributes_md Query: Modules by attributes

Purpose: Returns the modules in the input list that match
a particular attribute name and value
Syntax:
stm_r_md_by_attributes_md (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_md_control_md Query: Control modules

Purpose: Returns the modules in the input list that are
control modules
Syntax:
stm_r_md_control_md (stm_list in_list, int
*status);

stm_r_md_def_of_instance_md Query: Definition modules of a given module

Purpose: Returns the definition modules (top level
modules in a definition chart) for instances in the input list
Syntax:
stm_r_md_def_of_instance_ md (stm_list
in_list, int *status);

stm_r_md_defined_environment_md Query: Environment modules

Purpose: Returns the modules from the input list that
were defined as environment modules
Syntax:
stm_r_md_defined_ environment_md (stm_list
in_list, int *status);
Rational Statemate 337

Query Functions
stm_r_md_environment_md Query: Environment modules

Purpose: Returns the modules in the input list that are
environment modules
Syntax:
stm_r_md_environment_md (stm_list in_list,
int *status);

stm_r_md_explicit_defined_md Query: Modules explicitly defined

Purpose: Returns the modules of the input list that were
explicitly defined
Syntax:
stm_r_md_explicit_defined_md (stm_list
in_list, int *status);

stm_r_md_external_md Query: External modules

Purpose: Returns the modules in the input list that are
external
Syntax:
stm_r_md_external_md (stm_list in_list,
int *status);

stm_r_md_generic_instance_md Query: Generic instance modules

Purpose: Returns the modules in the input list that are
instances of generic charts
Syntax:
stm_r_md_generic_instance_md (stm_list
in_list, int *status);

stm_r_md_instance_md Query: Instance modules

Purpose: Returns the instance modules from the
modules in the input list
Syntax:
stm_r_md_instance_md (stm_list in_list,
int *status);

stm_r_md_instance_of_def_m Query: Instance modules of a given definition module

Purpose: Returns the instance modules for definition
modules (top-level modules in a definition chart) in the
input list
Syntax:
stm_r_md_instance_of_def_ md (stm_list
in_list, int *status);

stm_r_md_library_md Query: Library modules

Purpose: Returns the modules from the input list that are
library modules
Syntax:
stm_r_md_library_md (stm_list in_list, int
*status);
338 Data Port Reference Guide

Modules (md)
stm_r_md_logical_desc_of_md Query: Logical descendants of a given module

Purpose: Returns the logical descendants of the
modules in the input list, taking into account the
translation of instances to their definition charts
Syntax:
stm_r_md_logical_ desc_of_md (stm_list
in_list, int *status);

stm_r_md_logical_parent_of_md Query: Logical parent modules of a given module

Purpose: Returns the logical parent modules of the
modules in the input list, taking into account the
translation of instances to their definition charts
Syntax:
stm_r_md_logical_parent_of_md (stm_list
in_list, int *status);

stm_r_md_logical_sub_of_md Query: Logical submodules of a given module

Purpose: Returns the logical submodules of the modules
in the input list, taking into account the translation of
instances to their definition charts
Syntax:
stm_r_md_logical_sub_of_md (stm_list
in_list, int *status);

stm_r_md_name_of_md Query: Modules whose names match a given pattern

Purpose: Returns all the modules whose names match
the specified pattern
Syntax:
stm_r_md_name_of_md (char* pattern, int
*status);

stm_r_md_offpage_instance_md Query: Offpage instance modules

Purpose: Returns the modules in the input list that are
instances of offpage charts
Syntax:
stm_r_md_offpage_instance_md (stm_list
in_list, int *status);

stm_r_md_physical_desc_of_md Query: Physical descendants of a given module

Purpose: Returns the physical descendants (those within
the same chart) for the modules in the input list
Syntax:
stm_r_md_physical_desc_of_md (stm_list
in_list, int *status);
Rational Statemate 339

Query Functions
stm_r_md_physical_parent_of_md Query: Physical parent modules of a given module

Purpose: Returns the physical parent modules (those
within the same chart) for the modules in the input list
Syntax:
stm_r_md_physical_parent_ of_md (stm_list
in_list, int *status);

stm_r_md_physical_sub_of_md Query: Physical submodules of a given module

Purpose: Returns the physical submodules (those within
the same chart) for the modules in the input list
Syntax:
stm_r_md_physical_sub_of_ md (stm_list
in_list, int *status);

stm_r_md_regular_md Query: Regular modules

Purpose: Returns the modules from the input list that are
regular modules (not environment or storage)
Syntax:
stm_r_md_regular_md (stm_list in_list, int
*status);

stm_r_md_resolved_to_ext_md Query: Modules resolved to a given external module

Purpose: Returns the modules (internal, external, or
environment) to which the external modules in the input
list are resolved
Syntax:
stm_r_md_resolved_to_ext_ md (stm_list
in_list, int *status);

stm_r_md_storage_md Query: Storage modules

Purpose: Returns the modules from the input list that are
storage modules
Syntax:
stm_r_md_storage_md (stm_list in_list, int
*status);

stm_r_md_synonym_of_md Query: Modules whose synonyms match a given pattern

Purpose: Returns all the modules whose synonyms
match the specified pattern
Syntax:
stm_r_md_synonym_of_md (char* pattern, int
*status);

stm_r_md_unresolved_md Query: Unresolved modules

Purpose: Returns the unresolved modules in the input
list
Syntax:
stm_r_md_unresolved_md (stm_list in_list,
int *status);
340 Data Port Reference Guide

Modules (md)
Input List Type: mf

Input List Type: router

stm_r_md_source_of_mf Query: Modules that are sources of a given m-flow-line

Purpose: Returns the modules that are sources of m-
flow-lines from the input list
Syntax:
stm_r_md_source_of_mf (stm_list in_list,
int *status);

stm_r_md_target_of_mf Query: Modules that are targets of a given m-flow-line

Purpose: Returns the modules that are targets of m-
flow-lines from the input list
Syntax:
stm_r_md_target_of_mf (stm_list in_list,
int *status);

stm_r_md_contains_router Query: Modules in which a given router resides.

Purpose: Returns the modules in which routers from
the input list resides. The modules appear in the
Resides in Module field of a router’s form.

Syntax:
stm_r_md_contains_router (stm_list
in_list, int *status);
Rational Statemate 341

Query Functions
Mixed (mx)
This section documents the queries that return a list of elements.

Input List Type: af

stm_r_mx_flowing_through_af Query: Elements flowing through a given a-flow-line

Purpose: Returns the information elements (conditions,
events, data-items, and basic information-flows) that
actually flow through the a-flow-lines in the input list
Syntax:
stm_r_mx_flowing_through af (stm_list
in_list, int *status);

stm_r_mx_labeling_af Query: Elements labeling a given a-flow-line

Purpose: Returns the elements that label a-flow-lines in
the input list
Syntax:
stm_r_mx_labeling_af (stm_list in_list,
int *status);

stm_r_mx_source_of_af Query: Elements that are sources of a given a-flow-line

Purpose: Returns the elements (activities and data-
stores) that are sources of a-flow-lines in the input list
Syntax:
stm_r_mx_source_of_af (stm_list in_list,
int *status);

stm_r_mx_target_of_af Query: Elements that are targets of a given a-flow-line

Purpose: Returns the elements (activities and data-
stores) that are sources of a-flow-lines in the input list
Syntax:
stm_r_mx_target_of_af (stm_list in_list,
int *status);
342 Data Port Reference Guide

Mixed (mx)
Input List Type: ac

stm_r_mx_affected_by_ac Query: Elements affected by a given activity.

Purpose: Returns the elements (data-items, conditions,
and events) affected (modified or generated) by
activities, in mini-specs, and combinational assignments
in the input list.
Syntax:
stm_r_mx_affected_by_ ac (stm_list
in_list, int *status);

stm_r_mx_influence_ac Query: Elements that are referenced by or influence a
given activity.
Purpose: Returns the elements used in all levels by the
activities in the input list.
This includes all logical descendant activities, a-flow-
lines that enter or exit these activities, elements that
appear in the various fields of these activities, and in the
labels of the flow-lines and their components.
Syntax:
stm_r_mx_influence_ac (stm_list in_list,
int *status);

stm_r_mx_influenced_by_ac Query: Elements that refer to, or are influenced by, a
given activity.
Purpose: Returns the elements that directly or
indirectly use the activities in the input list.
This query identifies all the elements, in all levels, that
refer to or affect the input activities.
Syntax:
stm_r_mx_influenced_by_ac (stm_list
in_list, int *status);

stm_r_mx_refer_to_ac Query: Elements that refer to a given activity.

Purpose: Returns the elements that directly refer to
activities in the input list.
This query identifies where input activities are used.
Syntax:
stm_r_mx_refer_to_ac (stm_list in_list,
int *status);
Rational Statemate 343

Query Functions
stm_r_mx_referenced_by_ac Query: Elements that are referenced by a given activity.

Purpose: Returns the elements that appear in the
activities of the input list.
This includes all physical descendant activities, a-flow-
lines that enter or exit these activities, elements that
appear in the various fields of these activities, and in the
labels of the flow-lines.
Syntax:
stm_r_mx_referenced_by_ac (stm_list
in_list, int *status);

stm_r_mx_resolved_to_ext_ac Query: Elements resolved to a given external activity.

Purpose: Returns the activities and modules (internal,
external, or environment) to which the external activities
in the input list are resolved.
Syntax:
stm_r_mx_resolved_to_ext_ ac (stm_list
in_list, int *status);

stm_r_mx_used_by_ac Query: Elements used by a given activity.

Purpose: Returns the elements (data-items, conditions,
and events) used (evaluated) by activities in mini-specs
and combinational assignments in the input list.
Syntax:
stm_r_mx_used_by_ac (stm_list in_list,
int *status);
344 Data Port Reference Guide

Mixed (mx)
Input List Type: an

stm_r_mx_in_definition_of_an Query: Elements appearing in the definition of a given
action.
Purpose: Returns the elements that appear in the
Definition field of actions (in the action’s form) in the input
list.
This query identifies the elements that are used directly by
the actions in the input list.
Syntax:
stm_r_mx_in_definition_of_an (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_an Query: Elements that influence the value of a given
action.
Purpose: Returns the elements that appear in the
Definition field of actions in the input list, and those that
appear in the definitions of these elements (for all levels).
This query identifies the elements that are used directly or
indirectly by the actions in the input list.
Syntax:
stm_r_mx_influence_value_ of_an (stm_list
in_list, int *status);

stm_r_mx_influenced_by_an Query: Elements that refer to, or are influenced by, a
given action.
Purpose: Returns the elements that directly or indirectly
use the actions in the input list.
This query identifies all the elements, in all levels, that use
the input actions.
Syntax:
stm_r_mx_influence_value_ of_an (stm_list
in_list, int *status);

stm_r_mx_refer_to_an Query: Elements that refer to a given action.

Purpose: Returns the elements that directly use the
actions in the input list.
This query identifies where the input actions appear.
Syntax:
stm_r_mx_influence_value_ of_an (stm_list
in_list, int *status);
Rational Statemate 345

Query Functions
Input List Type: ba

Input List Type: bm

stm_r_mx_source_of_ba Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of
basic a-flow-lines in the input list.
Syntax:
stm_r_mx_source_of_ ba (stm_list in_list,
int *status);

stm_r_mx_target_of_ba Query: Elements affected by a given activity.

Purpose: Returns the elements that are targets of basic
a-flow-lines in the input list.
Syntax:
stm_r_mx_influence_value_ of_an (stm_list
in_list, int *status);

stm_r_mx_source_of_bm Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of
basic m-flow-lines in the input list
Syntax:
stm_r_mx_source_of_ bm (stm_list in_list,
int *status);

stm_r_mx_target_of_bm Query: Elements affected by a given activity.

Purpose: Returns the elements that are targets of basic
m-flow-lines in the input list
Syntax:
stm_r_mx_target_of_ bm (stm_list in_list,
int *status);
346 Data Port Reference Guide

Mixed (mx)
Input List Type: bt

Input List Type: ch

stm_r_mx_source_of_bt Query: Elements affected by a given activity.

Purpose: Returns the elements that are sources of
basic transitions in the input list
Syntax:
stm_r_mx_source_of_ bt (stm_list in_list,
int *status);

stm_r_mx_target_of_bt Query: Elements affected by a given activity.

Purpose: Returns the elements that are targets of basic
transitions in the input list
Syntax:
stm_r_mx_target_of_ bt (stm_list in_list,
int *status);

stm_r_mx_constant_parameter_ch Query: Constant parameters in a given chart

Purpose: Returns the constant formal parameters of
generic charts and components in the input list
Syntax:
stm_r_mx_constant_ parameter_ch (stm_list
in_list, int *status);

stm_r_mx_def_or_unres_in_ch Query: Elements that are defined or unresolved in a
given chart
Purpose: Returns the elements that are explicitly
defined or unresolved in the charts of the input list
Syntax:
stm_r_mx_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_mx_defined_in_ch Query: Elements that are defined in a given chart

Purpose: Returns the elements that are explicitly
defined in the charts of the input list
Syntax:
stm_r_mx_defined_in_ch (stm_list in_list,
int *status);
Rational Statemate 347

Query Functions
stm_r_mx_in_parameter_ch Query: In parameters in a given chart

Purpose: Returns the formal in parameters of generic
charts and components in the input list
Syntax:
stm_r_mx_in_parameter_ch (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_ch Query: Elements referenced or influenced by a given
chart
Purpose: Returns the elements that are used directly or
indirectly (referenced or affected) by the charts of the
input list
Syntax:
stm_r_mx_influence_value_ of_ch (stm_list
in_list, int *status);

stm_r_mx_inout_parameter_ch Query: Inout parameters in a given chart

Purpose: Returns the formal inout parameters of generic
charts and components in the input list
Syntax:
stm_r_mx_inout_parameter_ ch (stm_list
in_list, int *status);

stm_r_mx_instance_of_ch Query: Element instance of a given chart

Purpose: Returns the element instances defined by the
charts in the input list
Syntax:
stm_r_mx_instance_of_ch (stm_list in_list,
int *status);

stm_r_mx_out_parameter_ch Query: Out parameters in a given chart

Purpose: Returns the formal out parameters of generic
charts and components in the input list
Syntax:
stm_r_mx_out_parameter_ch (stm_list
in_list, int *status);

stm_r_mx_parameter_of_ch Query: Parameters in a given chart

Purpose: Returns the formal parameters of generic
charts and components in the input list
Syntax:
stm_r_mx_parameter_of_ch (stm_list
in_list, int *status);
348 Data Port Reference Guide

Mixed (mx)
stm_r_mx_referenced_by_ch Query: Elements referenced by a given chart

Purpose: Returns the elements that appear in the charts
of the input list
Syntax:
stm_r_mx_referenced_by_ch (stm_list
in_list, int *status);

stm_r_mx_root_in_ch Query: Root elements of a given chart

Purpose: Returns the internally defined elements (of
type diagram) attached to the charts in the input list
Syntax:
stm_r_mx_root_in_ch (stm_list in_list, int
*status);

stm_r_mx_text_def_unres_in_ch Query: Textual elements defined or unresolved in a
given chart
Purpose: Returns the textual elements that are explicitly
defined or unresolved in the charts of the input list
Syntax:
stm_r_mx_text_def_unres_in_ch (stm_list
in_list, int *status);

stm_r_mx_text_unresolved_in_ch Query: Textual elements unresolved in a given chart

Purpose: Returns the textual elements that are
unresolved in the charts of the input list
Syntax:
stm_r_mx_text_def_unres_ in_ch (stm_list
in_list, int *status);

stm_r_mx_textual_defined_in_ch Query: Textual elements that are defined in a given chart

Purpose: Returns the textual elements that are explicitly
defined in the charts of the input list
Syntax:
stm_r_mx_textual_defined_ in_ch (stm_list
in_list, int *status);

stm_r_mx_unresolved_in_ch Query: Elements unresolved in a given chart

Purpose: Returns elements that are unresolved in the
charts of the input list
Syntax:
stm_r_mx_unresolved_in_ch (stm_list
in_list, int *status);
Rational Statemate 349

Query Functions
Input List Type: co

stm_r_mx_in_definition_of_co Query: Elements appearing in the definition of a given
condition.
Purpose: Returns the elements that appear in the
Definition field of conditions (in the condition’s form) in
the input list.
This query identifies the elements that are used directly
by the conditions in the input list.
Syntax:
stm_r_mx_in_definition_of_co (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_co Query: Elements that influence the value of a given
condition.
Purpose: Returns the elements that appear in the
Definition field of the conditions in the input list, and
those that appear in the definitions of these elements (for
all levels).
This query identifies the elements that directly or
indirectly influence the conditions in the input list.
Syntax:
stm_r_mx_influence_value_ of_co (stm_list
in_list, int *status);

stm_r_mx_influenced_by_co Query: Elements that refer to, or are influenced by, a
given condition.
Purpose: Returns the elements that directly or indirectly
use the conditions in the input list.
Syntax:
stm_r_mx_influenced_by_co (stm_list
in_list, int *status);

stm_r_mx_refer_to_co Query: Elements that refer to a given condition.

Purpose: Returns the elements that directly use the
conditions in the input list.
This query identifies where the input conditions appear.
Syntax:
stm_r_mx_refer_to_co (stm_list in_list,
int *status);
350 Data Port Reference Guide

Mixed (mx)
Input List Type: di

stm_r_mx_in_definition_of_di Query: Elements appearing in the definition of a given
data-item.
Purpose: Returns the elements that appear in the
Definition and the Consists of fields of data-items (in
the data-item’s form) in the input list.
This query identifies the elements that are directly used
by the data-items in the input list.
Syntax:
stm_r_mx_in_definition_of_di (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_di Query: Elements that influence the value of a given data-
item.
Purpose: Returns the elements that appear in the
Definition and Consists of fields of data-items in the
input list, and those that appear in the fields of these
elements (for all levels).
This query identifies the elements that directly or
indirectly influence the data-items in the input list.
Syntax:
stm_r_mx_influence_value_ of_dt (stm_list
in_list, int *status);

stm_r_mx_influenced_by_di Query: Elements that refer to, or are influenced by, a
given data-item.
Purpose: Returns the elements that directly or indirectly
use the data-items in the input list.
This query identifies all the elements, in all levels, that
refer to or affect the input data-items.
Syntax:
stm_r_mx_influenced_by_di (stm_list
in_list, int *status);

stm_r_mx_refer_to_di Query: Elements that refer to the specified data-item.

Purpose: Returns the elements that directly use the
data-items in the input list.
This query identifies where the input data-items appear.
Syntax:
stm_r_mx_refer_to_di (stm_list in_list,
int *status);
Rational Statemate 351

Query Functions
Input List Type: ds

Input List Type: dt

stm_r_mx_refer_to_ds Query: Elements that refer to a given data-store

Purpose: Returns the elements directly affected by
data-stores in the input list
Syntax:
stm_r_mx_refer_to_ds (stm_list in_list,
int *status);

stm_r_mx_in_definition_of_dt Query: Elements that appear in the definition of a given
user-defined type
Purpose: Returns the elements that appear in the
definition form of the user-defined types in the input list
Syntax:
stm_r_mx_in_definition_of_dt (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_dt Query: Elements that influence the definition of a given
user-defined type
Purpose: Returns the elements, data-items and user-
defined types, that appear in the definition form of the user-
defined types in the input list, and those that appear in the
definition form of these elements—in all levels
Syntax:
stm_r_mx_influence_ value_of_dt (stm_list
in_list, int *status);

stm_r_mx_influenced_by_dt Query: Elements that refer to or influenced by a given
user-defined type
Purpose: Returns the elements that directly or indirectly
use in their definition the user-defined types in the input
list.
Syntax:
stm_r_mx_influenced_by_dt (stm_list
in_list, int *status);

stm_r_mx_refer_to_dt Query: Elements that refer to a given user-defined type
Purpose: Returns the elements that use in their definition
form the user-defined types in the input list
Syntax:
stm_r_mx_refer_to_dt (stm_list in_list, int
*status);
352 Data Port Reference Guide

Mixed (mx)
Input List Type: ev

stm_r_mx_in_definition_of_ev Query: Elements appearing in the definition of a given
event.
Purpose: Returns the elements that appear in the
Definition field of events (in the event’s form) in the input
list.
This query identifies the elements that are directly used
by the events in the input list.
Syntax:
stm_r_mx_in_definition_of_ev (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_ev Query: Elements that influence the value of a given
event.
Purpose: Returns the elements that appear in the
Definition field of events in the input list, and those that
appear in the definitions of these elements (for all levels).
This query identifies the elements that are used directly
or indirectly by the events in the input list.
Syntax:
stm_r_mx_influence_value_ of_ev (stm_list
in_list, int *status);

stm_r_mx_influenced_by_ev Query: Elements that refer to, or are influenced by, a
given event.
Purpose: Returns the elements that directly or indirectly
use the events in the input list.
This query identifies all the elements, in all levels, that
refer to or affect the input events.
Syntax:
stm_r_mx_influenced_by_ev (stm_list
in_list, int *status);

stm_r_mx_refer_to_ev Query: Elements that refer to a given event.

Purpose: Returns the elements that directly use the
events in the input list.
This query identifies where the input events appear.
Syntax:
stm_r_mx_refer_to_ev (stm_list in_list,
int *status);
Rational Statemate 353

Query Functions
Input List Type: fd

stm_r_mx_containing_fd Query: Elements containing a given field.

Purpose: Returns the data-items and user-defined
types in which the fields in the input list are defined.
Syntax:
stm_r_mx_containing_fd (stm_list
in_list, int *status);

stm_r_mx_in_definition_of_fd Query: Elements that appear in the definition of a
given field.
Purpose: Returns the elements that appear in the
type definition of the fields in the input list.
Syntax:
stm_r_mx_in_definition_of_fd (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_f Query: Elements that influence the definition of a
given field.
Purpose: Returns the elements, data-items, and user-
defined types that appear in the type definition of the
fields in the input list, and those that appear in the
definition form of these elements (in all levels).
Syntax:
stm_r_mx_influence_value_ of_fd
(stm_list in_list, int *status);

stm_r_mx_influenced_by_fd Query: Elements that refer to, or are influenced by, a
given field.
Purpose: Returns the elements that directly refer to
the fields in the input list.
This query identifies where the fields in the input list
are used.
Syntax:
stm_r_mx_influenced_by_fd (stm_list
in_list, int *status);

stm_r_mx_refer_to_fd Query: Elements that refer to a given field.

Purpose: Returns the elements that directly refer to
the fields in the input list.
This query identifies where the fields in the input list
are used.
Syntax:
stm_r_mx_refer_to_fd (stm_list in_list,
int *status);
354 Data Port Reference Guide

Mixed (mx)
Input List Type: fn

Input List Type: if

stm_r_mx_influenced_by_fn Query: Elements that refer to, or are influenced by, a
given function
Purpose: Returns the elements that indirectly or directly
use the functions in the input list.
This query identifies all the elements, in all levels, that
refer to the input functions.
Syntax:
stm_r_mx_influenced_by_fn (stm_list
in_list, int *status);

stm_r_mx_refer_to_fn Query: Elements that refer to a given function.

Purpose: Returns the elements that directly use the
functions in the input list.
This query identifies where the input functions appear.
Syntax:
stm_r_mx_refer_to_fn (stm_list in_list,
int *status);

stm_r_mx_in_definition_of_if Query: Elements appearing in the definition of a given a
information-flow.
Purpose: Returns the elements listed in the Consists of
field (in the information-flow’s forms) for information-flows
in the input list.
This query identifies the elements that are used directly
by the information-flows in the input list.
Syntax:
stm_r_mx_in_definition_of_if (stm_list
in_list, int *status);

stm_r_mx_influence_value_of_if Query: Elements that influence the value of a given
information-flow.
Purpose: Returns the elements contained in the
information-flows in the input list (as listed in the Consists
of field), for all levels of decomposition.
This query identifies the elements that are directly or
indirectly contained in the information-flows of the input
list.
Syntax:
stm_r_mx_influence_value_ of_if (stm_list
in_list, int *status);
Rational Statemate 355

Query Functions
Input List Type: md

stm_r_mx_influenced_by_if Query: Elements that refer to, or are influenced by, a
given information-flow
Purpose: Returns the elements that directly or indirectly
use the information-flows in the input list.
This query identifies all the elements, in all levels, that
refer to the input information-flows.
Syntax:
stm_r_mx_influenced_by_if (stm_list
in_list, int *status);

stm_r_mx_refer_to_if Query: Elements that refer to a given information-flow.

Purpose: Returns the elements that directly use the
information-flows in the input list.
This query identifies where the input information-flows
appear.
Syntax:
stm_r_mx_refer_to_if (stm_list in_list,
int *status);

stm_r_mx_influence_md Query: Elements that are referenced by or influence a
given module.
Purpose: Returns the elements that are used in all
levels by the modules in the input list.
Syntax:
stm_r_mx_influence_md (stm_list in_list,
int *status);

stm_r_mx_influenced_by_md Query: Elements that refer to, or are influenced by, a
given module
Purpose: Returns the elements that directly or indirectly
use the modules in the input list
Syntax:
stm_r_mx_influenced_by_ev (stm_list
in_list, int *status);

stm_r_mx_refer_to_md Query: Elements that refer to a given module.

Purpose: Returns the elements that directly refer to
modules in the input list.
Syntax:
stm_r_mx_refer_to_md (stm_list in_list,
int *status);
356 Data Port Reference Guide

Mixed (mx)
Input List Type: mf

stm_r_mx_referenced_by_md Query: Elements that are referenced by a given module.

Purpose: Returns the elements that appear in the
modules of the input list.
Syntax:
stm_r_mx_referenced_by_md (stm_list
in_list, int *status);

stm_r_mx_resolved_to_ext_md Query: Elements resolved to a given external module.

Purpose: Returns the elements to which the external
modules in the input list are resolved.
Syntax:
stm_r_mx_resolved_to_ext_ md (stm_list
in_list, int *status);

stm_r_mx_flowing_through_mf Query: Elements flowing through a given m-flow-line

Purpose: Returns the information elements (conditions,
events, data-items and basic information-flows) that
actually flow through the m-flow-lines in the input list
Syntax:
stm_r_mx_flowing_through_ mf (stm_list
in_list, int *status);

stm_r_mx_information_through_mf Query:
Purpose:
Syntax:
stm_r_mx_information_ through_mf (stm_list
in_list, int *status);

stm_r_mx_labeling_mf Query: Elements labeling a given m-flow-line

Purpose: Returns the elements that label m-flow-lines in
the input list
Syntax:
stm_r_mx_labeling_mf (stm_list in_list,
int *status);
Rational Statemate 357

Query Functions
Input List Type: msg

Input List Type: mx

stm_r_mx_labeling_msg Query: Elements labeling a given message

Purpose: Returns those elements that appear in labels
of messages in the input list
Syntax:
stm_r_mx_labeling_msg (stm_list in_list,
int *status);

stm_r_mx_affected_by_mx Query: Elements affected by a given element.

Purpose: Returns the elements (primitive data-items,
conditions, events, and activities) that are affected
(modified, generated, started, stopped, and so on) by
elements (states in static reactions or transitions in
labels) in the input list.
Syntax:
stm_r_mx_affected_by_mx (stm_list in_list,
int *status);

stm_r_mx_affecting_mx Query: Elements in which a given element is affected.

Purpose: Returns the elements (states and transitions)
that affect (modify, generate, or activate) the elements
(for example, events, data-items, or activities) in the
input list.
Syntax:
stm_r_mx_affecting_mx (stm_list in_list,
int *status);

stm_r_mx_by_attributes_mx Query: Elements by attributes

Purpose: Returns the elements in the input list that
match a particular attribute name and value
Syntax:
stm_r_mx_by_attributes_mx (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_mx_callback_binding_mx Query: Elements with callback bindings.

Purpose: Returns the elements in the input list that have
callback bindings.
Syntax:
stm_r_mx_callback_binding_mx (stm_list
in_list, int *status);
358 Data Port Reference Guide

Mixed (mx)
stm_r_mx_comb_elements_mx Query: None.

Purpose: Returns the elements (data-items and
conditions) in the input list that are combinational
elements.
Syntax:
stm_r_mx_comb_elements_mx (stm_list mx_l,
int *status);

stm_r_mx_component_
instance_mx

Query: Activities or blocks that are instances of
components.
Purpose: Returns the activities or blocks in the input list
that have instances of components.
Syntax:
stm_r_mx_component_ instance_mx (stm_list
in_list, int *status);

stm_r_mx_def_of_instance_mx Query: Definition elements of a given element.

Purpose: Returns the definition elements (top-level) for
instances in the input list.
Syntax:
stm_r_mx_def_of_instance_ mx (stm_list
in_list, int *status);

stm_r_mx_explicit_defined_mx Query: Elements explicitly defined.

Purpose: Returns the elements of the input list that were
explicitly defined.
Syntax:
stm_r_mx_explicit_defined_mx (stm_list
in_list, int *status);

stm_r_mx_generic_instance_mx Query: None.

Purpose: Returns the boxes (states, activities, and
modules) in the input list that are instances of generic
charts.
Syntax:
stm_r_mx_generic_instance_mx (stm_list
in_list, int *status);

stm_r_mx_in_definition_of_mx Query: Elements that appear in the definition of a given
element.
Purpose: Returns the elements that appear in the
various fields of the element’s form, or in labels of
elements in the input list.
This query identifies the elements that are used directly
by the elements in the input list.
Syntax:
stm_r_mx_in_definition_of_mx (stm_list
in_list, int *status);
Rational Statemate 359

Query Functions
stm_r_mx_influence_value_of_mx Query: Elements that influence the value of a given
element.
Purpose: Returns the elements that appear in various
form’s fields or labels of elements in the input list, and
those that appear in the fields of these elements (for all
levels).
This query identifies the elements that directly or
indirectly influence the elements in the input list.
Syntax:
stm_r_mx_influence_value_ of_mx (stm_list
in_list, int *status);

stm_r_mx_influenced_by_mx Query: Elements that refer to or influenced by a given
element.
Purpose: Returns the elements that directly or indirectly
use the elements in the input list.
This query identifies all the elements, in all levels, that
refer to or affect the input elements.
Syntax:
stm_r_mx_influenced_by_mx (stm_list
in_list, int *status);

stm_r_mx_instance_mx Query: Element instance of a given element

Purpose: Returns the instance elements defined by the
elements in the input list
Syntax:
stm_r_mx_instance_mx (stm_list in_list,
int *status);

stm_r_mx_instance_of_def_mx Query: Instance elements

Purpose: Returns the instance elements for definition
elements (top-level) in the input list.
Syntax:
stm_r_mx_instance_of_def_ mx (stm_list
in_list, int *status);

stm_r_mx_logical_desc_of_mx Query: Logical descendants of a given element

Purpose: Returns the logical descendants of the
elements in the input list
Syntax:
stm_r_mx_logical_desc_of_ mx (stm_list
in_list, int *status);

stm_r_mx_logical_parent_of_mx Query: Logical parent elements of a given element.

Purpose: Returns the logical parent elements of the
elements in the input list, taking into account the
translation of instances to their definition charts.
Syntax:
stm_r_mx_logical_sub_of_mx (stm_list
in_list, int *status);
360 Data Port Reference Guide

Mixed (mx)
stm_r_mx_logical_sub_of_mx Query: Logical subelements of a given element

Purpose: Returns the logical subelements of the
elements in the input list
Syntax:
stm_r_mx_logical_sub_of_mx (stm_list
in_list, int *status);

stm_r_mx_meaningly_affecting_mx Query: Activities in which a given element is affected.
Purpose: Identical to stm_r_mx_affecting_mx, but when
the input list includes an ID of a record/union,
stm_r_mx_meaningly_affecting_mx will also return
elements that affect a field of the record/union, and not
necessarily the whole record/union element.
Syntax:
stm_r_mx_meaningly_affecting_mx (stm_list
in_list, int *status);

stm_r_mx_meaningly_using_mx Query: Activities in which a given element is used.

Purpose: Identical to stm_r_mx_using_mx, but when
the input list includes an ID of a record/union,
stm_r_mx_meaningly_using_mx will also return
elements that use a field of the record/union, and not
necessarily the whole record/union element.
Syntax:
stm_r_mx_meaningly_using_mx (stm_list
in_list, int *status);

stm_r_mx_name_of_mx Query: Element whose names match a given pattern

Purpose: Returns all the elements whose names match
the specified pattern
Syntax:
stm_r_mx_name_of_mx (char* pattern, int
*status);

stm_r_mx_offpage_instance_mx Query: None.

Purpose: Returns the boxes (states, activities, and
modules) in the input list that are instances of offpage
charts.
Syntax:
stm_r_mx_offpage_instance_mx (stm_list
in_list, int *status);

stm_r_mx_parameter_mx Query: Elements that are parameters.

Purpose: Returns the elements in the input list that are
declared as formal parameters of a generic chart.
Syntax:
stm_r_mx_parameter_mx (stm_list in_list,
int *status);
Rational Statemate 361

Query Functions
stm_r_mx_physical_desc_of_mx Query: Physical descendants of a given element

Purpose: Returns the physical descendants (those
within the same chart) for the elements in the input list
Syntax:
stm_r_mx_physical_desc_of_mx (stm_list
in_list, int *status);

stm_r_mx_physical_parent_of_mx Query: Physical parent elements of a given element

Purpose: Returns the physical parent elements (those
within the same chart) for the elements in the input list
Syntax:
stm_r_mx_physical_parent_ of_mx (stm_list
in_list, int *status);

stm_r_mx_physical_sub_of_mx Query: Physical subelements of a given element

Purpose: Returns the physical subelements (those
within the same chart) for the elements in the input list
Syntax:
stm_r_mx_physical_sub_of_ mx (stm_list
in_list, int *status);

stm_r_mx_refer_to_mx Query: Elements that refer to a given element.

Purpose: Returns the elements that directly refer to
elements in the input list.
This query identifies where the input elements are used.
Syntax:
stm_r_mx_refer_to_mx (stm_list in_list,
int *status);

stm_r_mx_resolved_to_ext_mx Query: Elements resolved to a given external box.

Purpose: Returns the activities and modules (internal,
external, or environment) to which the external activities
and modules in the input list are resolved.
Syntax:
stm_r_mx_resolved_to_ext_ mx (stm_list
in_list, int *status);

stm_r_mx_synonym_of_mx Query: Elements whose synonyms match a given
pattern
Purpose: Returns all the elements whose synonyms
match the specified pattern
Syntax:
stm_r_mx_synonym_of_mx (char* pattern, int
*status);
362 Data Port Reference Guide

Mixed (mx)
stm_r_mx_unresolved_mx Query: Unresolved elements.

Purpose: Returns the unresolved elements in the input
list.
Syntax:
stm_r_mx_unresolved_mx (stm_list in_list,
int *status);

stm_r_mx_used_by_mx Query: Elements used by a given element.

Purpose: Returns the elements (primitive events,
conditions, data-items, states, and activities) that are
used (evaluated by the elements, such as states in static
reactions and transitions in labels) in the input list.
Syntax:
stm_r_mx_used_by_mx (stm_list in_list, int
*status);

stm_r_mx_using_mx Query: Elements in which a given element is used.

Purpose: Returns the elements (states in static
reactions and transitions in labels) that use (evaluate)
the elements (basic events, conditions, data-items,
states, and activities) in the input list.
Syntax:
stm_r_mx_using_mx (stm_list in_list, int
*status);

stm_r_mx_with_combinationals_mx Query: None.

Purpose: Returns the elements (activities and state
charts) in the input list that have combinational
assignments.
Syntax:
stm_r_mx_with_ combinationals_mx (stm_list
mx_l, int *status);
Rational Statemate 363

Query Functions
Function Relationships

The following functions are related, but have subtle differences:

� stm_r_mx_influenced_by_mx

� stm_r_mx_affected_by_mx

� stm_r_mx_used_by_mx

� stm_r_mx_affecting_mx

The following matrix shows their relationships. In the matrix, opposite functions go from left to
right, whereas cause and effect functions go up and down.

For example:

� If x is influenced by y, then y is used by x.
� If n is affected by m, then m is affecting n.

Consider the following statement:

if x is true then Function will set y=5

In this statement, x influences Function and Function affects y. This is shown in the matrix as
follows:

� Elements above the double line influence Function.
� Elements below the double line are affected by Function.

For example, x is used by Function to determine whether to set the value of y, and Function is
affecting y by setting its value.

There are four possible relationships between these functions: two opposites and two cause and
effects.

� Opposite: influenced by and used by
� Opposite: affected by and affecting
� Cause and effect: influenced by and affected by
� Cause and effect: used by and affecting

influenced by used by

 Function

affected by affecting
364 Data Port Reference Guide

Mixed (mx)
To illustrate the relationships, consider the following static reaction in a state called STATE:

[D]/X=5 if D is true, then set x=y

The following table shows the relationships.

Relation Type Description

Opposite: influenced and used by STATE reads D to determine whether to perform an
action, and D gives STATE the cue to set X=Y.
In other words, STATE is influenced by D, and D is used
by STATE.

Opposite: affected by and affecting X’s value is set by STATE and STATE sets the value of
X.
In other words, X is affected by STATE, and STATE is
affecting X.

Cause and effect: influenced by and
affected by

STATE reads y to determine which value should be
assigned to X, and while in STATE, X can be set to y.
In other words, when STATE is influenced by y, it
results in X being affected by STATE.

Cause and effect: used by and
affecting

If y is true, STATE sets the value of X. y is influencing
STATE; STATE is affecting X.
In other words, when y is used by STATE, it results in
STATE affecting X.
Rational Statemate 365

Query Functions
Input List Type: router

stm_r_mx_flowing_from_router Query: Elements flowing from a given router

Purpose: Returns the elements actually flowing from
routers in the input list
Syntax:
stm_r_mx_flowing_from_ router (stm_list
in_list, int *status);

stm_r_mx_flowing_to_router Query: Elements flowing to a given router

Purpose: Returns the elements actually flowing to
routers in the input list
Syntax:
stm_r_mx_flowing_to_router (stm_list
in_list, int *status);

stm_r_mx_refer_to_router Query: Elements that refer to a given router.

Purpose: Returns the elements that directly refer to
routers in the input list.
This query identifies where the routers are used.
Syntax:
stm_r_mx_refer_to_router (stm_list
in_list, int *status);

stm_r_mx_resolved_to_ext_router Query: Elements resolved to a given router.

Purpose: Returns the elements to which the external
routers in the input list are resolved.
Syntax:
stm_r_mx_resolved_to_ext_ router (stm_list
in_list, int *status);
366 Data Port Reference Guide

Mixed (mx)
Input List Type: sb

stm_r_mx_influenced_by_sb Query: Elements that refer to, or are influenced by, a
given subroutine
Purpose: Returns the elements that directly or indirectly
use the subroutines in the input list
Syntax:
stm_r_mx_influenced_by_sb (stm_list
in_list, int *status);

stm_r_mx_refer_to_sb Query: Elements that refer to a given subroutine

Purpose: Returns the elements that directly refer to
subroutines in the input list
Syntax:
stm_r_mx_refer_to_sb (stm_list in_list,
int *status);
Rational Statemate 367

Query Functions
Input List Type: st

stm_r_mx_affected_by_st Query: Elements affected by a given state.

Purpose: Returns the elements (data-items, conditions,
and events) that are affected (modified or generated) by
states (in mini-specs and combinational assignments) in
the input list.
Syntax:
stm_r_mx_affected_by_st (stm_list
in_list, int *status);

stm_r_mx_influence_st Query: Elements that are referenced by or influence a
given state.
Purpose: Returns the elements that are used in all
levels by the states in the input list.
This includes all logical descendant states, the
transitions that enter or exit these states, and the
elements that appear in the various fields of these
states, the labels of the transitions, and their
components.
Syntax:
stm_r_mx_influence_st (stm_list in_list,
int *status);

stm_r_mx_influenced_by_st Query: Elements that refer to, or are influenced by a
given state.
Purpose: Returns the elements that directly or indirectly
use the states in the input list.
This query identifies all the elements, in all levels, that
refer to or affect the input states.
Syntax:
stm_r_mx_influenced_by_st (stm_list
in_list, int *status);

stm_r_mx_refer_to_st Query: Elements that refer to a given state.

Purpose: Returns the elements that directly refer to
states in the input list.
This query identifies where the input states are used.
Syntax:
stm_r_mx_refer_to_st (stm_list in_list,
int *status);
368 Data Port Reference Guide

Mixed (mx)
stm_r_mx_referenced_by_st Query: Elements that are referenced by a given state.

Purpose: Returns the elements that appear in the
states of the input list.
This includes all physical descendant states, the
transitions that enter or exit these states, and the
elements that appear in the various fields of these states
and in the labels of the transitions.
Syntax:
stm_r_mx_referenced_by_st (stm_list
in_list, int *status);

stm_r_mx_used_by_st Query: Elements used by a given state.

Purpose: Returns the elements (data-items, conditions,
and events) that are used (evaluated) by states (in mini-
specs and combinational assignments) in the input list.
Syntax:
stm_r_mx_used_by_st (stm_list in_list,
int *status);
Rational Statemate 369

Query Functions
Input List Type: tr

stm_r_mx_affected_by_tr Query: Elements affected by a given transition

Purpose: Returns the elements (data-items, conditions,
and events) that are affected (modified, generated) by
transitions (in mini-specs and combinational
assignments) in the input list
Syntax:
stm_r_mx_affected_by_tr (stm_list in_list,
int *status);

stm_r_mx_labeling_tr Query: Elements labeling a given transition

Purpose: Returns those elements that appear in labels
of the transitions in the input list
Syntax:
stm_r_mx_labeling_tr (stm_list in_list,
int *status);

stm_r_mx_source_of_tr Query: Elements that are sources of a given transition

Purpose: Returns the elements (states and connectors)
that are sources of transitions in the input list
Syntax:
stm_r_mx_source_of_tr (stm_list in_list,
int *status);

stm_r_mx_target_of_tr Query: Elements that are targets of a given transition

Purpose: Returns elements (states and connectors) that
are targets of transitions in the input list
Syntax:
stm_r_mx_target_of_tr (stm_list in_list,
int *status);

stm_r_mx_used_by_tr Query: Elements used by a given transition

Purpose: Returns the elements (data-items, conditions,
and events) that are used (evaluated) by transitions (in
mini-specs and combinational assignments) in the input
list
Syntax:
stm_r_mx_used_by_tr (stm_list in_list,
int *status);
370 Data Port Reference Guide

Module-Occurrences (om)
Module-Occurrences (om)
This section documents the query that returns a list of module-occurrences.

Input List Type: md

Routers (router)
This section documents the queries that return a list of routers.

Input List Type: ac

stm_r_om_in_md Query: Module-occurrences contained in a given
module
Purpose: Returns the module-occurrences contained in
modules from the input list
Syntax:
stm_r_om_in_md (stm_list in_list, int
*status);

stm_r_router_contained_in_ac Query: Routers contained in a given activity

Purpose: Returns the routers contained directly in
activities from the input list
Syntax:
stm_r_router_contained_in_ac (stm_list
in_list, int *status);

stm_r_router_in_ac Query: Router in a given activity

Purpose: Returns the routers directly and indirectly
contained in the activities from the input list
Syntax:
stm_r_router_in_ac (stm_list in_list, int
*status);
Rational Statemate 371

Query Functions
Input List Type: af

Input List Type: ch

stm_r_router_source_of_af Query: Routers that are sources of a given a-flow-line

Purpose: Returns the routers that are sources of a-
flow-lines in the input list
Syntax:
stm_r_router_source_of_af (stm_list
in_list, int *status);

stm_r_router_target_of_af Query: Routers that are targets of a given a-flow-line

Purpose: Returns the routers that are sources of a-
flow-lines in the input list
Syntax:
stm_r_router_target_of_af (stm_list
in_list, int *status);

stm_r_router_def_or_unres_in_ch Query: Routers defined or unresolved in a given chart

Purpose: Returns the routers that are explicitly defined
or unresolved in the charts of the input list
Syntax:
stm_r_router_def_or_unres_in_ch (stm_list
in_list, int *status);

stm_r_router_defined_in_ch Query: Routers defined in a given chart

Purpose: Returns the routers that are explicitly defined
in the charts of the input list
Syntax:
stm_r_router_defined_in_ch (stm_list
in_list, int *status);

stm_r_router_unresolved_in_ch Query: Routers unresolved in a given chart

Purpose: Returns the routers that are unresolved in the
charts of the input list
Syntax:
stm_r_router_unresolved_in_ch (stm_list
in_list, int *status);
372 Data Port Reference Guide

Routers (router)
Input List Type: md

Input List Type: router

stm_r_router_resides_in_md Query: Routers residing in a given module.

Purpose: Returns the routers residing in modules from
the input list. The module appears in the Resides in
Module field of the router’s form.
Syntax:
stm_r_router_resides_in_md (stm_list
in_list, int *status);

stm_r_router_by_attr_router Query: Routers by attributes

Purpose: Returns the routers in the input list that match
a given attribute name and value
Syntax:
stm_r_router_resides_in_md (stm_list
in_list, int *status);

stm_r_router_exp_def_router Query: Routers that are explicitly defined

Purpose: Returns from the input list those routers that
were explicitly defined
Syntax:
stm_r_router_exp_def_ router (stm_list
in_list, int *status);

stm_r_router_name_of_router Query: Routers whose names match a given pattern

Purpose: Returns all routers whose name matches a
given pattern
Syntax:
stm_r_router_name_of_ router (char*
pattern, int *status));

stm_r_router_res_to_ext_router Query: Routers resolved by a given external router

Purpose: Returns the routers (internal and external) to
which the external routers in the input list are resolved
Syntax:
stm_r_router_res_to_ext_ router (stm_list
in_list, int *status);

stm_r_router_synonym_of_router Query: Routers whose synonyms match a given pattern

Purpose: Returns all routers whose synonyms match a
given pattern
Syntax:
stm_r_router_synonym_of_ router (char*
pattern, int *status);
Rational Statemate 373

Query Functions
stm_r_router_unresolved_router Query: Unresolved routers

Purpose: Returns the unresolved routers in the input list

Syntax:
stm_r_router_unresolved_ router (stm_list
router_list, int *status);

stm_r_router_unresolved_in_ch Query: Unresolved in a given chart.
Purpose: Returns routers that are unresolved in the
charts of the input list.
Syntax:
stm_r_router_unresolved_in_ch (stm_list
in_list, int*status);

stm_r_mx_refer_to_router Query: Elements that refer to a given router.
Purpose: Returns the elements that directly refer to
routers in the input list. This query identifies where input
routers are used.
Syntax:
stm_r_mx_refer_to_router (stm_list
in_list, int *status);

stm_r_md_contains_router Query: Modules in which a given datastoreresides.
Purpose: Returns the modules in which routers from the
input list resides. The modules appear in the Resides in
Module field of a Router's form
Syntax:
stm_r_md_contains_router (stm_list
in_list, int *status);

stm_r_ch_define_router Query: Charts in which a given router is defined
Purpose: Returns the charts in which the routers in the
input list are explicitly defined or unresolved.
Syntax:
stm_r_ch_define_router (stm_list in_list,
int *status);

stm_r_laf_from_source_router Query: A-flow-lines whose source is a given router
Purpose: Returns local compound aflow- lines that
originate at routers in the input list
Syntax:
stm_r_laf_from_source_router (stm_list
in_list, int *status);

stm_r_laf_to_target_router Query: A-flow-lines whose target is a given router within
chart
Purpose: Returns local a-flow-lines (those within charts)
that terminate at routers in the input list
Syntax:
stm_r_laf_to_target_router (stm_list
in_list, int *status);
374 Data Port Reference Guide

Routers (router)
stm_r_router_name_of_router Query: Routers whose names match a given pattern.
Purpose: Returns all the routers whose names match a
given pattern
Syntax:
stm_r_router_name_of_router (char*
pattern, int *status);

stm_r_router_synonym_of_router Query: Routers whose synonyms match a given pattern,
Purpose: Returns all the routers whose synonyms
match the specified pattern
Syntax:
stm_r_ac_synonym_of_ac (char* pattern,
int *status);
Rational Statemate 375

Query Functions
Subroutines (sb)
This section documents the queries that return a list of subroutines.

Input List Type: ch

stm_r_sb_connected_to_ch Query: Subroutines that are connected to a given
procedural statechart
Purpose: Returns the subroutines in the input list that
are connected to the specified procedural statechart
Syntax:
stm_r_sb_connected_to_ch (stm_list
in_list, int *status);

stm_r_sb_connected_to_sch Query: Subroutines that are connected to a given
procedural statechart
Purpose: Returns the subroutines in the input list that
are connected to the specified procedural statechart
Syntax:
stm_r_sb_connected_to_sch (stm_list
in_list, int *status);

stm_r_sb_connected_to_fch Query: Subroutines that are connected to a given
Flowcharts
Purpose: Returns the subroutines in the input list that
are connected to the specified Flowchart
Syntax:
stm_r_sb_connected_to_fch (stm_list
in_list, int *status);

stm_r_sb_defined_in_ch Query: Subroutines defined in a given chart

Purpose: Returns the subroutines that are explicitly
defined in the charts in the input list
Syntax:
stm_r_sb_defined_in_ch (stm_list in_list,
int *status);

stm_r_sb_def_or_unres_in_ch Query: Subroutines defined or unresolved in a given
chart
Purpose: Returns the subroutines that are explicitly
defined or unresolved in the charts in the input list
Syntax:
stm_r_sb_def_or_unres_in_ ch (stm_list
in_list, int *status);
376 Data Port Reference Guide

Subroutines (sb)
Input List Type: sb

stm_r_sb_unresolved_in_ch Query: Subroutines unresolved in a given chart

Purpose: Returns the subroutines that are unresolved in
the charts in the input list
Syntax:
stm_r_sb_unresolved_in_ch (stm_list
in_list, int *status);

stm_r_sb_ada_sb Query: Subroutines written in Ada

Purpose: Returns subroutines in the input list that are
written in Ada and stored in the database using the
Implementation menu
Syntax:
stm_r_sb_ada_sb (stm_list in_list, int
*status);

stm_r_sb_ansi_c_sb Query: Subroutines written in ANSI C

Purpose: Returns subroutines in the input list that are
written in ANSI C and stored in the database using the
Implementation menu
Syntax:
stm_r_sb_ansi_c_sb (stm_list in_list, int
*status);

stm_r_sb_bit_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as bit
Syntax:
stm_r_sb_bit_sb (stm_list in_list, int
*status);

stm_r_sb_bits_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as bit array
Syntax:
stm_r_sb_bits_sb (stm_list in_list, int
*status);

stm_r_sb_by_attributes_sb Query: Subroutines by attributes

Purpose: Returns the subroutines in the input list that
match the specified attribute name and value
Syntax: stm_r_sb_by_attributes_sb (stm_list
in_list, char* attr_name, char* attr_value,
int *status);
Rational Statemate 377

Query Functions
stm_r_sb_explicit_defined_sb Query: Subroutines that are explicitly defined

Purpose: Returns the subroutines in the input list that are
explicitly defined
Syntax:
stm_r_sb_explicit_defined_sb (stm_list
in_list, int *status);

stm_r_sb_fn_with_side_effect_sb Query: Function subroutines with potential side-effects

Purpose: Returns the function subroutines in the input list
that have potential side-effects
Syntax:
stm_r_sb_fn_with_side_ effect_sb (stm_list
in_list, int *status);

stm_r_sb_function_sb Query: Subroutines defined as functions

Purpose: Returns the subroutines in the input list that are
defined as functions
Syntax:
stm_r_sb_function_sb (stm_list in_list,
int *status);

stm_r_sb_globals_usage_sb Query: Subroutines that have global data

Purpose: Returns all subroutines in the input list that
have global data
Syntax:
stm_r_sb_globals_usage_sb (stm_list
in_list, int *status);

stm_r_sb_imp_action_lang_sb Query: Subroutines whose selected implementation is
Action Language
Purpose: Returns the subroutines in the input list that are
implemented in the Rational Statemate Action Language
using Select Implementation
Syntax:
stm_r_sb_imp_action_lang_ sb (stm_lis
in_list, int *status);

stm_r_sb_imp_ada_code_sb Query: Subroutines whose selected implementation is
Ada Code
Purpose: Returns the subroutines in the input list that are
implemented in Ada using Select Implementation in the
properties
Syntax:
stm_r_sb_imp_ada_code_sb (stm_list
in_list, int *status);
378 Data Port Reference Guide

Subroutines (sb)
stm_r_sb_imp_ansi_c_code_sb Query: Subroutines whose selected implementation is
ANSI C Code
Purpose: Returns the subroutines in the input list that are
implemented in ANSI C using Select Implementation
Syntax:
stm_r_sb_imp_ansi_c_code_ sb (stm_list
in_list, int *status);

stm_r_sb_imp_best_match_sb Query: Subroutines whose selected implementation is
Best Match
Purpose: Returns the subroutines in the input list that are
implemented as the Best Match using Select
Implementation
Syntax:
stm_r_sb_imp_best_match_sb (stm_list
in_list, int *status);

stm_r_sb_imp_kr_c_code_sb Query: Subroutines whose selected implementation is
K&R C Code
Purpose: Returns the subroutines in the input list that are
implemented in K&R C using Select Implementation
Syntax:
stm_r_sb_imp_kr_c_code_sb (stm_list
in_list, int *status);

stm_r_sb_imp_none_sb Query: Subroutines whose selected implementation is
None
Purpose: Returns the subroutines in the input list that are
not implemented (None) using Select Implementation
Syntax:
stm_r_sb_imp_none_sb (stm_list in_list,
int *status);

stm_r_sb_imp_procedural_sch_sb Query: Subroutines whose selected implementation is
Procedural Statechart
Purpose: Returns the subroutines in the input list that are
implemented as Procedural Statecharts using Select
Implementation
Syntax:
stm_r_sb_imp_procedural_ sch_sb (stm_list
in_list, int *status);

stm_r_sb_integer_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as integer
Syntax:
stm_r_sb_integer_sb (stm_list in_list, int
*status);
Rational Statemate 379

Query Functions
stm_r_sb_kr_c_sb Query: Subroutines written in K&R C

Purpose: Returns subroutines in the input list that are
written in K&R C and stored in the database using the
Implementation menu
Syntax:
stm_r_sb_kr_c_sb (stm_list in_list, int
*status);

stm_r_sb_missing_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list for
which no type is defined
Syntax:
stm_r_sb_missing_sb (stm_list in_list, int
*status);

stm_r_sb_name_of_sb Query: Subroutines whose names match a given pattern

Purpose: Returns all subroutines whose name matches
the specified pattern
Syntax:
stm_r_sb_name_of_sb (char* pattern, int
*status);

stm_r_sb_parameters_sb Query: Subroutines that have parameters

Purpose: Returns all subroutines in the input list that
have parameters
Syntax:
stm_r_sb_parameters_sb (stm_list in_list,
int *status);

stm_r_sb_procedural_sch_sb Query: Subroutines designed as procedural statecharts

Purpose: Returns subroutines in the input list that are
designed as procedural statecharts and stored in the
database using the Implementation menu
Syntax:
ch_sch_sb (stm_list in_list, int *status);

stm_r_sb_procedural_fch_sb Query: Subroutines designed as Flowchart
Purpose: Returns subroutines in the input list that are
designed as Flowcharts and stored in the database using
the Implementation menu
Syntax: stm_r_sb_procedural_fch_sb
(stm_list in_list, int *status);

stm_r_sb_procedure_sb Query: Subroutines defined as procedures

Purpose: Returns the subroutines in the input list that are
defined as procedures
Syntax:
stm_r_sb_procedure_sb (stm_list in_list,
int *status);
380 Data Port Reference Guide

Subroutines (sb)
stm_r_sb_real_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as real
Syntax:
stm_r_sb_real_sb (stm_list in_list, int
*status);

stm_r_sb_statemate_action_sb Query: Subroutines written in the Rational Statemate
action language
Purpose: Returns subroutines in the input list that are
written in the Rational Statemate action language and
stored in the database using the Implementation menu
Syntax:
stm_r_sb_statemate_action_sb (stm_list
in_list, int *status);

stm_r_sb_string_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as string
Syntax:
stm_r_sb_string_sb (stm_list in_list, int
*status);

stm_r_sb_synonym_of_sb Query: Subroutines whose synonyms match a given
pattern
Purpose: Returns all subroutines whose synonyms
match the specified pattern
Syntax:
stm_r_sb_synonym_of_sb (char* pattern, int
*status);

stm_r_sb_task_sb Query: Subroutines defined as tasks

Purpose: Returns the subroutines in the input list that are
defined as tasks
Syntax:
stm_r_sb_task_sb (stm_list in_list, int
*status);
Rational Statemate 381

Query Functions
stm_r_sb_unresolved_sb Query: Unresolved subroutines

Purpose: Returns the unresolved subroutines in the input
list
Syntax:
stm_r_sb_unresolved_sb (stm_list in_list,
int *status);

stm_r_sb_user_type_sb Query: Subroutines by subtype

Purpose: Returns the subroutines in the input list that are
defined as user-defined type
Syntax:
stm_r_sb_user_type_sb (stm_list in_list,
int *status);
382 Data Port Reference Guide

States (st)
States (st)
This section documents the queries that return a list of states.

Input List Type: ac

stm_r_st_done_throughout_ac Query: States in which a given activity is performed
throughout
Purpose: Returns the states for which activities in the
input list are performed throughout that state (as
specified in Activities Within/Throughout field in the
state’s form)
Syntax:
stm_r_st_done_throughout_ ac (stm_list
in_list, int *status);

stm_r_st_done_within_ac Query: States in which a given activity is performed
within them
Purpose: Returns the states in which activities in the
input list are performed within that state (as specified in
Activities Within/Throughout field in the state’s form)

Syntax:
stm_r_st_done_within_ac (stm_list
in_list, int *status);
Rational Statemate 383

Query Functions
Input List Type: ch

stm_r_st_def_or_unres_in_ch Query: States defined or unresolved in a given chart

Purpose: Returns the states that are explicitly defined
or unresolved in the charts of the input list
Syntax:
stm_r_st_def_or_unres_in_ ch (stm_list
in_list, int *status);

stm_r_st_defined_in_ch Query: States defined in a given chart

Purpose: Returns the states that are explicitly defined
in the charts of the input list
Syntax:
stm_r_st_defined_in_ch (stm_list in_list,
int *status);

stm_r_st_instance_of_ch Query: State instances of a given chart

Purpose: Returns the instance states defined by the
charts in the input list
Syntax:
stm_r_st_instance_of_ch (stm_list
in_list, int *status));

stm_r_st_root_in_ch Query: Root states of a given chart

Purpose: Returns the internally defined states (of type
diagram) attached to the charts in the input list
Syntax:
stm_r_st_root_in_ch (stm_list in_list,
int *status);

stm_r_st_top_level_in_ch Query: Top-level states of a given chart

Purpose: Returns the top-level states (not contained in
any box) of the charts in the input list
Syntax:
stm_r_st_top_level_in_ch (stm_list
in_list, int *status);

stm_r_st_unresolved_in_ch Query: States unresolved in a given chart

Purpose: Returns the states that are unresolved in the
charts of the input list
Syntax:
stm_r_st_unresolved_in_ch (stm_list
in_list, int *status);
384 Data Port Reference Guide

States (st)
Input List Type: cn

Input List Type: mx

stm_r_st_containing_cn Query: States containing a given connector

Purpose: Returns the states that encapsulate specified
connectors from the input list
Syntax:
stm_r_st_containing_cn (stm_list in_list,
int *status);

stm_r_st_affecting_mx Query: States in which a given element is affected.

Purpose: Returns the states that affect (modify,
generate, or activate) the elements (for example, events,
data-items, or activities) in the input list.
Syntax:
stm_r_st_affecting_mx (stm_list in_list,
int *status);

stm_r_st_meaningly_affecting_mx Query: Activities in which a given element is affected.
Purpose: Identical to stm_r_st_affecting_mx, but
when the input list includes an ID of a record/union,
stm_r_st_meaningly_affecting_mx will also
return elements that affect a field of the record/union,
and not necessarily the whole record/union element.
Syntax:
stm_r_st_meaningly_affecting_mx (stm_list
in_list, int *status);

stm_r_st_meaningly_using_mx Query: Activities in which a given element is used.

Purpose: Identical to stm_r_st_using_mx, but when
the input list includes an ID of a record/union,
stm_r_st_meaningly_using_mx will also return
elements that use a field of the record/union, and not
necessarily the whole record/union element.
Syntax:
stm_r_st_meaningly_using_mx (stm_list
in_list, int *status);
Rational Statemate 385

Query Functions
Input List Type: st

stm_r_st_using_mx Query: States in which a given element is used.

Purpose: Returns the states in static reactions that use
(evaluate) the elements (basic events, conditions, data-
items, states, and activities) in the input list.
Syntax:
stm_r_st_using_mx (stm_list in_list, int
*status);

stm_r_st_and_st Query: And states.

Purpose: Returns the states in the input list that are
And-states.
Syntax:
stm_r_st_and_st (stm_list in_list, int
*status);

stm_r_st_basic_st Query: Basic states.

Purpose: Returns the states in the input list that are
basic (states that have no descendants).
Syntax:
stm_r_st_basic_st (stm_list in_list, int
*status);

stm_r_st_by_attributes_st Query: States by attributes.

Purpose: Returns the states in the input list that match
a given attribute name and value.
Syntax:
stm_r_st_by_attributes_st (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_st_callback_binding_st Query: States with callback bindings.

Purpose: Returns the states in the input list that have
callback bindings.
Syntax:
stm_r_st_callback_binding_st (stm_list
in_list, int *status);

stm_r_st_def_of_instance_st Query: Definition states of a given state.

Purpose: Returns the definition states (top-level in the
definition chart) for instances in the input list.
Syntax:
stm_r_st_def_of_instance_ st (stm_list
in_list, int *status);
386 Data Port Reference Guide

States (st)
stm_r_st_default_entry_to_st Query: Default entry to the default state.

Purpose: Returns the default states of the or-states in
the input list.
Syntax:
stm_r_st_default_entry_to_st (stm_list
in_list, int *status);

stm_r_st_explicit_defined_st Query: States explicitly defined.

Purpose: Returns the states in the input list that were
explicitly defined.
Syntax:
stm_r_st_explicit_defined_st (stm_list
in_list, int *status);

stm_r_st_generic_instance_st Query: Generic instance states.

Purpose: Returns the states in the input list that are
instances of generic charts.
Syntax:
stm_r_st_generic_instance_st (stm_list
in_list, int *status);

stm_r_st_history_connector_st Query: States containing a history connector.

Purpose: Returns the states in the input list that contain
a history connector.
Syntax:
stm_r_st_history_connector_st (stm_list
in_list, int *status);

stm_r_st_instance_of_def_st Query: Instance states of a given definition state.

Purpose: Returns the instance states for definition
states (top-level states in a definition chart) in the input
list.
Syntax:
stm_r_st_instance_of_def_ st (stm_list
in_list, int *status);

stm_r_st_instance_st Query: Instance states.

Purpose: Returns those states in the input list that are
instance states.
Syntax:
stm_r_st_instance_st (stm_list in_list,
int *status);
Rational Statemate 387

Query Functions
stm_r_st_logical_desc_of_st Query: Logical descendants of a given state.

Purpose: Returns the logical descendants (children,
grandchildren, and so on) of states in the input list,
taking into account the translation of instances to their
definition charts.
Syntax:
stm_r_st_logical_desc_of_ st (stm_list
in_list, int *status);

stm_r_st_logical_parent_of_st Query: Logical parent states of a given state.

Purpose: Returns the logical parent states of the states
in the input list, taking into account the translation of
instances to their definition charts.
Note: This query provides similar output as
stm_r_st_physical_ parent_of_st, but for states
that are substates of a top-level state in a definition
chart, this query also returns the instance box.
Syntax:
stm_r_st_logical_parent_of_st (stm_list
in_list, int *status);

stm_r_st_logical_sub_of_st Query: Logical substates of a given state.

Purpose: Returns the logical substates of the states in
the input list, taking into account the translation of
instances to their definition charts.
Syntax:
stm_r_st_logical_sub_of_st (stm_list
in_list, int *status);

stm_r_st_name_of_st Query: States whose names match a given pattern

Purpose: Returns all the states whose names match
the specified pattern
Syntax:
stm_r_st_name_of_st (char* pattern, int
*status);

stm_r_st_offpage_instance_st Query: Offpage instance states.

Purpose: Returns the states in the input list that are
instances of offpage charts.
Syntax:
stm_r_st_offpage_instance_st (stm_list
in_list, int *status);

stm_r_st_physical_desc_of_st Query: Physical descendants of a given state.

Purpose: Returns the physical descendants (those
within the same chart) for the states in the input list.
Syntax:
stm_r_st_physical_desc_of_st (stm_list
in_list, int *status);
388 Data Port Reference Guide

States (st)
stm_r_st_physical_parent_of_st Query: Physical parent states of a given state.

Purpose: Returns the physical parent states (those
within the same chart) for the states in the input list.
Syntax:
stm_r_st_physical_desc_of_st (stm_list
in_list, int *status);

stm_r_st_physical_sub_of_st Query: Physical substates of a given state.

Purpose: Returns the physical substates (those within
the same chart) for the states in the input list.
Syntax:
stm_r_st_physical_sub_of_ st (stm_list
in_list, int *status);

stm_r_st_reaction_activity_st Query: States having reactions or activities.

Purpose: Returns the states from the input list that have
static reactions or activities performed within or
throughout the state.
Syntax:
stm_r_st_reaction_activity_st (stm_list
in_list, int *status);

stm_r_st_synonym_of_st Query: States whose synonyms match a given pattern

Purpose: Returns all the states whose synonyms match
the specified pattern
Syntax:
stm_r_st_synonym_of_st (char* pattern,
int *status);

stm_r_st_unresolved_st Query: Unresolved states.

Purpose: Returns the unresolved states in the input list.

Syntax:
stm_r_st_unresolved_st (stm_list in_list,
int *status);
Rational Statemate 389

Query Functions
Input List Type: tr

Timing Constraint (tc)
This section documents the query that returns a list of timing constraints.

Input List Type: ch

stm_r_st_source_of_tr Query: States that are sources of a given transition

Purpose: Returns the states that are sources of
transitions in the input list
Syntax:
stm_r_st_source_of_tr (stm_list in_list,
int *status);

stm_r_st_target_of_tr Query: States that are targets of a given transition

Purpose: Returns the states that are targets of
transitions in the input list
Syntax:
stm_r_st_target_of_tr (stm_list in_list,
int *status);

stm_r_tc_defined_in_ch Query: Timing constraints defined in a given chart

Purpose: Returns the timing constraints that are
explicitly defined in the charts of the input list
Syntax:
stm_r_tc_defined_in_ch (stm_list in_list,
int *status);
390 Data Port Reference Guide

Transitions (tr)
Transitions (tr)
This section documents the queries that return a list of transitions. The following abbreviations are
used:

� bt—Basic transition
� tr—Compound transition

Output List: tr

Input List Type: cn

Input List Type: enforced

stm_r_tr_from_source_cn Query: Transitions whose source is a given connector

Purpose: Returns the transitions in the input list whose
source is a termination or history connector
Syntax:
stm_r_tr_from_source_cn (stm_list
in_list, int *status);

stm_r_tr_to_target_cn Query: Transitions whose target is a given connector

Purpose: Returns the transition in the input list whose
target is a termination or history connector
Syntax:
stm_r_tr_to_target_cn (stm_list in_list,
int *status);

stm_r_tr_by_attributes_enforced Query: Transitions whose source is a given connector

Purpose: Returns the transitions in the input list that
match the specified attribute name and value
Syntax:
stm_r_tr_by_attributes_enforced (stm_list
in_list, int char* attr_name, char*
attr_value, int *status);
Rational Statemate 391

Query Functions
Input List Type: mx

stm_r_tr_affecting_mx Query: Transitions in which a given element is affected.

Purpose: Returns the transitions that affect (modify,
generate, or activate) the elements (for example, events,
data-items, or activities) in the input list.
Syntax:
stm_r_tr_affecting_mx (stm_list in_list,
int *status);

stm_r_tr_from_source_mx Query: Transitions whose source is a given element

Purpose: Returns transitions that originate at elements
in the input list
Syntax:
stm_r_tr_from_source_mx (stm_list in_list,
int *status);

stm_r_tr_meaningly_affecting_mx Query: Activities in which a given element is affected.
Purpose: Identical to stm_r_tr_affecting_mx, but when
the input list includes an ID of a record/union,
stm_r_tr_meaningly_affecting_mx will also return
elements that affect a field of the record/union, and not
necessarily the whole record/union element.
Syntax:
stm_r_tr_meaningly_affecting_mx (stm_list
in_list, int *status);

stm_r_tr_meaningly_using_mx Query: Activities in which a given element is used.

Purpose: Identical to stm_r_tr_using_mx, but when the
input list includes an ID of a record/union,
stm_r_tr_meaningly_using_mx will also return elements
that use a field of the record/union, and not necessarily
the whole record/union element.
Syntax:
stm_r_tr_meaningly_using_mx (stm_list
in_list, int *status);

stm_r_tr_to_target_mx Query: Transitions whose target is a given element

Purpose: Returns the transitions whose target is an
element from the input list
Syntax:
stm_r_tr_to_target_mx (stm_list in_list,
int *status);
392 Data Port Reference Guide

Transitions (tr)
Input List Type: st

 stm_r_tr_using_mx Query: Transitions in which a given element is used.

Purpose: Returns the transitions in labels that use
(evaluate) the elements (basic events, conditions, data-
items, states, and activities) in the input list.
Syntax:
stm_r_tr_using_mx (stm_list in_list, int
*status);

stm_r_tr_default_of_st Query: Transitions that are the default entrance of a
given state
Purpose: Returns the default entrances (compound
transitions) of the states in the input list
Syntax:
stm_r_tr_default_of_st (stm_list in_list,
int *status));

stm_r_tr_from_source_st Query: Transitions whose source is the specified state

Purpose: Returns the transitions whose source is a state
appearing in the input list
Syntax:
stm_r_tr_from_source_st (stm_list in_list,
int *status);

stm_r_tr_to_target_st Query: Transitions whose target is a given state

Purpose: Returns the transitions whose target is a state
appearing in the input list.
Syntax:
stm_r_tr_to_target_st (stm_list in_list,
int *status);
Rational Statemate 393

Query Functions
Input List Type: tr

stm_r_tr_by_attributes_tr Query:
Purpose: Returns the Transitions in the input list that
match the specified attribute name and value.
Syntax:
stm_r_tr_by_attributes_tr (stm_list
in_list, char* attr_name, char*
attr_value, int *status);

stm_r_tr_default_tr Query: Default transition

Purpose: Returns, of all the transitions in the input list
that are default transitions
Syntax:
stm_r_tr_default_tr (stm_list in_list, int
*status);
394 Data Port Reference Guide

Utility Functions
Utility functions enable you to manipulate lists. For example, you could use utility functions to
determine whether a particular element exists in a list of Rational Statemate elements. Or, you
could sort these lists to make reports easier to read. You can also use utility functions to manipulate
strings of characters—to locate string patterns in a given string and to extract portions of strings.
Most utility functions for lists can manipulate lists of any item type, but are usually used for lists of
Rational Statemate elements.

Utility functions do not extract information from the database; however, some utility functions use
database information to complete their operations. These functions enable you to manipulate the
information you have already retrieved using single-element or query functions.

Generating Lists
To perform operations on lists, it is sometimes necessary for you to prepare the lists yourself. (Lists
are also generated as output from other Dataport functions, such as query functions.) There are two
such situations:

� Creating a list from a number of discrete elements
� Loading a list that was stored in the specification database via queries

The created lists are of type stm_list. You can store them (using an assignment statement) in a
variable of this type to be used in subsequent statements.

Creating a List

Call the following function to create a list of Rational Statemate elements:

stm_list_create (e1, e2,..., end_of_list, &status);

In this syntax:

� e1 and e2—The element IDs that constitute the list
� end_of_list—A constant, defined in dataport.h, that signifies the end of the parameter

sequence of list items
� status—The function return status
Rational Statemate 395

Utility Functions
Loading a List

You can perform operations on lists that you stored in the workarea using the property sheet. To
access these lists, call the following function in your C program:

stm_list_load (list_name, &status);

In this syntax:

� list_name—A string identifying the list that you stored using the property sheet
� &status—The function return status

Calling List Utility Functions
Most of the utility functions operate on lists using the following calling sequence:

stm_list_operation (list, &status);

In this syntax:

� stm_list—Designates the function as a Rational Statemate list manipulation function
� operation—The kind of list operation performed
� list—The list to be operated on
� status—The return function status code

The type of value returned by the function depends on the particular function. The returned value
can be a list, a Rational Statemate element, a string, or an integer. For example:

stm_list_sort_by_name (event_list, &status)

This function alphabetically sorts the events in event_list according to their names.

The following sections document the utility functions that use a different calling sequence.
396 Data Port Reference Guide

Calling List Utility Functions
Calling Report and Plot Functions

Some utility functions enable you to produce predefined Rational Statemate reports and generate
plots of charts. All these functions produce an output addressed to a specific plotter or word
processor. This means that the output is written in a specific language, determined by one of the
arguments of the function call.

Producing Predefined Reports
There is a set of routines that generate and write Rational Statemate predefined reports of the
Reports tool, such as Tree, Property, Interface, and so on. The output contains commands for a
word processor that is determined by one of the input arguments. There are different calling
sequences for each type of report; the following is the general form:

stm_uad_report_name (report_specific_arguments,
 file_name, wp, append, with_header, p_width, p_height)

In this syntax:

� report_name—One of the predefined report types, such as tree.
� report_specific_arguments—A list of different arguments for the various types of

reports.
� file_name—A string that includes the file into which the output is written.
� wp—A string that includes the word processor name whose commands are included in the

output. The possible values for this parameter are: troff, nroff, and interleaf.
� append—A Boolean value which when true indicates that the output is appended to the

contents of the output file. This parameter also determines whether or not a page header is
omitted.

� with_header—A Boolean value which when true indicates that the set-up commands of
the work processor is included in the output. These commands usually appear only once
in a file to be processed by the word processor.

� p_width—The width of the output page in characters. For Interleaf, the width is given in
inches.

� p_height - The length of the output pages in lines. For Interleaf, the length is given in
inches.

For example, the following sequence produces a tree report:

stm_uad_rpt_tree (elist, 5, "my_file", "runoff", false,
 true, 80, 60)

The tree reportis produced for all elements in elist, to a depth of 5 in the hierarchy.
Rational Statemate 397

Utility Functions
Generating Chart Plots
The following function generates plots of charts:

stm_plot

Refer to stm_plot for more information.

Calling Functions on Reactions

The following two functions enable you to extract the trigger part and the action part from a
reaction string, trigger/action:

stm_trigger_of_reaction (reaction, &status)

stm_action_of_reaction (reaction, &status)

They operate on a reaction string that was extracted by single-element functions that return lists of
transition labels and static reactions of states.

The return values of the two functions are a string of type stm_expression. Because they are
defined as static in the functions, you should copy them for later use.

Calling Functions of the Workarea

The following four functions deal with the contents of the workarea and enable you to load,
unload, or save charts and other configuration items:

� stm_load

� stm_save

� stm_unload

� stm_unload_all

In general, use these functions when you want to change the contents of the workarea while
running the program, not interactively.
398 Data Port Reference Guide

Utility Function Examples
Utility Function Examples
This section shows how to use utility function calls to perform common tasks.

Example 1

To return the number of subactivities existing for the activity A1, use the following statements:

stm_id act_id, cntrl_act;
stm_list list, act_list, cntrl_act_list;
int status, list_length;
 .
 .
 .
act_id=stm_r_ac("A1", &status);
list=stm_list_create (act_id, end_of_list, &status);
act_list=stm_ac_physical_sub_of_ac (list, &status);
list_length=stm_list_length (act_list, &status);

Example 2

To return the activity from Example 1, which is the control activity, use the following statements:

 .
 .
 .
cntrl_act_list = stm_ac_control_ac (act_list &status);
cntrl_act = (stm_id)stm_list_first_element
 (cntrl_act_list, &status);
 .
 .
 .
The list cntrl_act_list consists of only one element. Extract the first
element (in this case, the only element) of the list and assign this control
activity’s ID to cntrl_act.
Rational Statemate 399

Utility Functions

.

f
List of Utility Functions
The following pages document the utility functions. The functions are presented in alphabetical
order, as listed in the following table.

Function Description

stm_action_of_reaction Extracts the action part of the specified reaction

stm_add_attribute Enables you to add new attributes to a property element

stm_backup Creates a back up of the workarea in a session to a
selected directory.

stm_commit_transaction Closes any open database transactions. It is done
explicitly if you are working in the self_transaction
mode.

stm_decode_color Decodes the the color’s value as it is retrieved from the
database.

stm_delete_attributes Removes an attribute entry from the properties for an
element.

stm_dispose_all Disposes of all the records that were previously allocated
and retrieved.

stm_dispose_graphic Disposes of the record of type stm_xx_graphic that
was previously allocated and retrieved by the function
stm_r_xx_graphic ().

stm_dispose_text Disposes of the record of type stm_xx_text, which was
previously allocated and retrieved by the function
stm_r_xx_text().

stm_do_command_line Sends a message to the open Rational Statemate main
tool to execute a command line using the same syntax o
STMM CLI.

stm_exit_simulation Allows exit of a Simulation session by profile name.

stm_finish_uad Completes the information retrieval session so the
database is closed for transactions. This is performed
after the last Dataport function call.

stm_frm_Reset_id Resets the Framemaker ID's counter (after calling
stm_plot using Framemaker).

stm_get_db_status Returns a number of type stm_id. This number is
changed when the database is changed.

stm_init_uad Initializes the database for information retrieval by the
Dataport functions, and checks the user access rights
and user license.

stm_internal_refresh Notifies STM that data was changed outside the tool.

stm_list_add_id_element Adds a new element to a list of element IDs.

stm_list_add_id_element_to_list Adds a new element to a list of element IDs.
400 Data Port Reference Guide

List of Utility Functions

t

stm_list_add_ptr_element Adds a new element to a list of element pointers.

stm_list_add_ptr_element_to_list Adds a new element to a list of element pointers.

stm_list_contains_id_element Determines whether the specified ID appears in the given
list.

stm_list_contains_ptr_element Determines whether the specified item appears in the
given list.

stm_list_create_ids_list Creates a list of items using their IDs.

stm_list_create_ptr_list Creates a list of items.

stm_list_create_id_list_with_args Creates a list of items using the specified IDs.

stm_list_create_ptr_list_with_args Creates a list of items.

stm_list_delete_id_element Deletes the specified element from a list of element IDs.

stm_list_delete_id_element_from_list Deletes the specified element from a list of element
pointers.

stm_list_delete_ptr_element_from_list Deallocates the memory used by the specified list.

stm_list_extraction Extracts the elements from the input list.

stm_list_extraction_by_chart Extracts the elements from the input list that belong to the
specified chart.

stm_list_extraction_by_chart_id Extracts the elements from the input list that are defined
in the pecified chart.

stm_list_extraction_by_type Extracts elements of the specified type from the given lis
of Rational Statemate elements.

stm_list_first_id_element Returns the first item appearing in the list passed as an
input argument.

stm_list_first_ptr_element Returns the first item appearing in the list passed as an
input argument.

stm_list_intersect_ids_lists Extracts elements that are common to the two specified
input lists.

stm_list_intersect_ptr_lists Extracts elements that are common to the two specified
ptr lists.

stm_list_last_id_element Returns the last item appearing in the list
passed as an input argument.

stm_list_last_ptr_element Returns the last item appearing in the list passed as an
input argument.

stm_list_length Returns the length of the specified list.

stm_list_load Loads a previously saved list into memory to be used by
the program.

stm_list_next_id_element Returns the next item appearing in the list passed as an
input argument.

stm_list_next_ptr_element Returns the next item appearing in the list passed as an
input argument.

stm_list_previous_id_element Returns the previous item appearing in the list passed as
an input argument.
Rational Statemate 401

Utility Functions

stm_list_previous_ptr_element Returns the previous item appearing in the list passed as
an input argument.

stm_list_purge Erases the input list’s pointers and the list elements.

stm_list_sort Alphabetically sorts the specified list of strings.

stm_list_sort_alphabetically_by_branches Alphabetically sorts the specified list of strings by
branches.

stm_list_sort_alphabetically_by_levels Alphabetically sorts the specified list of strings by levels.

stm_list_sort_by_attr_value Sorts the specified list of Rational Statemate elements by
the value of the given attribute.

stm_list_sort_by_branches Sorts the specified list of hierarchical Rational Statemate
elements by branches.

stm_list_sort_by_chart Alphabetically sorts the input list of named Rational
Statemate elements, by the name of the chart to which
they belong.

stm_list_sort_by_levels Alphabetically sorts the input list of named Rational
Statemate elements, by the name of the chart to which
they belong.

stm_list_sort_by_name Sorts the specified list of Rational Statemate elements
alphabetically by name.

stm_list_sort_by_synonym Sorts the specified list of Rational Statemate elements
alphabetically by their synonyms.

stm_list_sort_by_type Sorts the specified list of Rational Statemate elements by
type.

stm_list_subtract_ids_lists Creates a new list of those elements of the first input list
that are not found in the second input list.

stm_list_subtraction_ptr_lists Creates a new list of those elements of the first input list
that are not found in the second input list.

stm_list_subtract_ids_lists Creates a new list of those elements of the first input list
that are not found in the second input list.

stm_list_union_ids_lists Merges the elements of two specified ids lists.

stm_list_union_ptr_lists Merges the elements of two specified ptr lists.

stm_load Loads a chart file (or any other configuration item file) into
the current workarea.

stm_multiline_to_one Converts the specified multiline string (with new lines) to
a one-line string (without the new lines).

stm_multiline_to_strings Converts the specified multiline expression to a list of
strings.

stm_open_truth_table Opens a Truth Table that is connected to the specified
element and highlights the specified line in it.

stm_plot Generates a plot file with the indicated parameters, such
as plot size, output device, and so on.

stm_plot_ext May return one of two status codes.

stm_plot_hyper_exp Generates the hyperlinks in a sequence diagram.

stm_plot_with_autonumber Prints a sequence diagram with numbered scenarios.
402 Data Port Reference Guide

List of Utility Functions

r
stm_plot_with_break Breaks a sequence diagram across multiple pages.

stm_plot_with_headerline Prints a sequence diagram with the names of lifelines on
every page.

stm_r_global_interface_report Return the global interface report for the elements in the
input list

stm_r_local_interface_report Return the local interface report for the elements in the
input list.

stm_run_simulation_profile Sends a message to Rational Statemate to open and
execute a Simulation profile by the name passed as a
parameter.

stm_save Saves a chart (or any other configuration item file) from
the current workarea to an external file.

stm_start_transaction Enables transaction operations on the database.

stm_start_transaction_rw Enables read/write transaction operations on the
database.

stm_trigger_of_reaction Returns the trigger part of a reaction (label of transition o
static reaction).

stm_uad_attribute Writes the predefined attribute report to the specified
output file.

stm_uad_dictionary Writes the predefined property report to the specified
output file.

stm_uad_interface Writes the predefined attribute report to the specified
output file.

stm_uad_list Writes the predefined list report to the specified output
file.

stm_uad_n2 Writes the predefined N2-chart report to the specified
output file.

stm_uad_protocol Writes the predefined protocol report to the specified
output file.

stm_uad_resolution Writes the predefined resolution report to the specified
output file.

stm_uad_state_interface Writes the predefined state interface report to the
specified output file.

stm_uad_structure Writes the predefined structure report to the specified
output file.

stm_uad_tree Writes the predefined tree report to the specified output
file.

stm_unload Unloads (deletes from the current workarea) a chart or
any other configuration item file.

stm_unload_all Unloads all charts from the current workarea and clears
all database fields.
Rational Statemate 403

Utility Functions
stm_action_of_reaction

Extracts the action part of the specified reaction (the label of the transition or static reaction).
The syntax of a reaction is trigger/action.

� The reaction is achieved by the single-element function stm_r_st_reactions or
stm_r_tr_labels.

� The function returns an empty string when the action is missing.

Function Type

stm_expression

Syntax

stm_action_of_reaction (reaction, &status)

Arguments

Status Codes

� stm_success

Example

To list all actions that are triggered when S1 is in a static reactions (assume that S1 has several
static reactions), include the following calls in your program:

stm_id st_id;
 int status;
 stm_list reactions;
 stm_expression rct;

 st_id = stm_r_st ("S1", status);
 reactions = stm_r_st_reactions (st_id, status);
 printf ("\n Actions of reactions in S1:");
 for (rct = (string)
 stm_list_first_element (reactions, &status);
 status == stm_success;
 rct = (string)
 stm_list_next_element (reactions, &status))
 printf ("\n %S", stm_action_of_reaction (
 rct, &status));

Argument Input/Output Type Description

reaction In char * The reaction to decompose

status Out int The function status code
404 Data Port Reference Guide

List of Utility Functions
stm_add_attribute

Enables you to add new attributes to a properties element.

� Initialization of the program must be performed in self_transaction mode;
stm_init_uad with self_transaction.

� Use stm_start_transaction_rw() instead of stm_start_transaction().
� Use stm_commit_transaction() at the end of each transaction.

Function Type

void

For Elements

Syntax

stm_add_attribute (id, attr_name, attr_val, &status)

activity ac

block bl

chart ch

condition co

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

module md

state st

transition

user-defined type dt
Rational Statemate 405

Utility Functions
Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_illegal_attribute_name

� stm_illegal_attribute_value

� stm_duplicate_attribute_pair

� stm_not_in_rw_transaction

Example

The following example inserts an attribute into state S1.

#include <dataport.h>

main(argc, argv)
char **argv;
int argc;
{
 int status;
 stm_id state_id;

 if (argc!=3)
 {
 printf ("Usage %s PROJECT workarea\n", argv[0]);

 exit (0);
 }
 if (!stm_init_uad(argv[1], argv[2], self_transaction,
 &status))
 {
 printf ("can’t open workarea %s\n", argv[2]);
 exit(1);
 }
 stm_start_transaction_rw ();
 state_id = stm_r_st ("S1", &status);

Argument Input/
Output Type Description

id In stm_id The element ID

attr_name In char * The attribute name.
This name must be uppercase, alpha-numeric, or
empty (with a maximum length of 64).

Attr_value In char * The attribute value.
The value can be any text string, with a maximum
length of 300.

status Out int Function status code
406 Data Port Reference Guide

List of Utility Functions
 stm_add_attribute (state_id, "FRED", "A Value",
 &status);
 stm_commit_transaction();
}

stm_backup

Creates a back up of the workarea in a session to a selected directory.

Syntax

stm_backup (char* destination, char* mess, int *status)

Arguments

Argument Input/
Output Type Description

char* In destination The destination directory for the backup.

char* Out mess Messages related to the backup operation.

int Out status The status of the query
(stm_error_in_backup or
stm_success).

status Out int Function status code
Rational Statemate 407

Utility Functions
stm_commit_transaction

Closes any open database transactions. It is done explicitly if you are working in the
self_transaction mode.

Note
In self_transaction mode, each start-transaction must have a corresponding commit. In
automatic_transaction mode, the commit is performed automatically.

Function Type

void

Syntax

stm_commit_transaction()

Example

To close transactions, use the following statement:

 .
 .
stm_r... -- a retrieval function
stm_commit_transaction();
 .
 .
408 Data Port Reference Guide

List of Utility Functions
stm_decode_color

Decodes the color’s value as it is retrieved from te datavbase, suing APIs like
stm_r_ac_graphic(). The stm_decode_color API receives the color value received from the
database and converts it into a structure (struct stm_color_all) that has the true color values in
its fields, as well as the fill style of the graphical shape.

Syntax

stm_dolor_all stm_decode_color (unsigned long color, int *status

stm_delete_attributes

Removes an attribute entry from the properties for an element.

� Initialization of the program must be done in self_transaction mode, that is use
stm_init_uad with self_transaction.

� Use stm_start_transaction_rw(), instead of stm_start_transaction().
� Use stm_commit_transaction() at the end of each transaction.

Function Type

void
Rational Statemate 409

Utility Functions
For Elements

Syntax

stm_delete_attributes (id, attr_name, attr_val, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_id_not_found

� stm_illegal_attribute_name

� stm_illegal_attribute_value

action an

activity ac

block bl

chart ch

condition co

data-item di

data-store ds

event ev

field fd

function fn

information-flow if

module md

state st

transition

user-defined type dt

Argument Input/
Output Type Description

id In stm_id The element ID.

attr_name In string The attribute name.
This name must be uppercase, alpha-numeric, or
empty (with a maximum length of 31).

attr_value In string The attribute value.
The value can be any text string, with a maximum
length of 300.

status Out int Function status code.
410 Data Port Reference Guide

List of Utility Functions
� stm_elements_without_attributes

� stm_attribute_cannot_be_deleted

� stm_not_in_rw_transaction
Rational Statemate 411

Utility Functions
stm_dispose_all

Disposes of all the records that were previously allocated and retrieved.

Function Type

void

Syntax

stm_dispose_all (gen_all_ptr)

Arguments

Argument Input/
Output Type Description

gen_all_ptr In void ** A pointer to the data to be
disposed of.
412 Data Port Reference Guide

List of Utility Functions
stm_dispose_graphic

Disposes of the record of type stm_xx_graphic that was previously allocated and retrieved by
the function stm_r_xx_graphic ().

Function Type

void

Syntax

stm_dispose_graphic (elm_graphic_data)

Arguments

Status Codes

� stm_dispose_rt_allocation

� stm_dispose_rt_tex

stm_dispose_text

Disposes of the record of type stm_xx_text, which was previously allocated and retrieved by
the function stm_r_xx_text().

Function Type

void

Syntax

stm_dispose_text (elm_textual_data)

Arguments

Argument Input/
Output Type Description

elm_graphic_data In stm_xx_graphic_ptr A pointer to the
graphical data of
the element to be
disposed.

Argument Input/
Output Type Description

elm_textual_data In stm_xx_text_ptr A pointer to the
textual data to be
disposed.
Rational Statemate 413

Utility Functions
stm_do_command_line

Sends a message to the open Rational Statemate main tool to exectue a command line using
the same syntax of STMM CLI.

There is no need to include the '-wa' and '-project' switches - the CLI command will be
executed on the workarea currently open by Rational Statemate main.

A new switch '-queue' can be used in the command line for this API, in conjunction with one
of the supported CLI tools (e.g. '-simulation', '- checkmodel', and so forth), to allow queuing of
several tool profiles. The queued profiles will be executed consequentially (When running
Simulation, the input_file (specified after "-i") should have a 'quit' command at the end, to
terminate the simulation session and allow execution of the next profile in the queue).

Function Type

stm_boolean

Syntax

stm_do_command_line(string command_line , int* status);
414 Data Port Reference Guide

List of Utility Functions
stm_exit_simulation

Allows exit of a Simulation session by profile name.

Function Type

stm_boolean

Syntax

stm_exit simulation (profile_name, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_open_socket_to_statemate

Argument Input/
Output Type Description

profile_name In char The name of the
Simulation.

status Out int The function status
code.
Rational Statemate 415

Utility Functions
stm_exit_graphic_editor

Allows exit of a graphic-editor session by chart ID.

Function Type

stm_boolean

Syntax

stm_exit graphic_editor (chart_id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_open_socket_to_statemate

Argument Input/
Output Type Description

chart_id In stm_chart_
id

ID of chart.

status Out int The function status
code.
416 Data Port Reference Guide

List of Utility Functions
stm_finish_uad

Completes the information retrieval session so the database is closed for transactions. This is
performed after the last Dataport function call.

Function Type

void

Syntax

stm_finish_uad ()

Example

The information retrieval process in a program concludes with the following:

stm_finish_uad();
 .
 .

stm_frm_Reset_id

Resets the Framemaker ID's counter (after calling stm_plot using Framemaker).

Function type:

void

Syntax:

stm_frm_reset_id()
Rational Statemate 417

Utility Functions
stm_get_db_status

Returns a number of type stm_id. This number is changed when the database is changed.

Note
The return type is int, which is the same type as stm_id.

Syntax

stm_get_db_status (stm_id)

stm_init_uad

Initializes the database for information retrieval by the Dataport functions, and checks the user
access rights and user license.

The stm_init_uad function automatically changes the current directory to the workarea
directory. All references to files inside the program have to take this into account. When the
program terminates, it does not return to the original directory.

Function Type

stm_boolean

Syntax

stm_init_uad (proj_name, workarea, trans_mode, &status)
418 Data Port Reference Guide

List of Utility Functions
Arguments

Status Codes

� stm_no_updated_pmdb

� stm_no_updated_projdb

� stm_no_legal_operator

� stm_deadlock

� stm_not_member_of_project

� stm_nonexistent_project

� stm_empty_file_of_licensed_host

� stm_no_file_of_licensed_host

� stm_cannot_chdir_to_work_area

� stm_workarea_does_not_exist

Example

To initialize the database, use the following statements:

int success, status;
 .
 .
success = stm_init_uad ("A5S700", "/a5/general",
 automatic_transaction, &status);
 .
 .
 .
This function initializes the workarea for project A5S700, which is
found in the directory /a5/general. The transactions are started
automatically and finished automatically by the init and finish

Argument Input/
Output Type Description

proj_name In char * The name of the project.

workarea In char * The pathname to the workarea directory.

trans_mode In stm_transaction The transaction mode.
The possible values are as follows:

• automatic_transaction - An implicit
start_transaction is performed when you initialize
and an implicit commit_transaction is performed
when you finish the retrieval process

• self_transaction - You can control when the
start_transaction and commit_transaction is
performed for an accurate picture of the database when
the functions are used.

status Out int The function status code.
Rational Statemate 419

Utility Functions
functions. The status should be checked in case the function fails and
returns false.
420 Data Port Reference Guide

List of Utility Functions
stm_internal_refresh

Notifies Rational Statemate that data was changed outside the tool, such that in the next
refresh, values are recalculated. The function return value is stm_true and the status value is
stm_success if the message was successfully sent to Rational Statemate.

Function Type

stm_boolean

Syntax

stm_internal_refresh (int *status)

stm_list_add_id_element

Adds a new element to a list of element IDs.

Function Type

stm_list

Syntax

stm_list_add_id_element (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_nil_list

Argument Input/
Output Type Description

list In stm_list The list of Rational Statemate
elements.

element In stm_list_id_elemen The element ID.

status Out int The function status code.
Rational Statemate 421

Utility Functions
Example

To add a new element use the following statement (the element ID number has been assigned
to st_id):

stm_id st_id;
 stm_list st_list;
 int status;
 .
 .
 st_id = stm_r_st ("S1", &status);
 st_list = stm_list_add_id_element (st_list, st_id,
 &status);
 .
 .

stm_list_add_id_element_to_list

Adds a new element to a list of element IDs.

Function Type

void

Syntax

stm_list_add_id_element_to_list (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

� stm_nil_list

Argument Input/
Output Type Description

list In/out stm_list The list of Rational Statemate
elements.

element In stm_list_id_elemen The element ID.

status Out int The function status code.
422 Data Port Reference Guide

List of Utility Functions
Example

To add a new element use the following statement (the element ID number has been assigned
to st_id):

stm_id st_id;
 stm_list st_list;
 int status;
 .
 .
 st_id = stm_r_st ("S1", &status);
 stm_list_add_id_element_to_list (st_list, st_id,
 &status);
 .
 .

stm_list_add_ptr_element

Adds a new element to a list of element pointers.

Function Type

stm_list

Syntax

stm_list_add_ptr_element (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To add a new elemen,t use the following statement (the element id has been assigned to st_id and the
element name has been assigned to st_name):

stm_id st_id;stm_element_name st_name;stm_list st_list;
int status;..st_name = stm_r_st_name(st_id, &status);
st_list = stm_list_add_ptr_element (st_list, st_name, &status);

Argument Input/
Output Type Description

list In stm_list The list of Rational Statemate
elements.

element In stm_list_ptr_elm The element pointer.

status Out int The function status code.
Rational Statemate 423

Utility Functions
.

.

stm_list_add_ptr_element_to_list

Adds a new element to a list of element pointers.

Function Type

void

Syntax

stm_list_add_ptr_element_to_list (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To add a new elemen,t use the following statement (the element id has been assigned to st_id and the
element name has been assigned to st_name):

stm_id st_id;stm_element_name st_name;stm_list st_list;
int status;..st_name = stm_r_st_name(st_id, &status);
st_list = stm_list_add_ptr_element (st_list, st_name, &status);
.
.

Argument Input/
Output Type Description

list In/out stm_list The list of Rational Statemate
elements.

element In stm_list_ptr_elm The element pointer.

status Out int The function status code.
424 Data Port Reference Guide

List of Utility Functions
stm_list_contains_id_element

Determines whether the specified ID appears in the given list.

Function Type

int

Syntax

stm_list_contains_id_element (list, item, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To check a list of Rational Statemate elements for the presence of activity A1 and assign the
elements to the list elmnt_list, use the following statement:

stm_list elmnt_list;
 stm_id st_id;
 int status;
 .
 .
 if (stm_list_contains_id_element (elmnt_list,
 (stm_list_id_elm)st_id, &status))
 .
 .
If A1 appears in elmnt_list, the statements following the if statement
are executed. Note that the ID of A1 (and not its name) is passed to
the function.

Argument Input/
Output Type Description

list In stm_list The list to search.

item In stm_list_id_elm The item to look for.

status Out int The function status code.
Rational Statemate 425

Utility Functions
stm_list_contains_ptr_element

Determines whether the specified item appears in the given list.

Function Type

int

Syntax

stm_list_contains_ptr_element (list, item, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To check a list of Rational Statemate elements for the presence of activity A1 and assign the
elements to the list elmnt_list, use the following statement:

stm_list elmnt_list;
 stm_list_ptr_elm st_name;
 int status;
 .
 .
 if (stm_list_contains_ptr_element (elmnt_list,
 (stm_list_elm)st_name, &status))
 .
 .
If A1 appears in elmnt_list, the statements following the if statement
are executed. Note that the name of A1 (and not its ID) is passed to
the function.

Argument Input/
Output Type Description

list In stm_list The list to search.

item In stm_list_ptr_elm The item to look for.

status Out int The function status code.
426 Data Port Reference Guide

List of Utility Functions
stm_list_create_ids_list

Creates a list of items using their IDs. The number of arguments varies according to the
number of elements to be included in the list. The list is terminated by the predefined constant
end_of_id_list.

Function Type

stm_list

Syntax

stm_list_create_ids_list (item1, item2..., end_of_id_list, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

Example

To create a list that contains the activity named A2 and the state S8, retrieve their IDs from the
database and create the list using the following statements:

stm_id ac_id, st_id;
int status;
stm_list list;
 .
 .
ac_id = stm_r_ac ("A2", &status);
st_id = stm_r_st ("S8", &status);
list = stm_list_create_ids_list (st_id, ac_id, end_of_id_list,
 &status);
 .
 .

Argument Input/
Output Type Description

item1 In stm_id The first element in the list.

item2 In stm_id The next element in the list (and so on).

end_of_id_list In stm_id The end of the list.

status Out int The function status code.
Rational Statemate 427

Utility Functions

).
stm_list_create_ptr_list

Creates a list of items. The number of arguments varies according to the number of elements to
be included in the list. The list is terminated by the predefined constant end_of_ptr_list.

Function Type

stm_list

Syntax

stm_list_create_ptr_list (item1, item2..., end_of_list, &status)

Arguments

Status Codes

� stm_success

Example

To create a list that contains the names of the activity named A2 and the state S8, create the
list using the following statements:

stm_id ac_id, st_id;
int status;
stm_element_name ac_name,st_name
stm_list list;
 .
 .
ac_name = stm_r_ac_name ("ac_id", &status);
st_name = stm_r_st_name ("st_id", &status);
list = stm_list_create_ptr_list (st_name, ac_name, end_of_ptr_list,
&status);
 .
 .

Argument Input/
Output Type Description

item1 In stm_list_ptr_id The first element in the list.

item2 In stm_list_ptr_id The next element in the list (and so on

end_of_ptr_list In char* The end of the list.

status Out int The function status code.
428 Data Port Reference Guide

List of Utility Functions
stm_list_create_id_list_with_args

Creates a list of items using the specified IDs.

Function Type

stm_list

Syntax

 stm_list_create_id_list_with_args (args, &status)

Arguments

Status Codes

� stm_success

� stm_id_out_of_range

Argument Input/
Output Type Description

args In stm_id* Array of stm_id's to insert to the list

status Out int The function status code.
Rational Statemate 429

Utility Functions
stm_list_create_ptr_list_with_args

Creates a list of items.

Function Type

stm_list

Syntax

 stm_list_create_ptr_list_with_args (args, &status)

Arguments

Status Codes

� stm_success

Argument Input/
Output Type Description

args In stm_list_ptr_elm* Array of stm_list_ptr_elm's to insert to the list.

status Out int The function status code.
430 Data Port Reference Guide

List of Utility Functions
stm_list_delete_id_element

Deletes the specified element from a list of element IDs.

Function Type

stm_list

Syntax

stm_list_delete_id_element (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_list_element_does_not_exist

� stm_nil_list

Example

To remove the element ID st_id from a list, use the following statement:

stm_list st_list;
stm_id st_id;
int status;
 .
 .
st_list = stm_list_delete_id_element (st_list, st_id,
 &status);
 .
 .

Argument Input/Output Type Description

list In stm_list The list of Rational Statemate
elements

element In stm_id The ID of the element to delete

status Out int The function status code
Rational Statemate 431

Utility Functions
stm_list_delete_id_element_from_list

Deletes the specified element from a list of element IDs.

Function Type

void

Syntax

stm_list_delete_id_element_from_list (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_list_element_does_not_exist

� stm_nil_list

Example

To remove the element ID st_id from a list, use the following statement:

stm_list st_list;
stm_id st_id;
int status;
 .
 .
stm_list_delete_id_element_from_list (st_list, st_id,
 &status);
 .
 .

Argument Input/Output Type Description

list In/out stm_list The list of Rational Statemate
elements

element In stm_id The ID of the element to delete

status Out int The function status code
432 Data Port Reference Guide

List of Utility Functions
stm_list_delete_ptr_element

Deletes the specified element from a list of element pointers.

Function Type

stm_list

Syntax

stm_list_delete_ptr_element (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_list_element_does_not_exist

� stm_nil_list

Example

To remove the element st_ptr from a list, use the following statement:

stm_list st_list;
stm_list_ptr_elm st_ptr;
int status;
 .
 .
st_list = stm_list_delete_ptr_element (st_list, st_ptr,
 &status);
 .
 .

Argument Input/Output Type Description

list In stm_list The list of Rational Statemate
elements

element In stm_list_ptr_elm The element to delete

status Out int The function status code
Rational Statemate 433

Utility Functions
stm_list_delete_ptr_element_from_list

Deletes the specified element from a list of element pointers.

Function Type

void

Syntax

stm_list_delete_ptr_element_from_list (list, element, &status)

Arguments

Status Codes

� stm_success

� stm_list_element_does_not_exist

� stm_nil_list

Example

To remove the element st_ptr from a list, use the following statement:

stm_list st_list;
stm_list_ptr_elm st_ptr;
int status;
 .
 .
stm_list_delete_ptr_element_from_list (st_list, st_ptr,
 &status);
 .
 .

Argument Input/Output Type Description

list In/out stm_list The list of Rational Statemate
elements

element In stm_list_ptr_elm The element to delete

status Out int The function status code
434 Data Port Reference Guide

List of Utility Functions
stm_list_destroy

Deallocates the memory used by the specified list.

� The returned value is false when the input list is a nil list.
� After the function operation, list cannot be used as an input argument in list functions.
� The function does not free the entire memory space used by the list when the list members

occupy more than a single memory location. For example, with strings only the pointers
to the strings are destroyed. (Compare with stm_list_purge.)

Function Type

int

Syntax

stm_list_destroy (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To use a list and then make its associated space available, use the following statements:

 stm_list list;
 int status;
 .
 .
 if (stm_list_destroy (list, &status))
 printf ("list destroyed");
 .
 .

Argument Input/
Output Type Description

list In stm_list The list to destroy

status Out int The function status code
Rational Statemate 435

Utility Functions
stm_list_extraction

Extracts the elements from the input list.

Function Type

stm_list

Syntax

stm_list_extraction (ex_type, list, &status)

stm_list_extraction (ex_type, el_list, status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Argument Input/
Output Type Description

ex_type In int The type to extract from the list.

list In stm_list The list of Rational Statemate
elements.

status Out int The function status code.
436 Data Port Reference Guide

List of Utility Functions
stm_list_extraction_by_chart

Extracts the elements from the input list that belong to the specified chart.

Function Type

stm_list

Syntax

stm_list_extraction_by_chart (chart_name, list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_illegal_name

� stm_name_not_found

Example

To extract a list of all Rational Statemate elements that belong to the Statechart S8 from the
input list elem_list, use the following statements:

stm_list elem_list,S8_elements;
 .
 .
S8_elements = stm_list_extraction_by_chart ("S8",
 elem_list, &status);
 .
 .

Argument Input/
Output Type Description

chart_name In stm_element_name The name of the chart.

list In stm_list The list of Rational
Statemate elements.

status Out int The function status code.
Rational Statemate 437

Utility Functions
stm_list_extraction_by_chart_id

Extracts the elements from the input list that are defined in the pecified chart.

Function Type

stm_list

Syntax

stm_list_extraction_by_chart_id (stm_id chart_id, stm_list list, int* status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Argument Input/
Output Type Description

chart_id In stm_chart_id Chart from which to extract
elements.

list In stm_list The list of Rational Statemate
elements.

status Out int The function status code.
438 Data Port Reference Guide

List of Utility Functions
stm_list_extraction_by_type

Extracts elements of the specified type from the given list of Rational Statemate elements.

Function Type

stm_list

Syntax

stm_list_extraction_by_type (element_type, list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_illegal_extract_type

Example

To extract a list of all the activities appearing in a list of Rational Statemate elements, the input
list is assigned to the variable act_list using the following statement:

stm_list list, act_list;
int status;
 .
 .
act_list = stm_list_extraction_by_type (stm_activity,
 list, &status);
 .
 .

Note that stm_activity is a constant value, not a variable.

Argument Input/
Output Type Description

element_type In int The type to look for.
element_type is one of the possible values of the
enumerated type stm_element_type.
The values of this type usually take the form
stm_element_type (for example, stm_state,
stm_event, and so on).

list In stm_list The list of elements (mixed types).

status Out int The function status code.
Rational Statemate 439

Utility Functions
stm_list_first_id_element

Returns the first item appearing in the list passed as an input argument. This function may be
applied to lists containing Rational Statemate ids.

Function Type

stm_list_id_elm

Syntax

stm_list_first_id_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_ielement_does_not_exist

Example

To find out which activity in the list of activities assigned to the variable act_list is a control
activity, use the following statements:

stm_list cntrl_act_list, act_list;
stm_id cntrl_act;
int status;
 .
 .
cntrl_act_list = stm_ac_control_ac (act_list, &status);
cntrl_act = (stm_id)
stm_list_first_id_element (cntrl_act_list, &status);
 .
 .

First, extract all control activities from the input list act_list. The list cntrl_act_list
consists of only one element. Extract the first element (in this case the only element) of the list
and assign this control activity’s ID to cntrl_act.

Argument Input/
Output Type Description

list In stm_list The list of ids.

status Out int The function status code.
440 Data Port Reference Guide

List of Utility Functions
stm_list_first_ptr_element

Function Type

stm_list_elm

Description

Returns the first item appearing in the list passed as an input argument. This function may be
applied to lists containing pointers.

Syntax

stm_list_first_ptr_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.

status Out int The function status code.
Rational Statemate 441

Utility Functions
stm_list_intersect_ids_lists

Function Type

stm_list

Description

Extracts elements that are common to the two specified input lists.

Note
The two lists must be both lists of stm_id's

Syntax

stm_list_intersect_ids_lists (list1, list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

To produce the intersection list list3 from list1 and list2, use the following statements:

stm_list list1,list2,list3;
int status;
 .
 .
list3 = stm_list_intersect_ids_list (list1, list2, &status);
 .
 .

Argument Input/
Output Type Description

list1 In stm_list The first list to compare

list2 In stm_list The second list to compare

status Out int The function status code
442 Data Port Reference Guide

List of Utility Functions
stm_list_intersect_ptr_lists

Function Type

stm_list

Description

Extracts elements that are common to the two specified ptr lists.

Note
The two lists must be both lists of stm_list_ptr_elm's.

Syntax

stm_list_intersect_ptr_lists (list1, list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

To produce the intersection list list3 from list1 and list2, use the following statements:

stm_list list1,list2,list3;
int status;
 .
 .
list3 = stm_list_intersect_ptr_lists (list1, list2, &status);
 .
 .

Argument Input/
Output Type Description

list1 In stm_list The first list to compare

list2 In stm_list The second list to compare

status Out int The function status code
Rational Statemate 443

Utility Functions
stm_list_last_id_element

Function Type

stm_list_id_elm

Description

Returns the last item appearing in the list passed as an input argument. This function can be
applied to lists containing stm_id’s.

Syntax

stm_list_last_id_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Example

To find the last item in the list of states, S1, S2, S3, and S4 assigned to the variable
state_list, use the following statements:

stm_list state_list;
stm_id state_id;
int status;
 .
 .
state_id = (stm_id) stm_list_last_id_element (state_list,
 &status);
printf ("The last state in the list is: %s\n",
 stm_r_st_name (state_id, &status));
 .
 .

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list must be stm_id’s.

status Out int The function status code.
444 Data Port Reference Guide

List of Utility Functions
stm_list_last_ptr_element

Function Type

stm_list_ptr_elm

Description

Returns the last item appearing in the list passed as an input argument. This function can be
applied to lists containing stm_list_ptr_elm’s.

Syntax

stm_list_last_ptr_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list must be stm_list_ptr_elm’s.

status Out int The function status code.
Rational Statemate 445

Utility Functions
stm_list_length

Function Type

int

Description

Returns the length of the specified list.

Syntax

stm_list_length (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To verify that an extracted list of all the events from the database whose name matched a
certain pattern (assigned to st_list) contains no more than 3000 elements, use the following
statements:

stm_list st_list;
int status;
 .
 .
if (stm_list_length (st_list, &status) < 3000)
 .
 .

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list can be of any element type.

status Out int The function status code.
446 Data Port Reference Guide

List of Utility Functions
stm_list_load

Function Type

stm_list

Description

Loads a previously saved list into memory to be used by the program. Lists can be saved by
several tools in Rational Statemate, such as search.

Syntax

stm_list_load (list_name, &status)

Arguments

Status Codes

� stm_success

� stm_no_such_list

Example

To load a list saved as the name EXT_SIGNALS into memory, use the following call:

stm_list list;
int status;
 .
 .
list = stm_list_load ("EXT_SIGNALS", &status);
 .
 .

Once a list has been loaded, you can operate on it using any of the Dataport functions.

Argument Input/
Output Type Description

list_name In char * The list to load

status Out int The function status code
Rational Statemate 447

Utility Functions
stm_list_next_id_element

Function Type

stm_list_id_elm

Description

Returns the next item appearing in the list passed as an input argument. This function can be
applied to lists containing stm_list_id_elm’s..

Syntax

stm_list_next_id_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list must be
stm_list_id_elm’s.

status Out int The function status code.
448 Data Port Reference Guide

List of Utility Functions
Example

To find the next element in the list of states, S1, S2, S3, and S4 (appearing in this order)
assigned to the variable state_list, use the following statements:

stm_list state_list;
stm_id state_id;
int status;
 .
 .
state_id = (stm_id) stm_list_first_id_element (

state_list, &status);
printf ("The first state in the list is: %s\n",
 stm_r_st_name (state_id, &status));
state_id = (stm_id) stm_list_next_id_element (state_list,

&status);
printf ("The second state in the list is: %s\n",

stm_r_st_name (state_id, &status));
 .
 .

This function can be used in a for loop (in conjunction with stm_list_first_id_element) to
perform operations on all elements in the list
Rational Statemate 449

Utility Functions
stm_list_next_ptr_element

Function Type

stm_list_ptr_elm

Description

Returns the next item appearing in the list passed as an input argument. This function can be
applied to lists containing stm_list_ptr_elm’s..

Syntax

stm_list_next_ptr_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list must be stm_list_ptr_elem’s..

status Out int The function status code.
450 Data Port Reference Guide

List of Utility Functions
stm_list_previous_id_element

Function Type

stm_list_id_elm

Description

Returns the previous item appearing in the list passed as an input argument. This function can
be applied to lists containing stm_list_id_elm’s.

Note that “previous” refers to the item physically located before the current item in the list.
The “current” item is determined using the utility function stm_list_last_id_element.

Syntax

stm_list_previous_id_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list must be
stm_list_id_elm’s.

status Out int The function status code.
Rational Statemate 451

Utility Functions
Example

In the list of states S1, S2, S3, and S4 (appearing in this order) assigned to the variable
state_list, locate the state S4 by calling stm_list_last_ids_element; S4 becomes the
current item. To find the previous element in the list, use the following statements:

stm_list state_list;
stm_id state_id;
int status;
 .
 .
state_id = (stm_id) stm_list_last_element (

state_list, &status);
state_id = (stm_id) stm_list_previous_id_element (

state_list, &status);
printf ("State of interest is: %s\n",
 stm_r_st_name (state_id, &status));
 .
 .

This function can be used in a for loop (in conjunction with stm_list_last_id_element) to
perform operations on all elements in the list in reverse order.
452 Data Port Reference Guide

List of Utility Functions
stm_list_previous_ptr_element

Function Type

stm_list_ptr_elm

Description

Returns the previous item appearing in the list passed as an input argument. This function can
be applied to lists containing stm_list_id_elm’s.

Note that “previous” refers to the item physically located before the current item in the list.
The “current” item is determined using the utility function stm_list_last_ptr_element.

Syntax

stm_list_previous_ptr_element (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_list_element_does_not_exist

Argument Input/
Output Type Description

list In stm_list The list of items.
Items in the input list cmust be stm_list_ptr_elm’s.

status Out int The function status code.
Rational Statemate 453

Utility Functions
stm_list_purge

Erases the input lis pointers and the list elements.

Note

� This function is intended for use only with lists of strings. You should not purge a list of
Rational Statemate elements (IDs) because it can cause serious problems in your program.
(Compare with stm_list_destroy.)

� The returned value is false when the input list is a nil list.
� After the function operation, list cannot be used as an input argument in list functions.

Function Type

int

Syntax

stm_list_purge (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To deallocate the space associated with the list of names name_list (and the strings included
in this list are not referenced by other pointers in your program), use the following statements:

.
 .
list = stm_r_st_attr_name (st_id, &status);
if (stm_list_purge (list, &status))

printf ("list purged");
 .
 .

Argument Input/
Output Type Description

list In stm_list The list to purge.

status Out int The function status code.
454 Data Port Reference Guide

List of Utility Functions
stm_list_sort

Function Type

stm_list

Description

Alphabetically sorts the specified list of strings.

Syntax

stm_list_sort (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To sort a list of strings alphabetically, use the following statement:

stm_list unsorted_list, sorted_list;
int status;
 .
 .
sorted_list = stm_sort_list (unsorted_list, &status);
 .
 .

Argument Input/
Output Type Description

list In stm_list_elm The list of strings to be sorted

status Out int The function status code
Rational Statemate 455

Utility Functions
stm_list_sort_alphabetically_by_branches

Sorts a list of hierarchical Rational Statemate elements by branch. Elements appearing within
each branch are ordered alphabetically.

This function is relevant only for a list of hierarchical elements. If the function is applied to a
list of non-hierarchical elements, status receives the value
stm_elements_not_hierarchical.

Function Type

stm_list

Syntax

stm_list_sort_alphabetically_by_branches (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_not_hierarchical

Argument Input/
Output Type Description

list Input stm_list The list of Rational Statemate
hierarchical elements

status Input int The function status code
456 Data Port Reference Guide

List of Utility Functions
stm_list_sort_alphabetically_by_levels

Sorts a list of hierarchical Rational Statemate elements by level. Elements appearing within
each level are ordered alphabetically.

This function is relevant only for a list of hierarchical elements. If the function is applied to a
list of non-hierarchical elements, status receives the value
stm_elements_not_hierarchical.

Function Type

stm_list

Syntax

stm_list_sort_alphabetically_by_levels (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_not_hierarchical

Argument Input/
Output Type Description

list Input stm_list The list of Statemate
hierarchical elements

status Input int The function status code
Rational Statemate 457

Utility Functions
stm_list_sort_by_attr_value

Sorts the specified list of Rational Statemate elements by the value of the given attribute.

Note that the function receives and returns a list of element IDs, not a list of element names.

Function Type

stm_list

Syntax

stm_list_sort_by_attr_value (list, attr_name, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_without_attributes

Argument Input/
Output Type Description

list In stm_list LIST OF
ELEMENT

The list of Rational Statemate element IDs
to be sorted.

attr_name In stm_attr_name
STRING

The attribute to use as the sorting key.

status Out int INTEGER The function status code.
The function returns the status code.
stm_elements_without_attributes
if you apply this function to a list of
elements that do not have the specified
attribute.
458 Data Port Reference Guide

List of Utility Functions
Example

To sort activities by the name of an attribute called code, use the following function calls:

stm_list act_list, ord_act_list;
stm_id el;
int status;
 .
 .
ord_act_list = stm_list_sort_by_attr_value (

act_list,"code", &status);
printf("\n Ordered list of activities:");
 .
 .

This example prints a particular list of activities from the database. Assume you extracted the
activities of interest using single-element and query functions and built a list of such activities.
This list is assigned to the variable act_list.
Rational Statemate 459

Utility Functions
stm_list_sort_by_branches

When Rational Statemate uses this function to sort a specified list of elements by branches and it
encounters two or more charts at the same level of hierarchy, it sorts them alphabetically by name.

Function Type

stm_list

Description

Sorts the specified list of hierarchical Rational Statemate elements by branches.

Note
This function is relevant only for a list of hierarchical elements. If the function is applied to
a list of non-hierarchical elements, status receives the value
stm_elements_not_hierarchical.

Syntax

stm_list_sort_by_branches (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_not_hierarchical

Example

Hierarchical elements in a chart can be ordered by branches. Consider the following
statechart:

Argument Input/
Output Type Description

list In stm_list The list of Rational Statemate
elements.

status Out int The function status code.
460 Data Port Reference Guide

List of Utility Functions
Hierarchically, the states can be drawn as shown in the following figure.

The set of elements, {S,S1,S11}, comprise a branch. Assume you perform a sort_by_branch
function on statechart S. The sorted order would be: S, S1, S11, S2.

The order in which branches appear in the output is arbitrary. However, the order of states
appearing within each branch are ordered from top-to-bottom (S to S11, for example).

S

S1

S11 S2

 S

 S1

 S11

 S2
2

1

4

3

Rational Statemate 461

Utility Functions
stm_list_sort_by_chart

Alphabetically sorts the input list of named Rational Statemate elements, by the name of the
chart to which they belong. The input list consists of Rational Statemate elements.

This function receives and returns a list of element IDs, not a list of element names.

Function Type

stm_list

Syntax

stm_list_sort_by_chart (el_list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Example

To sort a list of items by the chart they belong to, use the following statements:

stm_list st_list, sorted_by_chart
int status;
 .
 .
st_list = stm_r_st_name_of_st ("*", &status);
sorted_by_chart = stm_list_sort_by_chart (st_list,&status);

A list of all named statuses is retrieved, then the sort function orders the list by chart name.

Argument Input/
Output Type Description

el_list In stm_list The list of Rational Statemate box
elements.

status Out int The function status code.
462 Data Port Reference Guide

List of Utility Functions
stm_list_sort_by_levels

When Rational Statemate uses this function to sort a specified list of elements by levels and it
encounters two or more charts at the same level of hierarchy, it sorts them alphabetically by name.

Function Type

stm_list

Description

Sorts a list of hierarchical Rational Statemate elements by level.

This function is relevant only for a list of hierarchical elements. If the function is applied to a
list of non-hierarchical elements, status receives the value
stm_elements_not_hierarchical.

Syntax

stm_list_sort_by_levels (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_not_hierarchical

Argument Input/
Output Type Description

list In stm_list The list of Rational Statemate box
elements.

status Out int The function status code.
Rational Statemate 463

Utility Functions
Example

Hierarchical elements in a chart can be ordered by levels, as shown in the following statechart.

Hierarchically, the states can be drawn as shown in the following figure.

The set of elements, {S1,S2}, comprise a level. If you perform a sort_by_level function on
statechart S, the sorted order would be: S, S1, S2, S11.

The order of elements within the same level appear in an arbitrary order in the output. For
example, S2 might appear before S1 because they are of the same level. However, the order of
levels is top-to-bottom.

S

S1

S11 S2

 S

 S1

 S11

 S2
2

1

4

3

464 Data Port Reference Guide

List of Utility Functions
stm_list_sort_by_name

Sorts the specified list of Rational Statemate elements alphabetically by name.

Note

� The function returns the status code stm_elements_without_name when you attempt to
apply this function to a list that contains unnamed elements.

� The function receives and returns a list of element IDs, not a list of element names.

Function Type

stm_list

Syntax

stm_list_sort_by_name (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_without_name

Argument Input/
Output Type Description

list In stm_list The list of Statemate elements to be
sorted. This input lists consists of element
IDs.

status Out int The function status code.
Rational Statemate 465

Utility Functions
Example

To sort a list of items by name, use the following statements:

stm_list st_list, sorted_st_list;
int status;
 .
 .
st_list = stm_r_st_name_of_st ("*", &status);
sorted_st_list = stm_list_sort_by_name (st_list,

&status);
 .
 .

A list of all named states in an unspecified order is retrieved from the database, then the sort
function orders the list.
466 Data Port Reference Guide

List of Utility Functions
stm_list_sort_by_synonym

Sorts the specified list of Rational Statemate elements alphabetically by their synonyms.

Note

� The function returns the status code stm_elements_without_name when you attempt to
apply this function to a list that contains unnamed elements.

� The function receives and returns a list of element IDs, not a list of element names.

Function Type

stm_list

Syntax

stm_list_sort_by_synonym (list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_elements_without_synonym

Argument Input/
Output Type Description

list In stm_list LIST
OF ELEMENT

The list of Statemate elements to be
sorted. This input lists consists of
element IDs.

status Out int INTEGER The function status code.
Rational Statemate 467

Utility Functions
Example

To sort a list of items by synonym, use the following statements:

stm_list st_list, sorted_st_list;
int status;
 .
 .
st_list = stm_r_st_name_of_st ("*", &status);
sorted_st_list = stm_list_sort_by_synonym (st_list,

&status);
 .
 .

A list of all named states in an unspecified order is retrieved from the database, then the sort
function orders the list alphabetically, according to the synonyms.
468 Data Port Reference Guide

List of Utility Functions
stm_list_sort_by_type

Sorts the specified list of Rational Statemate elements by type.

Note that the function receives and returns a list of element IDs, not a list of element names.

Syntax

stm_list_sort_by_type (el_list, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

Argument Input/
Output Type Description

el_list In stm_list The list of Statemate element IDs to be
sorted

status Out int The function status code
Rational Statemate 469

Utility Functions
stm_list_subtract_ids_lists

Creates a new list of those elements of the first input list that are not found in the second input
list.

Note
The two input lists must both lists stm_list_id_elm’s.

Function Type

stm_list

Syntax

stm_list_id_subtract-ids_lists (list1, list2, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

The following example creates list list3 by subtracting list2 from list1:

stm_list list1, list2, list3;
int status;
 .
 .
list3 = stm_list_subtract_ids_lists (list1, list2, &status);
 .
 .

Argument Input/
Output Type Description

list1 In stm_list The first list of Rational Statemate
elements.

list2 In stm_list The second list of Statemate elements.

status Out int The function status code.
470 Data Port Reference Guide

List of Utility Functions
stm_list_subtraction_ptr_lists

Creates a new list of those elements of the first input list that are not found in the second input
list.

Note
The two input lists must stm_list_ptr_elm’s.

Function Type

stm_list

Syntax

stm_list_subtract_ptr_lists (list1, list2, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

The following example creates list list3 by subtracting list2 from list1:

stm_list list1, list2, list3;
int status;
 .
 .
list3 = stm_list_subtract_ptr_lists (list1, list2, &status);
 .
 .

Argument Input/
Output Type Description

list1 In stm_list The first list of Rational Statemate
elements.

list2 In stm_list The second list of Statemate elements.

status Out int The function status code.
Rational Statemate 471

Utility Functions
stm_list_union_ids_lists

Function Type

stm_list

Description

Merges the elements of two specified ids lists.

Note

� Elements in both input lists appear in the output list only once.
� The two input lists must be both lists of stm_id_elm’s.

Syntax

stm_list_union_ids_lists (list2, list2, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

To produce the union list list3 from list1 and list2, use the following statements:

 stm_list list1,list2,list3;
 int status;
 .
 .
 list3 = stm_list_union_ids_list (list1, list2, &status);

Argument Input/
Output Type Description

list1 In stm_list The first list.

list2 In stm_list The second list.

status Out int The function status code.
472 Data Port Reference Guide

List of Utility Functions
stm_list_union_ptr_lists

Function Type

stm_list

Description

Merges the elements of two specified ptr lists.

Note

� Elements in both input lists appear in the output list only once.
� The two input lists must be both lists of stm_list_ptr_elm’s.

Syntax

stm_list_union_ptr_lists (list2, list2, &status)

Arguments

Status Codes

� stm_success

� stm_nil_list

� stm_cannot_compare_lists

Example

To produce the union list list3 from list1 and list2, use the following statements:

 stm_list list1,list2,list3;
 int status;
 .
 .
 list3 = stm_list_union_ptr_lists (list1, list2, &status);
 .

Argument Input/
Output Type Description

list1 In stm_list The first list.

list2 In stm_list The second list.

status Out int The function status code.
Rational Statemate 473

Utility Functions
stm_load

Function Type

None

Description

Loads a chart file (or any other configuration item file) into the current workarea. It is one of
the four utility functions (stm_load, stm_save, stm_unload, and stm_unload_all) that
provide an interface between the Rational Statemate user workarea and external files.

Note: You must work in automatic transaction mode when using this function by
specifying automatic_transaction as the trans_mode (third) argument of the
stm_init_uad function. Your program should contain lines similar to the
following:

int success, status;
 ...
success = stm_init_uad ("MY_PROJECT",
 "/local/my_work_area", automatic_transaction,
 &status);
if (!success)
...

Syntax

stm_load (file_name, item_name, version, mode, enforce,
message, &status)
474 Data Port Reference Guide

List of Utility Functions
Arguments

Argument Input/
Output Type Description

file_name In char * The full path name for the file (which is usually a chart file).
This file can reside in any directory.

item_name In char * The possible item name and type values are as follows:
sch – Statechart
ach - Activity-charts
mch - Module-charts
fch – Flowcharts
dic - Global Definition Set files
qch - Sequence-Diagrams
uch - Use-Case-Diagrams
vsm - Continuous Diagrams
pnl – Panel files
scp - Simulation SCL files
cnf - Simulation status files
wpf - Waveform Profiles
dyn_set - Simulation analysis profiles
mon - Monitor files
chk_mdl_set - Check Model Profiles
dgl - Documentor templates
inc - Documentor include files
pnl - Prototype panels
config - Configuration files
tv - Task View files
mak - Makefiles
oil - OIL files
cfg - CFG files
c - Source(c) files
h - Header (h) files
rgenset - Rapid Prototyper Profiles
trg - Target files
rtrg - Rapid Target files
crd - Card files
rconfig - Rhapsody block Configuration files
ccf - Component Configuration files
dat - VSM Data files
wav - VSM Wave files
mat - VSM Mat. files
m - VSM M. files

version In char * The version number. The version contained in this string is
recorded in the workarea.
Rational Statemate 475

Utility Functions
Status Codes

� stm_success

� stm_illegal_expression_in_chart

� stm_error_in_chart

� stm_exceeded_max_id_number

� stm_illegal_version

� stm_not_loaded_because_type

� stm_not_loaded_because_modified

� stm_not_loaded_because_new

� stm_cannot_create_file

� stm_cannot_open_chart_file

� stm_illegal_load_mode

� stm_cannot_copy_file

� stm_file_not_found

� stm_chart_is_active

mode In char * The mode - u for update, r for read.
No lock files are created by this function, even when mode is
u (update).

enforce In int If this is 1, it enforces the load - even in cases when the new
or modified item with the same name already exists in the
workarea. If this is 0, the load operation fails, in these cases,
with the corresponding status code and error message.

message Out char * A buffer that holds the error message, if an error occurs. This
buffer can hold 127 characters.

status Out int The function status code.

Argument Input/
Output Type Description
476 Data Port Reference Guide

List of Utility Functions
Example

To load the first version of a statechart named MY_CHART from the databank located at /local/
my_bank in read mode and enforce the operation, use the following statement:

#define ENFORCE 1
int status;
char mess[128];
.
.
stm_load ("/local/my_bank/chart/my_chart.sch.1",

"my_chart.sch", "1", ’r’, ENFORCE, message, &status);
if (status != stm_success)
.
.

Rational Statemate 477

Utility Functions
stm_multiline_to_one

Function Type

stm_expression

Description

Converts the specified multiline string (with new lines) to a one-line string (without the new
lines).

Syntax

stm_multiline_to_one (string)

Arguments

stm_multiline_to_strings

Function Type

stm_list

Description

Converts the specified multiline expression to a list of strings.

Syntax

stm_multiline_to_strings (string)

Arguments

Argument Input/
Output Type Description

string In char * The multiline string.

Argument Input/Output Type Description

string In char * The multiline expression
478 Data Port Reference Guide

List of Utility Functions
stm_open_truth_table

Function Type

stm_boolean

Description

Opens a Truth Table that is connected to the specified element and highlights the specified line
in it. Returns stm_success if request was successfully sent. Otherwise, it returns
stm_id_out_of_range.

Syntax

stm_open_truth_table(stm_id id, int line,int *status)
Rational Statemate 479

Utility Functions
stm_plot

Generates a plot file with the indicated parameters, such as plot size, output device, and so on.
The plot parameters are the same for all the different plot types (statecharts, activity charts, or
module charts).

The output is designated for a particular device (one of the output devices defined in Rational
Statemate). The destination of the plot output is specified by one of the parameters. If its
destination is not specified, the plot is included as part of the output segment file.

When working with Interleaf, the plot uses the following definitions, which should be
included at the beginning of the file:

<!Font Definitions F46 = Typewriter 10 >
<!Class, caption, Font = F46>
<!Class, plot, Font = F46>
<!Master Frame,

Name = PltFrm,
Placement = Following Anchor,
Horizontal Alignment =Center,
Same Page = Yes,
Diagram = V6, (g9,0,0)>

Function Type

int

Syntax

stm_plot (id, plot_file, width, height, with_labels,with_names, with_notes,
device, date_position,title_position, title, do_rotate, with_file_header,
actual_height)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the Rational
Statemate chart to be plotted.

plot_file In stm_filename The name of the file destination to
which the plot is written. The
operating system path name
conventions are followed. You can
specify a full path name to any
directory for which you have write
access.
If you specify a simple file name,
the plot is written to your workarea.

width In double The maximum possible width of the
plot (in inches).
480 Data Port Reference Guide

List of Utility Functions
height In double The maximum possible length of
the plot (in inches).
If you specify a plot size (width and
height parameters) that is larger
than the paper size defined for the
specific printer, the plot simply uses
the maximum allowable height and
width defined for that printer.

with_labels In stm_boolean Determines whether labels are
plotted (TRUE) or not (FALSE).

with_names In stm_boolean Determines whether names are
plotted (TRUE) or not (FALSE).

with_notes In stm_boolean Determines whether notes are
plotted (TRUE) or not (FALSE).

device In char* Specifies the plotting device. This
can be a supported formatting
language if the plot is to be handled
by a formatting processing system
that has its own graphics language.
To configure a new plotter or printer,
select Utilities > Output Devices
from the main Rational Statemate
window.
Plots created using Word format in
the Output Device dialog box are
HPGL files. To import these files
into Word, rename them as .HGL or
.PLT files.

date_position In stm_plt_position The position of the date.
This is an integer parameter of type
stm_plt_position That
indicates where to place the plot
date. The possible values are as
follows:

• stm_plt_none - The date is
not included.

• stm_plt_top - The date is
placed at the top of the plot.

• stm_plt_bottom - The date is
placed at the bottom of the plot.

Argument Input/
Output Type Description
Rational Statemate 481

Utility Functions
title_position In stm_plt_position The title position.
This is an integer parameter of type
stm_plt_position that indicates
where to place the plot title. The
possible values are as follows:

• stm_plt_none - The title is
not included.

• stm_plt_top - The title is
placed at the top of the plot.

• stm_plt_bottom - The title is
placed at the bottom of the plot.

title In char* Specifies the title to be printed with
the plot.

do_rotate In stm_boolean Determines whether the orientation
of the plot is landscape (TRUE) or
portrait (FALSE).

with_file_heade
r

In stm_boolean Indicates whether a header is
added to the file (TRUE). Use this
option if you do not want the plot as
part of the document (FALSE).

actual_height Out double Specifies the actual height (in
inches) of the plotted output.

Argument Input/
Output Type Description
482 Data Port Reference Guide

List of Utility Functions
Status Codes

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter

Example

To create a plot of a chart within a file, use the following statements:

stm_id chart_id;
int status;
double real_ht;
stm_plt_position date_position;
stm_plt_position title_position;
date_position = stm_plt_bottom;
title_position = stm_plt_bottom;
chart_id = stm_r_ch ("XL25", &status);
stm_plot (chart_id, "sam/p_xl25", 5.0, 7.0,

stm_true, stm_true, stm_false, "eps100h",
date_position, title_position, "System XL25",
stm_true, stm_false, &real_ht);

This produces a plot for the activity-chart XL25 in landscape orientation, limited to a maximum
size of 5x7 inches, that prints full labels and names, but excludes notes. The plot is output to
the file specified by the path sam/p_xl25. This file is suitable for printing on an Epson FX100
graphics printer. The date and the title System XL25 appear at the bottom of the plot. The
actual scaled height of the plot is returned in the variable real_ht.
Rational Statemate 483

Utility Functions
stm_plot_ext

Generates a plot file with the indicated parameters, such as plot size, output device, and so on.
The plot parameters are the same for all the different plot types (statecharts, activity charts, or
module charts). The output is designated for a particular device (one of the output devices
defined in Rational Statemate). The destination of the plot output is specified by one of the
parameters. If its destination is not specified, the plot is included as part of the output segment
file.

The function can generate the hyperlinks in the chart, print a sequence diagram with numbered
scenarios, break a sequence diagram across multiple pages and print a sequence diagram with
the names of lifelines on every page.

Function Type

int

Syntax

stm_plot_ext (id, plot_file_name, width, height, device, data_position,
title_position, title, actual_h, pages_in_x, pages_in_y, page_index_in_x,
page_index_in_y, headerline_y, options)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the Rational
Statemate chart of be plotted

plot_file_name IN stm_filename The name of the file destination to
which the plot is written. The
operating system pathname
conventions are followed. You can
specify a full path name to any
directory for which you have
writeaccess.If you specify a simple
file name, the plot is written to your
workarea.

width In double The maximum possible width of
the plot (in inches).

height In double The maximum possible length of
the plot (ininches).If you specify a
plot size (width and height
parameters) that is larger than the
paper size defined for the specific
printer, the plot simply uses the
maximum allowable height and
width defined for that printer.
484 Data Port Reference Guide

List of Utility Functions
device In char* Specifies the plotting device. This
can be a supported formatting
language if the plot is to be
handled by a formatting
processing system that has its own
graphics language.To configure a
new plotter or printer, select
Utilities > Output Devices from
the main Statemate window.Plots
created using Word format in the
Output Device dialog box are
HPGL files. To import these files
into Word, rename them as .HGL
or .PLT files.

data_position In stm_plt_posit
ion

The position of the date.This is an
integer parameter of type
stm_plt_position That indicates
where to place the plot date. The
possible values are as follows:

• stm_plt_none - The date is
not included.

• stm_plt_top - The date is
placed at the top of the plot.

• stm_plt_bottom - The date
is placed atthe bottom of the
plot.

title_position In stm_plot_posi
tion

This is an integer parameter of
type stm_plt_position that
indicates where to place the plot
title. The possible values are as
follows:

• stm_plt_none - The title is
not included.

• stm_plt_top - The title is
placed at the top of the plot.

• stm_plt_bottom - The title
is placed at the bottom of the
plot.

title In char* Specifies the title to be printed with
the plot.

actual_h Out double Specifies the actual height (in
inches) of the plotted output.

Argument Input/
Output Type Description
Rational Statemate 485

Utility Functions
pages_in_x Out int Specifies how many pages the tool
attempted to break the SD into
along the x-axis. Note that
ifpages_in_x==0 and
pages_in_y==0, the tool calculates
a break pages scheme and
assigns these variables so they
can be read by the user after the
call.

page_index_in_x Out int Specifies how many pages the tool
attempted to break the SD into
along the x-axis. Note that
ifpages_in_x==0 and
pages_in_y==0, the tool calculates
a break pages scheme and
assigns these variables so they an
be read by the user after the call.

page_index_in_y Out int Specifies how many pages the tool
attempted to break the SD into
along the y-axis.

headerline_y In double Defines the vertical coordinate on
the page of the header line. This is
usually 1.0.

options In list A list of strings of the form
'key=value'. See notes below for
supported options

Argument Input/
Output Type Description
486 Data Port Reference Guide

List of Utility Functions
Status Codes

This function may return one of the two following status codes:

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter

� stm_plot_illegal_option_key

� stm_plot_illegal_option_val

Note: The following are valid values for the “options” argument

� stm_plot_option_hyperlink_ext_act_to_graphics
� For External-Activity:

When this option is 'no', the External_activity is hyperlinked to the 'Dictionary'
description, if it exists, of the Activity it resolves to. When the 'Dictionary'
description is empty, no link is created.

When this option is 'yes', the External-Activity is hyperlinked to the chart in
which the Activity it resolves to is in. If the resolved Activity is an Off-Page
Activity, the link is to the off-page chart. If the resolved Activity is an Instance of
generic, the link is to the generic chart. If the External-Activity resolves to a
higher-level unresolved External-Activity, then the link is to the Chart where the
Upper most instance of this External-Activity. If the External-Activity does not
resolve to any Activity, no hyperlink is created.

� For External-Router:

When this options is 'no', External_router is hyperlinked to the 'Dictionary'
description, if it exists, of the Router it resolves to. When the 'Dictionary'
description is empty, no link is created, When this option is 'yes', External-Router
is hyperlinked to the chart that the Router it resolves to is in.
Rational Statemate 487

Utility Functions
� hyperlink_lifeline_to_graphics

When this option is 'no', Lifelines are hyperlinked to the 'Dictionary' description, if it
exists, of the Activity they resolve to.

When this option is 'yes', Lifelines are hyperlinked to the chart that the Activity they
resolve to are in. If the resolved Activity is an Off-Page Activity, the link is to the off-page
chart. If the resolved Activity is an Instance of generic, the link is to the generic chart. If
the Lifeline resolves to an unresolved External- Activity, no link is created. If the Lifeline
does not resolve to any Activity, no hyperlink is created.
488 Data Port Reference Guide

List of Utility Functions
stm_plot_hyper_exp

Function Type

int

Description

Generates the hyperlinks in a sequence diagram.

Syntax

stm_plot_hyper_exp (id, plot_file, width, height, with_labels, with_names,
with_notes, with_hyperlink, device, date_position, title_position, title,
do_rotate, with_file_header, actual_height, with_breakpages, pages_in_x,
pages_in_y, page_index_in_x, page_index_in_y, with_hyperlink_exp)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the Rational
Statemate chart to be plotted.

plot_file In stm_filename The name of the file destination
to which the plot is written. The
operating system path name
conventions are followed. You
can specify a full path name to
any directory for which you have
write access.
If you specify a simple file name,
the plot is written to your
workarea.

width In double The maximum possible width of
the plot (in inches).

height In double The maximum possible length of
the plot (in inches).
If you specify a plot size (width
and height parameters) that is
larger than the paper size
defined for the specific printer,
the plot simply uses the
maximum allowable height and
width defined for that printer.

with_labels In stm_boolean Determines whether labels are
plotted (TRUE) or not (FALSE).

with_names In stm_boolean Determines whether names are
plotted (TRUE) or not (FALSE).

with_notes In stm_boolean Determines whether notes are
plotted (TRUE) or not (FALSE).
Rational Statemate 489

Utility Functions
with_hyperlink In stm_boolean Specifies whether to generate
hyperlinks for lifelines and
referenced sequence diagrams
(TRUE).

device In char* Specifies the plotting device.
This can be a supported
formatting language if the plot is
to be handled by a formatting
processing system that has its
own graphics language.
To configure a new plotter or
printer, select Utilities > Output
Devices from the main Rational
Statemate window.
Plots created using Word format
in the Output Device dialog box
are HPGL files. To import these
files into Word, rename them as
.HGL or .PLT files.

date_position In stm_plt_
position

The position of the date.
This is an integer parameter of
type stm_plt_position that
indicates where to place the plot
date. The possible values are as
follows:

• stm_plt_none - The date
is not included.

• stm_plt_top - The date is
placed at the top of the plot.

• stm_plt_bottom - The
date is placed at the bottom
of the plot.

title_position In stm_plt_
position

The title position.
This is an integer parameter of
type stm_plt_position that
indicates where to place the plot
title. The possible values are as
follows:

• stm_plt_none - The title is
not included.

• stm_plt_top - The title is
placed at the top of the plot.

• stm_plt_bottom - The title
is placed at the bottom of the
plot.

title In char* Specifies the title to be printed
with the plot.

Argument Input/
Output Type Description
490 Data Port Reference Guide

List of Utility Functions
do_rotate In stm_boolean Determines whether the
orientation of the plot is
landscape (TRUE) or portrait
(FALSE).

with_file_header In stm_boolean Indicates whether a header is
added to the file (TRUE). Use
this option if you do not want the
plot as part of the document
(FALSE).

actual_height Out double Specifies the actual height (in
inches) of the plotted output.

with_breakpages In stm_boolean Specifies whether to break the
SD across multiple pages (true).

pages_in_x Out int Specifies how many pages the
tool attempted to break the SD
into along the x-axis.
Note that if pages_in_x==0
and pages_in_y==0, the tool
calculates a break pages
scheme and assigns these
variables so they can be read by
the user after the call.

pages_in_y Out int Specifies how many pages the
tool attempted to break the SD
into along the y-axis.

page_index_in_x In int Plots the ith page in the x-axis.

page_index_in_y In int Plots the ith page in the y-axis.

with_hyperlink_exp In stm_boolean Specifies whether to generate
hyperlinks for message labels
(true).

Argument Input/
Output Type Description
Rational Statemate 491

Utility Functions
Status Codes

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter
492 Data Port Reference Guide

List of Utility Functions
stm_plot_with_autonumber

Function Type

int

Description

Prints a sequence diagram with numbered scenarios.

Syntax

stm_plot_with_autonumber (id, plot_file, width, height, with_labels,
with_names, with_notes, with_hyperlink, plot_type, title_position, title,
do_rotate, with_file_header, actual_y, with_breakpages, pages_in_x,
pages_in_y, page_index_in_x, page_index_in_y, with_hyperlink_exp,
with_headerline, headerline_y, with_autonumber)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the
Rational Statemate chart to
be plotted.

plot_file In stm_filename The name of the file
destination to which the plot
is written. The operating
system path name
conventions are followed.
You can specify a full path
name to any directory for
which you have write
access.
If you specify a simple file
name, the plot is written to
your workarea.

width In double The maximum possible
width of the plot (in inches).

height In double The maximum possible
length of the plot (in inches).
If you specify a plot size
(width and height
parameters) that is larger
than the paper size defined
for the specific printer, the
plot simply uses the
maximum allowable height
and width defined for that
printer.
Rational Statemate 493

Utility Functions
with_labels In stm_boolean Determines whether labels
are plotted (true) or not
(false).

with_names In stm_boolean Determines whether names
are plotted (true) or not
(false).

with_notes In stm_boolean Determines whether notes
are plotted (true) or not
(false).

with_hyperlink In stm_boolean Specifies whether to
generate hyperlinks for
lifelines and referenced
sequence diagrams (true).

plot_type In char* Specifies the plotting device.
This can be a supported
formatting language if the
plot is to be handled by a
formatting processing
system that has its own
graphics language.
To configure a new plotter or
printer, select Utilities >
Output Devices from the
main Rational Statemate
window.
Plots created using Word
format in the Output Device
dialog box are HPGL files.
To import these files into
Word, rename them as .HGL
or .PLT files.

date_position In stm_plt_position The date position.
This is an integer parameter
of type
stm_plt_position that
indicates where to place the
plot date. The possible
values are as follows:

• stm_plt_none - The
date is not included.

• stm_plt_top - The
date is placed at the top
of the plot.

• stm_plt_bottom - The
date is placed at the
bottom of the plot.

Argument Input/
Output Type Description
494 Data Port Reference Guide

List of Utility Functions
title_position In stm_plt_position The title position.
This is an integer parameter
of type
stm_plt_position that
indicates where to place the
plot title. The possible values
are as follows:

• stm_plt_none - The
title is not included.

• stm_plt_top - The title
is placed at the top of
the plot.

• stm_plt_bottom - The
title is placed at the
bottom of the plot.

title In char* Specifies the title to be
printed with the plot.

do_rotate In stm_boolean Determines whether the
orientation of the plot is
landscape (true) or portrait
(false).

with_file_header In stm_boolean Indicates whether a header
is added to the file (true).
Use this option if you do not
want the plot as part of the
document (false).

actual_height Out double Specifies the actual height
(in inches) of the plotted
output.

with_breakpages In stm_boolean Specifies whether to break
the SD across multiple
pages (true).

pages_in_x Out int Specifies how many pages
the tool attempted to break
the SD into along the x-axis.
Note that if
pages_in_x==0 and
pages_in_y==0, the tool
calculates a break pages
scheme and assigns these
variables so they can be
read by the user after the
call.

pages_in_y Out int Specifies how many pages
the tool attempted to break
the SD into along the y-axis.

page_index_in_x In int Plots the ith page in the x-
axis.

Argument Input/
Output Type Description
Rational Statemate 495

Utility Functions
Status Codes

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter

page_index_in_y In int Plots the ith page in the y-
axis.

with_hyperlink_ exp In stm_boolean Specifies whether to
generate hyperlinks for
message labels (true).

with_headerline In stm_boolean Specifies whether to print
the names of the lifelines on
every page (true).

headerline_y In double Defines the vertical
coordinate on the page of
the headerline. This is
usually 1.0.

with_autonumber In stm_boolean Specifies whether to print
the SD scenario numbers
(true).

Argument Input/
Output Type Description
496 Data Port Reference Guide

List of Utility Functions
stm_plot_with_break

Function Type

int

Description

Breaks a sequence diagram across multiple pages.

Syntax

stm_plot_with_break (id, plot_file, width, height,
 with_labels, with_names, with_notes,
 with_hyperlink, plot_type, date_position,
 title_position, title, do_rotate, with_file_header,
 actual_height, with_breakpages, pages_in_x,
 pages_in_y, page_index_in_x, page_index_in_y)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the Rational
Statemate chart to be plotted.

plot_file In stm_filename The name of the file destination to
which the plot is written. The
operating system path name
conventions are followed. You can
specify a full path name to any
directory for which you have write
access.
If you specify a simple file name, the
plot is written to your workarea. If you
do not specify a value (‘’), the plot is
included as part of the output
segment file.

width In double The maximum possible width of the
plot (in inches).

height In double The maximum possible length of the
plot (in inches).
If you specify a plot size (width and
height parameters) that is larger than
the paper size defined for the specific
printer, the plot simply uses the
maximum allowable height and width
defined for that printer.

with_labels In stm_boolean Determines whether labels are
plotted (TRUE) or not (FALSE).

with_names In stm_boolean Determines whether names are
plotted (TRUE) or not (FALSE).
Rational Statemate 497

Utility Functions
with_notes In stm_boolean Determines whether notes are plotted
(TRUE) or not (FALSE).

with_hyperlink In stm_boolean Specifies whether to generate
hyperlinks for lifelines and referenced
sequence diagrams (TRUE).

plot_type In char* Specifies the plot type. This can be a
supported formatting language if the
plot is to be handled by a formatting
processing system that has its own
graphics language.
To configure a new plotter or printer,
select Utilities > Output Devices
from the main Rational Statemate
window.
Plots created using Word format in
the Output Device dialog box are
HPGL files. To import these files into
Word, rename them as .HGL or .PLT
files.

date_position In stm_plt_position The date position.
This is an integer parameter of type
stm_plt_position that indicates
where to place the plot date. The
possible values are as follows:

• stm_plt_none - The date is not
included.

• stm_plt_top - The date is
placed at the top of the plot.

• stm_plt_bottom - The date is
placed at the bottom of the plot.

title_position In stm_plt_position The title position.
This is an integer parameter of type
stm_plt_position that indicates
where to place the plot title. The
possible values are as follows:

• stm_plt_none - The title is not
included.

• stm_plt_top - The title is
placed at the top of the plot.

• stm_plt_bottom - The title is
placed at the bottom of the plot.

title In char* Specifies the title to be printed with
the plot.

do_rotate In stm_boolean Determines whether the orientation of
the plot is landscape (TRUE) or
portrait (FALSE).

Argument Input/
Output Type Description
498 Data Port Reference Guide

List of Utility Functions
with_file_header In stm_boolean Indicates whether a header is added
to the file (TRUE). Use this option if
you do not want the plot as part of the
document (FALSE).

actual_height Out double Specifies the actual height (in inches)
of the plotted output.

with_breakpages In stm_boolean Specifies whether to break the SD
across multiple pages (TRUE).

pages_in_x Out int Specifies how many pages the tool
attempted to break the SD into along
the x-axis.
Note that if pages_in_x==0 and
pages_in_y==0, the tool calculates
a break pages scheme and assigns
these variables so they can be read
by the user after the call.

pages_in_y Out int Specifies how many pages the tool
attempted to break the SD into along
the y-axis.

page_index_in_x In int Plots the ith page in the x-axis.

page_index_in_y In int Plots the ith page in the y-axis.

Argument Input/
Output Type Description
Rational Statemate 499

Utility Functions
Status Codes

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter

Notes

Function parameters are as follows:

boolean with_hyperlink (IN) /* generate hyperlinks */

boolean with_breakpages (IN) /* enable break pages */

integer pages_in_x (OUT) /* try to break to # of pages in x axis */

integer pages_in_y (OUT) /* try to break to # of pages in y axis */

Note: If pages_in_x == 0 and pages_in_y==0, the tool calculates a break pages
scheme and assigns these variables so they can be read by the user after the
call.

integer page_index_in_x (IN) /*plot the ith page in x axis */

integer page_index_in_y (IN) /*plot the ith page in y axis */

Call the function STM_PLOT_SET_DATA() before plotting a sequence diagram using
STM_PLOT_WITH_BREAK. Call the function STM_PLOT_RESET_DATA() after finishing the
sequence diagram multiple pages plot.
500 Data Port Reference Guide

List of Utility Functions
stm_plot_with_headerline

Prints a sequence diagram with the names of lifelines on every page.

Function Type

int

Syntax

stm_plot_with_headerline (id, plot_file, width, height, with_labels,
with_names, with_notes, with_hyperlink, plot_type, title_position, title,
do_rotate, with_file_header,actual_y, with_breakpages, pages_in_x,
pages_in_y, page_index_in_x, page_index_in_y, with_hyperlink_exp,
with_headerline, headerline_y,)

Arguments

Argument Input/
Output Type Description

id In stm_id The ID number of the Rational
Statemate chart to be plotted.

plot_file In stm_filename The name of the file destination to
which the plot is written. The
operating system path name
conventions are followed. You can
specify a full path name to any
directory for which you have write
access.
If you specify a simple file name, the
plot is written to your workarea.

width In double The maximum possible width of the
plot (in inches).

height In double The maximum possible length of the
plot (in inches).
If you specify a plot size (width and
height parameters) that is larger than
the paper size defined for the specific
printer, the plot simply uses the
maximum allowable height and width
defined for that printer.

with_labels In stm_boolean Determines whether labels are
plotted (TRUE) or not (FALSE).

with_names In stm_boolean Determines whether names are
plotted (TRUE) or not (FALSE).

with_notes In stm_boolean Determines whether notes are plotted
(TRUE) or not (FALSE).

with_hyperlink In stm_boolean Specifies whether to generate
hyperlinks for lifelines and referenced
sequence diagrams (TRUE).
Rational Statemate 501

Utility Functions
plot_type In char* Specifies the plot type. This can be a
supported formatting language if the
plot is to be handled by a formatting
processing system that has its own
graphics language.
To configure a new plotter or printer,
select Utilities > Output Devices
from the main Rational Statemate
window.
Plots created using Word format in
the Output Device dialog box are
HPGL files. To import these files into
Word, rename them as .HGL or .PLT
files.

date_position In stm_plt_
position

The date position.
This is an integer parameter of type
stm_plt_position that indicates
where to place the plot date. The
possible values are as follows:

• stm_plt_none - The date is not
included.

• stm_plt_top - The date is
placed at the top of the plot.

• stm_plt_bottom - The date is
placed at the bottom of the plot.

title_position In stm_plt_
position

The title position.
This is an integer parameter of type
stm_plt_position that indicates
where to place the plot title. The
possible values are as follows:

• stm_plt_none - The title is not
included.

• stm_plt_top - The title is
placed at the top of the plot.

• stm_plt_bottom - The title is
placed at the bottom of the plot.

title In char* Specifies the title to be printed with
the plot.

do_rotate In stm_boolean Determines whether the orientation of
the plot is landscape (TRUE) or
portrait (FALSE).

with_file_header In stm_boolean Indicates whether a header is added
to the file (TRUE). Use this option if
you do not want the plot as part of the
document (FALSE).

actual_height Out double Specifies the actual height (in inches)
of the plotted output.

Argument Input/
Output Type Description
502 Data Port Reference Guide

List of Utility Functions
Status Codes

� stm_success

� stm_can_not_open_file

� stm_id_out_of_range

� stm_not_enough_memory

� stm_id_not_found

� stm_empty_chart

� stm_unknown_plotter

� stm_plot_failure

� stm_unresolved

� stm_illegal_parameter

with_breakpages In stm_boolean Specifies whether to break the SD
across multiple pages (TRUE).

pages_in_x Out int Specifies how many pages the tool
attempted to break the SD into along
the x-axis.
Note that if pages_in_x==0 and
pages_in_y==0, the tool calculates
a break pages scheme and assigns
these variables so they can be read
by the user after the call.

pages_in_y Out int Specifies how many pages the tool
attempted to break the SD into along
the y-axis.

page_index_in_x In int Plots the ith page in the x-axis.

page_index_in_y In int Plots the ith page in the y-axis.

with_hyperlink_exp In stm_boolean Specifies whether to generate
hyperlinks for message labels
(TRUE).

with_headerline In stm_boolean Specifies whether to print the names
of the lifelines on every page (TRUE).

headerline_y In double Defines the vertical coordinate on the
page of the headerline. This is usually
1.0.

Argument Input/
Output Type Description
Rational Statemate 503

Utility Functions
stm_r_global_interface_report

Function Type

stm_list

Description

Returns the global interface report for the elements in the input list (box_lst).

Syntax

stm_r_global_interface_report (box_lst, sort_by_elm, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_success

Argument Input/
Output Type Description

box_list in stm_list List of elements.

sort_by_elm in stm_boolean The way the global interface report is.

status out int The function status code.
504 Data Port Reference Guide

List of Utility Functions
stm_r_local_interface_report

Function Type

stm_list

Description

Returns the local interface report for the elements in the input list (box_lst).

Syntax

stm_r_local_interface_report (box_lst, &status)

Arguments

Status Codes

� stm_id_out_of_range

� stm_success

stm_run_simulation_profile

Function Type

stm_Boolean

Description

Sends a message to Rational Statemate to open and execute a Simulation profile by the name
passed as a parameter.

Syntax

stm_run_simulation_profile (string profile_name, int* status)

Argument Input/
Output Type Description

box_lst in stm_list List of elements.

status out int The function status code.
Rational Statemate 505

Utility Functions
stm_save

Function Type

None

Description

Saves a chart (or any other configuration item file) from the current workarea to an external
file. It is one of the four utility functions (stm_load, stm_save, stm_unload, and
stm_unload_all) that provide an interface between the workarea of the Rational Statemate
user and external files.

You must work in the automatic_transaction mode when using this function by specifying
automatic_transaction as the third argument (trans_mode) of the stm_init_uad function.
Your program should contain the following call:

int success, status;
...
success = stm_init_uad ("MY_PROJECT",

"/local/my_work_area", automatic_transaction,
&status);

if (!success)
...

Syntax

stm_save (file_name, item_name, message, &status)

Arguments

Argument Input/Output Type Description

file_name In char * The full path name for the file.
Any name in any directory can be specified for
file_name. In charts, the chart is converted into
an ASCII format and written to the specified file.
The specified file should not exist before calling
this function.
Note that no description or lock files are created
by this function.
506 Data Port Reference Guide

List of Utility Functions
item_name In char * The item name and type. The possible values
are as follows:

• ach - Activity-charts
• cgenset - Compilation profiles
• chk_mdl_set - Check Model profiles
• cnf - Simulation status files
• config - Configuration files
• dgl - Documentor templates
• dic - Global definition sets
• dyn_set - Simulation analysis profiles
• inc - Documentor include files
• mch - Module-charts
• pnl - Panels of the Prototyper
• req - Requirement files
• sch - For statecharts
• scp - Simulation SCL files

message Out char * A buffer that holds the error message, if an error
occurs. This buffer can hold 127 characters.

status Out int The function status code.

Argument Input/Output Type Description
Rational Statemate 507

Utility Functions
Status Codes

� stm_success

� stm_error_in_save_operation

� stm_chart_not_in_database

� stm_file_not_in_work_area

� stm_cannot_copy_file

Example

The following call saves a statechart in the workarea named SYSTEM_CHART to an external file
named saved_chart in the /tmp directory:

int status;
char mess[128];
.
.
stm_save ("system_chart.sch", "/tmp/saved_chart",

message, &status);
if (status != stm_success)
.
.

508 Data Port Reference Guide

List of Utility Functions
stm_select_id

Function Type

stm_boolean

Description

Enables selection of an element by its ID in Statemate Graphical Editor.

Note: The function works only for real elements. Generated IDs, such as for flow-
lines are not legal. You can pass as an argument an ID of the basic arrow which
constructs the flow-line.

Syntax

stm_select_id (id, &status)

Arguments

Status Codes

� stm_success

� stm_error_in_open_socket_to_statemate

� stm_id_not_found

Example

To select an activity by the name of A1 in , use the following statements:

stm_id ac_id;
int status;

ac_id = stm_r_ac ("A1", &status);
stm_select_id(id, &status);

Argument Input/
Output Type Description

id In stm_id The element ID

status Out int Function status code
Rational Statemate 509

Utility Functions
stm_start_transaction

Function Type

void

Description

Enables transaction operations on the database. If you are retrieving information from a
database that has changed since the last transaction opening (the last start), it is important to do
a commit followed by another start before calling a new function. This sequence establishes
access to database changes because it refreshes the database image in memory.

Note: This function is relevant only in self_transaction mode. In the
automatic_transaction mode, the start and commit functions are
performed automatically.

Syntax

stm_start_transaction ()

Example

To enable transaction operations on the database, use the following statements:

stm_start_transaction();
stm_r... -- a retrieval function
 .
 .

stm_start_transaction_rw

Function Type

void

Description

Enables read/write transaction operations on the database.

Syntax

stm_start_transaction_rw ()
510 Data Port Reference Guide

List of Utility Functions
stm_trigger_of_reaction

Function Type

stm_expression

Description

Returns the trigger part of a reaction (label of transition or static reaction). The syntax of the
reaction is trigger/action.

Note

� The reaction is achieved by the following single-element functions:
� stm_r_st_reactions
� stm_r_tr_labels

� The function returns an empty string when the trigger is missing.

Syntax

stm_trigger_of_reaction (reaction, &status)

Arguments

Status Codes

stm_success

Argument Input/
Output Type Description

reaction In char * The reaction to decompose

status Out int The function status code
Rational Statemate 511

Utility Functions
Example

To list all events that have influence on S1, which has several static reactions, use the
following statements:

 stm_id st_id;
 int status;
 stm_list reactions;
 stm_expression rct;

st_id = stm_r_st ("S1", status);
reactions = stm_r_st_reactions (st_id, status);
printf ("\n Triggers of reaction is S1:");
 for (rct= (string)
 stm_list_first_element (reaction, &status);
 status == stm_success;
 rct = (string)
 stm_list_next_element (reaction, &status))
 printf ("\n %S", stm_trigger_of_reaction (rct,
 status));
512 Data Port Reference Guide

List of Utility Functions
stm_uad_attribute

Function Type

int

Description

Writes the predefined attribute report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_attribute (elist, attrs, attr_title, file_name,wp, append,
with_header, p_width, pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for which the
report is produced.

attrs In stm_list Lists the names of the attributes for which the
report should be generated. If this list is empty, the
report retrieves all the attributes for each element.

attr_title In stm_attr_name Specifies the attribute whose value precedes the
element name in the report.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands to
the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
Rational Statemate 513

Utility Functions
stm_uad_dictionary

Function Type

int

Description

Writes the predefined dictionary report to the specified output file. The output contains
commands for the designated word processor.

Syntax

stm_uad_dictionary (elist, ldes, attr, attr_title,file_name, wp, append,
with_header, p_width, pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for which the
report is produced.

ldes In stm_boolean If this is true, the long description of each element
is included in the report.

attr In stm_boolean If this is true, include the element’s attributes in the
report.

attr_title In stm_attr_name Specifies the attribute whose value precedes the
element name in the report.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands to
the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
514 Data Port Reference Guide

List of Utility Functions
stm_uad_interface

Function Type

int

Description

Writes the predefined attribute report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_attribute (elist, attrs, attr_title, file_name,wp, append,
with_header, p_width, pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for
which the report is produced.

attrs In stm_list Lists the names of the attributes for which
the report should be generated. If this list
is empty, the report retrieves all the
attributes for each element.

attr_title In stm_attr_name Specifies the attribute whose value
precedes the element name in the report.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information
is appended to the output file, if it already
exists.

with_header In stm_boolean Include set-up commands to the word
processor.

p_width In int Specifies the page width.

p_height In int Specifies the page length.
Rational Statemate 515

Utility Functions
stm_uad_list

Function Type

int

Description

Writes the predefined list report to the specified output file. The output contains commands for
the designated word processor.

Syntax

stm_uad_list (elist, file_name, wp, append, with_header,p_width, pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list The list of elements for which the report
is produced.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information
is appended to the output file, if it already
exists.

with_header In stm_boolean Specifies whether to include set-up
commands to the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
516 Data Port Reference Guide

List of Utility Functions
stm_uad_n2

Function Type

int

Description

Writes the predefined N2-chart report to the specified output file. The output contains
commands for the designated word processor.

Syntax

stm_uad_n2 (elist, names, level, env, chart, dis, ftype, file_name, wp,
append, with_header, p_width, pheight)

Arguments

Argument Input/
Output Type Description

elist In stm_list A list expression, which must be of
the type list of modules or list
of activities, that specifies the
elements in the diagonal.

names In char Specifies whether to display the
names (N) or synonyms (S) of the
elements that appear on the diagonal
of the matrix.

level In char Specifies whether the sub-box (B) or
parent box (P) is placed on the
diagonal of the matrix.

env In stm_boolean If this is true, the environment is
added to the matrix.

chart In char Indicates whether activity-chart (A) or
module-chart (M) arrows are taken
into account when the report is
generated.

dis In char Specifies the kind of information to
appear in the report. The possible
values are as follows:

• I - Flow labels
• P - Parent information items
• B - Basic information items

ftype In char Specifies the kind of information flows
to show in the report. The possible
values are as follows

• D - Data-flows
• C - Control-flows
• B - Both data- and control-flows
Rational Statemate 517

Utility Functions
Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new
information is appended to the output
file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up
commands to the word processor
(true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.

Argument Input/
Output Type Description
518 Data Port Reference Guide

List of Utility Functions
stm_uad_protocol

Function Type

int

Description

Writes the predefined protocol report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_protocol (elist, attr_title, file_name, wp,append, with_header,
p_width, pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for which
the report is produced.

attr_title In stm_attr_nam
e

Specifies the attribute whose value precedes the
element name in the report.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands
to the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
Rational Statemate 519

Utility Functions
stm_uad_resolution

Function Type

int

Description

Writes the predefined resolution report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_resolution (clist, type, file_name, wp, append,with_header, p_width,
pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

clist In stm_list Lists the Rational Statemate charts for which
the report is produced.

type In stm_attr_name Specifies the type of element to include in the
report. The possible values are as follows:

• stm_textual
• stm_graphical
• stm_mixed
• stm_state
• stm_module
• stm_activity
• stm_data_store

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands
to the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
520 Data Port Reference Guide

List of Utility Functions
stm_uad_state_interface

Function Type

int

Description

Writes the predefined state interface report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_state_interface (elist, file_name, wp, append,with_header, p_width,
pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for
which the report is produced.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up
commands to the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
Rational Statemate 521

Utility Functions
stm_uad_structure

Function Type

int

Description

Writes the predefined structure report to the specified output file. The output contains
commands for the specified word processor.

Syntax

stm_uad_structure (elist, width, file_name, wp, append,with_header, p_width,
pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for
which the report is produced.

width In int The report width, in inches.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands
to the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
522 Data Port Reference Guide

List of Utility Functions
stm_uad_tree

Function Type

int

Description

Writes the predefined tree report to the specified output file. The output contains commands
for the specified word processor.

Syntax

stm_uad_tree (elist, depth, file_name, wp, append,with_header, p_width,
pheight)

Arguments

Status Codes

� stm_success

� stm_unknown_plotter

� stm_can_not_open_file

Argument Input/
Output Type Description

elist In stm_list Lists the Rational Statemate elements for which the
report is produced.

depth In int Specifies the hierarchical level to which the report
should be generated. To include all levels, use the
value 99.

file_name In stm_filename The name of the output file.

wp In char* The target word processor.

append In stm_boolean Determines whether the new information is
appended to the output file, if it already exists.

with_header In stm_boolean Specifies whether to include set-up commands to
the word processor (true).

p_width In int Specifies the page width.

p_height In int Specifies the page length.
Rational Statemate 523

Utility Functions
stm_unload

Function Type

void

Description

Unloads (deletes from the current workarea) a chart or any other configuration item file. It is
one of the four utility functions (stm_load, stm_save, stm_unload, and stm_unload_all)
that provide an interface between the workarea of the Rational Statemate user and external
files.

You must work in the automatic_transaction mode when using this function by specifying
automatic_transaction as the third argument (trans_mode) of the stm_init_uad function.
Your program should contain lines similar to the following:

int success, status;
.
.
success = stm_init_uad ("MY_PROJECT",

"/local/my_work_area", automatic_transaction,
&status);

if (!success)
.
.

Syntax

stm_unload (item_name, enforce, message, &status)
524 Data Port Reference Guide

List of Utility Functions
Arguments

Status Codes

� stm_success

� stm_chart_not_in_database

� stm_file_not_in_work_area

� stm_chart_is_active

� stm_not_unloaded_modified

� stm_not_unloaded_new

Argument Input/
Output Type Description

item_name In char * The item name and type. The possible values are
as follows:

• ach - Activity-charts
• cgenset - Compilation profiles
• chk_mdl_set - Check Model profiles
• cnf - Simulation status files
• config - Configuration files
• dgl - Documentor templates
• dic - Global definition sets
• dyn_set - Simulation analysis profiles
• inc - Documentor include files
• mch - Module-charts
• req - Requirement files
• sch - Statecharts
• scp - Simulation SCL files

enforce In stm_boolean If this is true, it enforces the load—even in cases
when the new or modified item with the same name
already exists in the workarea. If this is false, the
load operation fails, in these cases, with the
corresponding status code and error message.

message Out char * A buffer that holds the error message, if an error
occurs. This buffer can hold 127 characters.

status Out int The function status code.
Rational Statemate 525

Utility Functions
Example

To unload (delete from the current workarea) an activity-chart named bad_chart, use the
following statements:

#define DONT_ENFORCE 0
int status;
char mess[128];
.
.
stm_unload ("bad_chart.ach", DONT_ENFORCE, message,

&status);
if (status != stm_success)
.
.

To avoid losing information, do not enforce the operation in case this chart is new or modified.
526 Data Port Reference Guide

List of Utility Functions
stm_unload_all

Function Type

void

Description

Unloads all charts from the current workarea and clears all database fields. It is one of the four
utility functions (stm_load, stm_save, stm_unload, and stm_unload_all) that provide an
interface between the workarea of the Rational Statemate user and external files.

This function is not equivalent to calling the stm_unload function for each chart in the
database. The differences between these two functions are as follows:

� stm_unload takes a fixed amount of time regardless of the number of charts in the
database. It does not perform an unload of individual charts, but rather cleans all database
data. Usually this function cleans the database much faster than by unloading individual
charts one by one.

� stm_unload_all clears the internal ID counter of charts in the database, whereas the
stm_unload function does not. This counter starts from 0 when the workarea database is
initially created and is incremented each time a chart is created or loaded into the
database. It is not decremented when charts are unloaded (deleted). When this counter
reaches the value of 1023, no more charts can be loaded or created in the database. There
are two ways to reset this counter: calling the stm_unload_all function from a program,
or interactively via the Delete charts from the Workarea option of Rational Statemate
with the Delete all and Without confirmation flags set.

Note: When using this function, you must work in the automatic transaction mode by
specifying automatic_transaction as the third argument (trans_mode) of the
stm_init_uad function. Your program should contain lines similar to the
following:

int success, status;
...
success = stm_init_uad("MY_PROJECT",

 "/local/my_work_area",
 automatic_transaction, &status);

if (!success)

Syntax

stm_unload_all (message, &status)
Rational Statemate 527

Utility Functions
Arguments

Status Codes

� stm_success

� stm_chart_is_active

Argument Input/
Output Type Description

message Out char * A buffer that holds the error message, if an error
occurs. This buffer can hold 127 characters.

status Out int The function status code.
528 Data Port Reference Guide

Project Management
This section describes special project management functions. For each function, the following
information is provided:

� Description
� Syntax
� Arguments
� Status codes

The following table lists the project management functions.

Function Description

stm_r_pm_member_workareas Returns the workareas of the specified user.

stm_r_pm_operator_projects Returns a list of all the projects in which the specified user
is a member.

stm_r_pm_project_databank Returns the databank name of the specified project in the
project management database.

stm_r_pm_project_manager Returns the manager of the specified project in the project
management database.

stm_r_pm_project_members Returns a list of all the members of the specified project in
the project management database.

stm_r_pm_projects Returns a list of all the projects in the project management
database.
Rational Statemate 529

Project Management
stm_r_pm_member_workareas
Function Type

stm_list

Description

Returns the workareas of the specified user.

Syntax

stm_r_pm_member_workareas (o_name, p_name, &status)

Arguments

Status Codes

� stm_success

� stm_nonexistent_project

� stm_not_member_of_project

Argument Input/
Output Type Description

o_name In char * The name of the user.

p_name In char * The name of the project.

status Out int The function status code.
530 Data Port Reference Guide

stm_r_pm_operator_projects
stm_r_pm_operator_projects
Function Type

stm_list

Description

Returns a list of all the projects in which the specified user is a member.

Syntax

stm_r_pm_operator_projects (oname, &status)

Arguments

Status Codes

� stm_success

� stm_no_projects

Argument Input/
Output Type Description

o_name In char * The name of the user.

status Out int The function status code.
Rational Statemate 531

Project Management
stm_r_pm_project_databank
Function Type

char *

Description

Returns the databank name of the specified project in the project management database.

Syntax

stm_r_pm_project_databank (pname, &status)

Arguments

Status Codes

� stm_success

� stm_nonexistent_project

Argument Input/
Output Type Description

pname In char * The name of the project.

status Out int The function status code.
532 Data Port Reference Guide

stm_r_pm_project_manager
stm_r_pm_project_manager
Function Type

char *

Description

� Returns the manager of the specified project in the project management database.

Syntax

stm_r_pm_project_manager (pname, &status)

Arguments

Status Codes

� stm_success

� stm_nonexistent_project

Argument Input/
Output Type Description

pname In char The name of the project.

status Out int The function status code.
Rational Statemate 533

Project Management
stm_r_pm_project_members
Function Type

stm_list

Description

Returns a list of all the members of the specified project in the project management database.

Syntax

stm_r_pm_project_members (pname, &status)

Arguments

Status Codes

� stm_success

� stm_nonexistent_project

Argument Input/
Output Type Description

pname In char * The name of the project.

status Out int The function status code.
534 Data Port Reference Guide

stm_r_pm_projects
stm_r_pm_projects
Function Type

stm_list

Description

Returns a list of all the projects in the project management database.

Syntax

stm_r_pm_projects (&status)

Arguments

Status Codes

� stm_success

� stm_no_projects

Argument Input/
Output Type Description

status Out int The function status code.
Rational Statemate 535

Project Management
536 Data Port Reference Guide

Data Types

The data types are defined in the dataport.h file, which you must include in your C program.

The file is located in your Statmate installation path under the include directory.
Rational Statemate 537

Data Types
538 Data Port Reference Guide

Function Status Codes

Dataport functions return only one output parameter, the function status code. This code reports
whether the function call was successfully completed. If the function call fails, the status code
indicates the problem. This status code can be used to pinpoint run-time errors in your program.

For example, assume the following call appears in your program:

state_id = stm_r_st ("%", &status);

The function requires a state name for the first input argument. In this case, the function returns a
status code of 3, stm_illegal_name, because % is not a valid element name.

The status code is an integer value. Therefore, the status argument must be a variable declared to
be of type int INTEGER. The Dataport provides predefined constants for the function status codes.
This enables you to use the status name attached to each status code in your program.

Status codes have three severity levels:

� S for success
� W for warning
� E for error

When a warning or error status is returned, attempts to execute statements using the return value of
the function can produce erroneous or unexpected results. Therefore, you should check the return
status codes to ensure that your function call is successful before using the returned values.
Rational Statemate 539

Function Status Codes
The following table lists the status codes and their severity levels.

Code Status Name Severity
Level

–4 stm_no_stm_root

UNIX: The STM_ROOT environment variable is not defined.
VMS: The STM$ROOT or STM$PM logical name does not exist.

E

–3 stm_obsolete_function

Irrelevant function for the current version.
E

–2 stm_missing_elements_in_list

Input elements do not exist in the database.
W

–1 stm_list_type_mismatch
Incorrect element type used in the query.

E

0 stm_success

The function call was successful.
S

1 stm_id_out_of_range
The specified ID is not valid for this element type.

E

2 stm_id_not_found
An element with the specified ID does not exist.

E

3 stm_illegal_name

The specified name is not legal.
E

4 stm_name_not_found
The specified name does not exist.

E

5 stm_name_not_unique
There is more than one element with the specified name, so a specific path
name is required.

E

6 stm_missing_name

The specified element has no name.
W

7 stm_missing_synonym
The specified element has no synonym.

W

8 stm_missing_short_description

The specified element has no short description.
W

9 stm_missing_long_description
The specified element has no long description.

W

540 Data Port Reference Guide

10 stm_attribute_name_not_found
The specified element has no attribute name.

W

11 stm_starting_keyword_not_found
The long description of the specified element does not contain the given
starting keyword.

W

12 stm_ending_keyword_not_found
The long description of the specified element does not contain the given
ending keyword.

W

13 stm_primitive_element
The element is primitive.

W

14 stm_can_not_open_file
The operating system cannot open the file with the specified name.

E

15 stm_illegal_address
The pointer address is illegal.

E

16 stm_not_an_and_state

This state is not supposed to contain and-lines.
W

17 stm_no_and_lines_in_and_state

This and-state is missing and-lines.
E

18 stm_missing_graphic_data
Graphic data is missing from the element.

E

19 stm_nil_list
There is no input list.

E

20 stm_list_element_does_not_exist
The specified element does not exist.

W

21 stm_cannot_compare_lists
The lists cannot be compared because the list types are different, or the lists
are not initialized.

E

22 stm_elements_without_name
The list cannot be sorted because its elements have no names.

E

23 stm_elements_without_synonym
The list cannot be sorted because its elements have no synonyms.

E

24 stm_elements_not_hierarchical

The list cannot be sorted because it is not hierarchical.
E

25 stm_illegal_extract_type

You cannot extract this element type.
E

Rational Statemate 541

Function Status Codes
26 stm_no_such_list
No such list exists

E

27 stm_not_diagram_connector
There is no value in a connector that is not a diagram connector.

E

28 stm_implicit_element

The element is defined implicitly—it is an internally defined entity.
E

29 stm_missing_label
The element has no label.

W

30 stm_unknown_plotter
The plotter type is unknown.

E

31 stm_unresolved

The element is unresolved.
W

32 stm_elements_without_attributes
The list cannot be sorted because its elements
have no attributes.

E

33 stm_not_instance
The element is not an instance.

E

34 stm_no_updated_pmdb

The workarea database is not updated to the current version.
E

35 stm_no_updated_projdb
The installation database is not updated to the current version.

E

36 stm_no_legal_operator

The user is not authorized as a Rational Statemate operator.
E

37 stm_deadlock

Deadlock situation.
E

38 stm_not_member_of_project
The user is not a member of the specified project.

E

39 stm_nonexistent_project

The specified project does not exist.
E

40 stm_not_enough_memory
The plot cannot be produced because there is not enough memory.

E

41 stm_empty_chart
The plot file cannot be produced because the chart is empty.

E

542 Data Port Reference Guide

42 stm_plot_failure
The plot file was not produced because of a system error.

E

43 stm_no_file_of_licensed_host
The file containing the name of the licensed host does not exist.

E

44 stm_empty_file_of_licensed_host

The file containing the name of the licensed host is empty.
E

45 stm_cannot_chdir_to_work_area

Could not change directory to the workarea.
E

46 stm_cannot_write_to_file
No space is left on device for writing a file.

E

47 stm_illegal_parameter
An illegal parameter value was supplied.

E

48 stm_illegal_parameter_mode

Illegal parameter mode.
E

49 stm_illegal_parameter_name
Illegal parameter name.

E

50 stm_null_string
The input string is null.

E

51 stm_illegal_len
The length value is illegal.

E

52 stm_illegal_index
The index value is illegal.

E

53 stm_cannot_read_file

Cannot read from a file that was not opened.
E

54 stm_end_of_file

Reached the end-of-file.
E

55 stm_not_a_parameter
The specified ID is not a parameter.

E

56 stm_param_not_compatible

The actual and formal parameters are not compatible.
W

57 stm_error_in_file

There is an error in the requirement file.
E

Rational Statemate 543

Function Status Codes
58 stm_missing_field
A field is missing in the requirement record.

W

59 stm_missing_user_type
The specified element has no user-defined type.

E

60 stm_illegal_attribute_name

The attribute name is illegal.
E

61 stm_illegal_attribute _value

The attribute value is too long.
E

62 stm_duplicate_attribute _pair
The specified attribute name/value pair already exists.

E

63 stm_not_in_rw_transaction

Attempt to modify the database when not in a read/write transaction.
E

64 stm_missing_of_enum_type

The specified element has no enumerated type associated with its array
type definition.

W

65 stm_missing_user_code

The specified element has no user code.
W

66 stm_missing_subroutine_params

The specified element has no subroutine parameters.
W

67 stm_missing_local_data
The specified element has no local data.

W

68 stm_missing_global_data

The specified element has no global data.
W

69 stm_no_connected_chart
The specified element is not connected to a chart.

W

70 stm_attribute_cannot_be_deleted
The specified element’s attribute cannot be deleted.

E

71 stm_missing_cbk_binding
The specified element has no callback binding.

W

72 stm_missing_subroutine_binding
The specified element has no subroutine binding.

W

73 stm_missing_statemate_action_lang

The specified element has no action language.
W

544 Data Port Reference Guide

74 stm_no_projects
There are no projects in the project management database.

W

75 stm_member_has_no_wa E

76 stm_missing_external_link
Specific element has no long description.

W

77 stm_not_chart_id E

78 stm_message_not_found E

79 stm_not_referenced_sd E

80 stm_not_timing_constraint E

81 stm_not_order_insignificant E

82 stm_missing_note

Element has no note.
W

83 stm_missing_description_file

Element does not have an external description file defined.
W

84 stm_not_boundry_box E

85 stm_not_use_case E

86 stm_not_actor E

87 stm_not_partition E

88 stm_not_sequence_diagram E

89 stm_not_activity E

90 stm_invalid_use_case_scen_num E

91 stm_missing_extention_point_definition W

92 stm_missing_timing_constraint_note W

93 stm_no_use_case_scen_attr_defined W

94 stm_use_case_scen_attr_val_not_defined W

95 stm_illegal_chart E

96 stm_info_flow_component_exists E

97 stm_missing_info_flow_component W
Rational Statemate 545

Function Status Codes
98 stm_generic_chart_not_in_database E

99 stm_cannot_delete_parent_of_control_activity E

100 stm_hyperlinked_expression_not_implemented_for_
plotter

W

101 stm_illegal_param_min_val E

102 stm_illegal_param_max_val E

103 stm_illegal_param_ba_lindex E

104 stm_illegal_param_ba_rindex E

105 stm_illegal_param_user_type E

106 stm_illegal_param_enum_type E

107 stm_illegal_param_type E

108 stm_illegal_param_structure_type E

109 stm_illegal_local_var_structure_type E

110 stm_illegal_short_description_length E

111 stm_illegal_local_var_min_val E

112 stm_illegal_local_var_max_val E

113 stm_illegal_local_var_ba_lindex E

114 stm_illegal_local_var_ba_rindex E

115 stm_illegal_local_var_user_type E

116 stm_implementation_missing E

117 stm_implementation_exists E

118 stm_missing_subroutine E

119 stm_illegal_global_var_mode E

120 stm_illegal_global_var_name E

121 stm_illegal_expression_n_chart
There is an illegal expression in the loaded chart.

E

122 stm_error_in_chart
There is an error in the loaded chart.

E

546 Data Port Reference Guide

123 stm_cannot_open_chart_file
Cannot open the chart file to be loaded.

E

124 stm_exceeded_max_id_number
There are more than 1023 IDs in the workarea.

E

125 stm_chart_not_in_database

Cannot find a chart in the database to be saved or unloaded.
E

126 stm_file_not_in_work_area

Cannot find a file in the workarea to be saved or unloaded.
E

127 stm_cannot_copy_file
Cannot copy a file during a save or load operation.

E

128 stm_cannot_create_file

Cannot create an auxiliary file during a load to the workarea.
E

129 stm_illegal_version

An illegal version was specified for the load operation.
E

130 stm_file_not_found
Cannot find a source file in the load operation.

E

131 stm_not_loaded_because_modified

A modified version of loaded chart or file exists in the workarea.
E

132 stm_not_loaded_because_new

A new version of the loaded chart or file exists in the workarea.
E

133 stm_not_unloaded_modified
The chart or file to be unloaded is modified.

E

134 stm_not_unloaded_new

The chart or file to be unloaded is new.
E

135 stm_chart_is_active

The chart to be unloaded is currently being edited by a graphics editor.
E

136 stm_error_in_save_operation
There was a write to disk error during the save operation.

E

137 stm_illegal_load_mode

An illegal mode was specified for the load operation.
E

138 stm_not_loaded_because_type

A chart with the same name, but of another type, exists in the workarea.
E

Rational Statemate 547

Function Status Codes
139 stm_illegal_type
An illegal type of configuration item was specified.

E

140 stm_illegal_parameters
An illegal parameter to the load function was specified.

E

141 stm_illegal_bindings

There is an error in the loaded chart file.
E

142 stm_too_long_line

There is a line too long in the loaded chart file.
E

143 stm_instance_type_conflict
There is an instance type conflict in the loaded chart file.

E

144 stm_usage_conflict

There is a usage conflict in the loaded chart file.
E

145 stm_unrecognized_format

The loaded chart file contains an unrecognized conflict.
E

146 stm_double_chart_parameters
There is an error in the loaded chart file.

E

147 stm_double_chart_bindings

There is an error in the loaded chart file.
E

148 stm_no_bindings W

149 stm_missing_truth_table E

150 stm_truth_table_invalid_row E

151 stm_component_interface_changed E

152 stm_cannot_load_component E

153 stm_cannot_open_new_wa E

154 stm_element_exists E

156 stm_coordinates_out_of_range E

157 stm_illegal_coordinates E

158 stm_illegal_local_var_enum_type E

159 stm_illegal_local_var_type E

160 stm_illegal_local_var_name E
548 Data Port Reference Guide

161 stm_truth_table_invalid_column E

162 stm_invalid_truth_table_cell E

163 stm_truth_table_convert_failed E

164 stm_conflicting_array_indices_types E

165 stm_invalid_sd_scope W

166 stm_sd_scope_not_defined W

167 stm_use_all_public_gds E

168 stm_error_in_backup E

169 stm_not_message E

170 stm_cannot_delete_file E

171 stm_plot_illegal_option_key E

172 stm_plot_illegal_option_val E

173 stm_no_local_vars_in_selected_impelentation E

174 stm_illegal_hyperlink_format E

175 stm_illegal_font_name E

176 stm_illegal_factor_value E

177 stm_invalid_key E

178 stm_no_legal_wa_operator

The user is not authorized as the workarea operator.
E

179 #define stm_error_in_open_socket_to_statemate E
Rational Statemate 549

Function Status Codes
550 Data Port Reference Guide

Index
A
Actions 266
Activities 244

stm_r_ac_actor_ac 244
stm_r_ac_basic_ac 244
stm_r_ac_boundary_box_ac 244
stm_r_ac_by_attributes_ac 244
stm_r_ac_callback_binding_ac 244
stm_r_ac_component_instance_ac 245
stm_r_ac_continuous_ac 245
stm_r_ac_control_ac 245
stm_r_ac_control_terminated 245
stm_r_ac_data_store_ac 245
stm_r_ac_def_of_instance_ac 245
stm_r_ac_defined_environment_ac 245
stm_r_ac_explicit_defined_ac 246
stm_r_ac_ext_11_ac 246
stm_r_ac_external_ac 246
stm_r_ac_external_router_ac 246
stm_r_ac_generic_instance_ac 246
stm_r_ac_imp_best_match_ac 246
stm_r_ac_imp_mini_spec_ac 247
stm_r_ac_imp_none_ac 247
stm_r_ac_imp_sb_bind_ac 247
stm_r_ac_imp_truth_table_ac 247
stm_r_ac_instance_ac 247
stm_r_ac_instance_of_def_ac 247
stm_r_ac_internal_ac 248
stm_r_ac_is_occurrence_of_ac 248
stm_r_ac_lifeline_ac 248
stm_r_ac_router_ac 250
stm_r_ac_use_case_ac 251

A-flow-lines 257
Argument query functions 240
Arrow elements 6
Attribute name, input argument 38
Automatic transaction mode 12
Autonumber 493

B
Begin keyword, input argument 38

C
C language 9
C program sample 17
Calling conventions 4
Calling single-element functions 36
Charts 269, 270, 272, 273
Codes 539
Conditions 285
Connectors 282

D
Data types 537
Database extraction function

status codes, list of 539
Data-items 290
Dataport

function names 4
functions calls 3
interface 2
library 1

Dataport function types 2
Dataport functions

element type abbreviations 4
include files 9
initializing the retrieval process 10
input arguments 6
retrieval process 9
return values 7
transaction handling 11

dataport.h file 537
Data-stores 299

E
Element ID, input argument 38
Element type abbreviations 4
Elements 342
End keyword, input argument 38
Error code 539
Events 310
Executing

C program 30
programs on UNIX 16
programs on Windows 15
Rational Statemate 551

Index
F
Fields 314
Filename, input argument 38
Function status codes 539
Functions

calling functions for workarea 398
calling list utility 396
calling single-element 36
calls 3
extract trigger 398
include files 9
input arguments 6
names 4
program management type 2
query 235
query type 2
retrieval process 9
retrieving list of 320
return status codes list 539
return values 7
single-element 35
single-element type 2
types 2
using in C language 9
utility 395
utility type 2

G
Generating chart plots 398
Generating lists 395

H
Hyperlink, stm_plot_hyper_exp 489

I
Include files 9
Information retrieval 9, 10
Information-flow 321
Input arguments 6

single-element functions 38

L
Library dataport 1
Lifeline 501
Lists 395

calling utility functions 396
creating 395
generating 395
loading 396

M
M-flow-line 327
Mini-spec 53
Mixed elements 342
Modules 335

N
Name, input argument 38

P
Plot

headerlines 501
hyperlinks 489
page breaks 497

Plot functions 397
Producing reports 397
Project management functions

stm_r_pm_member_workareas 529, 530
stm_r_pm_operator_projects 529, 531
stm_r_pm_project_databank 529, 532
stm_r_pm_project_manager 529, 533
stm_r_pm_project_members 529, 534
stm_r_pm_projects 529, 535

Q
Query functions 235

Activities 244
atm_r_af_within_flows_co 258
block 269, 270, 271, 272
calling 236
examples 241
input arguments 240
stm_r_ac_actor_ac 244
stm_r_ac_affecting_mx 254
stm_r_ac_associates_uc 256
stm_r_ac_basic_ac 244
stm_r_ac_boundary_box_ac 244
stm_r_ac_by_attributes_ac 244
stm_r_ac_callback_binding_ac 244
stm_r_ac_carried_out_by_md 253
stm_r_ac_component_instance_ac 245
stm_r_ac_continuous_instance_ac 245
stm_r_ac_control_ac 245
stm_r_ac_control_terminated_ac 245
stm_r_ac_data_store_ac 245
stm_r_ac_def_of_instance_ac 245
stm_r_ac_def_or_unres_in_ch 252
stm_r_ac_defined_environment_ac 245
stm_r_ac_defined_in_ch 252
stm_r_ac_described_by_ch 252
stm_r_ac_explicit_defined_ac 246
stm_r_ac_ext_11_ac 246
stm_r_ac_external_ac 246
552 Data Port Reference Guide

Index
stm_r_ac_external_router_ac 246
stm_r_ac_generic_instance_ac 246
stm_r_ac_imp_best_match_ac 246
stm_r_ac_imp_mini_spec_ac 247
stm_r_ac_imp_none_ac 247
stm_r_ac_imp_sb_bind_ac 247
stm_r_ac_imp_truth_table_ac 247
stm_r_ac_instance_ac 247
stm_r_ac_instance_of_ch 252
stm_r_ac_instance_of_def_ac 247
stm_r_ac_internal_ac 248
stm_r_ac_is_occurrence_of_ac 248
stm_r_ac_is_principal_of_ac 248
stm_r_ac_lifeline_ac 248
stm_r_ac_logical_desc_of_ac 248
stm_r_ac_logical_parent_of_ac 248
stm_r_ac_logical_sub_of_ac 249
stm_r_ac_meaningly_affecting_mx 254
stm_r_ac_meaningly_using_mx 254
stm_r_ac_mini_spec_ac 249
stm_r_ac_name_of_ac 249
stm_r_ac_offpage_instance_ac 249
stm_r_ac_parent_of_ds 253
stm_r_ac_parent_of_router 255
stm_r_ac_physical_desc_of_ac 249
stm_r_ac_physical_parent_of_ac 249
stm_r_ac_physical_sub_of_ac 249
stm_r_ac_procedure_like_ac 250
stm_r_ac_resolved_to_ext_ac 250
stm_r_ac_root_in_ch 252
stm_r_ac_router_ac 250
stm_r_ac_self_terminated_ac 250
stm_r_ac_source_of_af 251
stm_r_ac_subroutine_binding_ac 250
stm_r_ac_synonym_of_ac 250
stm_r_ac_target_of_af 251
stm_r_ac_throughput_st 255
stm_r_ac_top_level_in_ch 253
stm_r_ac_unresolved_ac 251
stm_r_ac_unresolved_in_ch 253
stm_r_ac_use_case_ac 251
stm_r_ac_using_mx 254
stm_r_ac_wintin_st 255
stm_r_af_containing_laf 260
stm_r_af_from_source 257
stm_r_af_from_source_ds 259
stm_r_af_from_source_mx 261
stm_r_af_from_source_router 261
stm_r_af_input_to_ac 257
stm_r_af_output_from_ac 257
stm_r_af_to_target_ac 257
stm_r_af_to_target_ds 259
stm_r_af_to_target_router 261
stm_r_af_within_flows_di 258
stm_r_af_within_flows_ev 259
stm_r_af_within_flows_if 260
stm_r_af_within_flows_mx 261

stm_r_af_within_labels_co 258
stm_r_af_within_labels_di 258
stm_r_af_within_labels_ev 259
stm_r_af_within_labels_if 260
stm_r_af_within_labels_mx 261
stm_r_ba_contained_in_af 262
stm_r_ba_defined_in_ch 262
stm_r_bt_defined_in_ch 262
stm_r_laf_contained_in_af 263
stm_r_laf_from_source_ac 263
stm_r_laf_from_source_ds 264
stm_r_laf_from_source_mx 264
stm_r_laf_from_source_router 265
stm_r_laf_input_to_ac 263
stm_r_laf_output_from_ac 263
stm_r_laf_to_target_ac 263
stm_r_laf_to_target_ds 264
stm_r_laf_to_target_mx 264
stm_r_laf_to_target_router 265
stm_r_mx_meaningly_affecting_mx 361
stm_r_mx_meaningly_using_mx 361
stm_r_st_meaningly_affecting_mx 385
stm_r_st_meaningly_using_mx 385
stm_r_tr_meaningly_affecting_mx 392
stm_r_tr_meaningly_using_mx 392
stm_r_uc_associates_ac 256
stm_r_uc_explicit_defined_uc 256

R
Reaction string 398
Report functions 397
Retrieve

actions 266
a-flow-lines 257
charts 269, 270, 272, 273
conditions 285
connectors 282
data-item 290
data-stores 299
events 310
fields 314
functions 320
information-flow 321
m-flow-lines 327
mixed elements 342
modules 335
routers 371
states 383
subroutines 376
timing constraints 390
transitions 391
user-defined types (UDT) 303

Return values 7
special cases 8

Routers 371
Rational Statemate 553

Index
S
Sample C program 17

constructing activity termination 28
constructing activity type 28
drawing activity box 27
drawing element’s name 26
global variable definition 29
include statement 29
information retrieval 23
main section 21
primary function 22
program definitions 29
program output 30
writing graphical information 24
writing textual information 25

Self transaction mode 13
Sequence diagram

autonumbering 493
breaking across pages 497

Single-element functions 35
calling 36
examples 39
input arguments 38
list of 41
stm_calculate_element_magic_number 232
stm_check_out_item 47, 51
stm_get_element_create_stamp 233
stm_open_truth_table 231
stm_r_ac_mini_spec_hyper 53
stm_r_ac_subroutine_bind 54
stm_r_ac_subroutine_bind_enable 55
stm_r_ac_subroutine_bind_expr 56
stm_r_ac_termination 57
stm_r_actual_parameter_exp 60
stm_r_actual_parameter_type 61
stm_r_cd_info 62
stm_r_ch_access_status 64
stm_r_ch_creation_date 65
stm_r_ch_creator 66
stm_r_ch_modification_date 67
stm_r_ch_modification_status 68
stm_r_ch_usage_type 69
stm_r_ch_version 70
stm_r_changes_log 63
stm_r_cn_value 71
stm_r_co_default_val 72
stm_r_ddb_list_names 73
stm_r_design_attr 74
stm_r_dt_enum_values 75
stm_r_elem_in_ddb_list 79
stm_r_element_type 76
stm_r_formal_parameter_names 80
stm_r_gds_visibility_mode 81
stm_r_hyper_key 82, 83
stm_r_included_gds 84
stm_r_inherited_gds 85

stm_r_line_width 234
stm_r_md_implementation 86
stm_r_md_purpose 87
stm_r_msg_all 88
stm_r_msg_defined_in_scen 89
stm_r_msg_graphic 90
stm_r_msg_included_in_ord_insig 91
stm_r_msg_where_tc_begins 92
stm_r_msg_where_tc_ends 93
stm_r_next_msg 94
stm_r_nt_body 95
stm_r_omd 96, 97, 100
stm_r_ord_insig_all 98
stm_r_ord_insig_graphic 99
stm_r_parameter_binding 101
stm_r_previous_msg 102
stm_r_sb_action_lang 103
stm_r_sb_action_lang_expression 104
stm_r_sb_action_lang_local_data 105
stm_r_sb_ada_user_code 106
stm_r_sb_ansi_c_user_code 107
stm_r_sb_connected_chart 108
stm_r_sb_connected_flowchart 110
stm_r_sb_connected_statechart 109
stm_r_sb_global_data 111
stm_r_sb_global_data_mode 112
stm_r_sb_kr_c_user_code 113
stm_r_sb_parameters 114
stm_r_sb_proc_sch_local_data 115
stm_r_sb_return_type 117
stm_r_sb_return_user_type 118
stm_r_sb_return_user_type_name_type 119
stm_r_sep_all 120
stm_r_sep_graphic 121
stm_r_st_andlines 122
stm_r_st_static_reactions 123
stm_r_st_static_reactions_hyper 124
stm_r_stubs_name 125
stm_r_tc_all 126
stm_r_tc_graphic 127
stm_r_tr_attr_enforced 128
stm_r_tr_attr_name 129
stm_r_tr_attr_val 130
stm_r_tr_longdes 131
stm_r_tr_notes 132
stm_r_tt_cell 133
stm_r_tt_cell_hyper 134
stm_r_tt_cell_type 135
stm_r_tt_num_of_col 136
stm_r_tt_num_of_in 137
stm_r_tt_num_of_out 138
stm_r_tt_num_of_row 139
stm_r_tt_row 140
stm_r_tt_row_hyper 141
stm_r_xx 142
stm_r_xx_all 144
stm_r_xx_array_lindex 146
554 Data Port Reference Guide

Index
stm_r_xx_array_rindex 147
stm_r_xx_attr_enforced 148
stm_r_xx_attr_name 150
stm_r_xx_attr_val 152
stm_r_xx_bit_array_lindex 154
stm_r_xx_bit_array_rindex 155
stm_r_xx_cbk_binding 156
stm_r_xx_cbk_binding_enable 157
stm_r_xx_cbk_binding_expression 159
stm_r_xx_cbk_binding_expression_hyper 160
stm_r_xx_chart 161
stm_r_xx_combinationals 163
stm_r_xx_containing fields 164
stm_r_xx_data_type 165
stm_r_xx_definition_type 167
stm_r_xx_des_attr_name 170
stm_r_xx_des_attr_val 172
stm_r_xx_description 174
stm_r_xx_displayed_name 176
stm_r_xx_expr_hyper 178
stm_r_xx_expression 179
stm_r_xx_graphic 183
stm_r_xx_instance_name 185
stm_r_xx_keyword 187
stm_r_xx_labels 190
stm_r_xx_labels_hyper 192
stm_r_xx_longdes 193
stm_r_xx_max_val 195
stm_r_xx_min_val 196
stm_r_xx_mini_spec 197
stm_r_xx_mode 198
stm_r_xx_name 199
stm_r_xx_note 202
stm_r_xx_notes 203
stm_r_xx_number_of_bits 204
stm_r_xx_of_enum_type 205
stm_r_xx_of_enum_type_name_type 206
stm_r_xx_parameter_mode 207
stm_r_xx_reactions 208
stm_r_xx_select_implementation 210
stm_r_xx_string_length 211
stm_r_xx_structure_type 212
stm_r_xx_synonym 214
stm_r_xx_text 216
stm_r_xx_truth_table 218
stm_r_xx_truth_table_expressions 219
stm_r_xx_truth_table_local_data 220
stm_r_xx_type 221
stm_r_xx_type_expression 226
stm_r_xx_uniquename 227
stm_r_xx_user_type 229
stm_r_xx_user_type_name_type 230
stm_xx_default_val 166

States 383
Status codes 539
stm 529
stm_action_of_reaction 404

stm_add_attribute 405
stm_backup 407
stm_calculate_element_magic_number 232
stm_check_out_item 47, 51
stm_commit_transaction() 408
stm_delete_attribute 409
stm_dispose_all 412
stm_dispose_graphic 413
stm_dispose_text 413
stm_do_command_line 414
stm_exit_simulation 415, 416
stm_finish_uad 417
stm_get_db_status 418
stm_get_element_create_stamp 233
stm_init_uad 418
stm_list_add_id_element 421, 422
stm_list_add_ptr_element 423, 424
stm_list_contains_id_element 425
stm_list_contains_ptr_element 426
stm_list_create_id_list 427
stm_list_create_id_list_with_args 429
stm_list_create_ptr_list 428
stm_list_create_ptr_list_with_args 430
stm_list_delete_id_element 431, 432
stm_list_delete_ptr_element 433, 434
stm_list_destroy 435
stm_list_extraction 436
stm_list_extraction_by_chart 437
stm_list_extraction_by_chart_id 438
stm_list_extraction_by_type 439
stm_list_first_id_element 440
stm_list_first_ptr_element 441
stm_list_intersection_id_lists 442
stm_list_intersection_ptr_lists 443
stm_list_last_id_element 444
stm_list_last_ptr_element 445
stm_list_length 446
stm_list_load 447
stm_list_next_id_element 448
stm_list_next_ptr_element 450
stm_list_previous_id_element 451
stm_list_previous_ptr_element 453
stm_list_purge 454
stm_list_sort 455
stm_list_sort_alphabetically_by_branches 456
stm_list_sort_alphabetically_by_levels 457
stm_list_sort_by_attr_value 458
stm_list_sort_by_branches 460
stm_list_sort_by_chart 462
stm_list_sort_by_levels 463
stm_list_sort_by_name 465
stm_list_sort_by_synonym 467
stm_list_subtraction_id_lists 470
stm_list_subtraction_ptr_lists 471
stm_list_union_id_lists 472
stm_list_union_ptr_lists 473
stm_multiline_to_one 478
Rational Statemate 555

Index
stm_multiline_to_strings 478
stm_open_truth_table 231, 479
stm_plot 480
stm_plot_hyper_exp 489
stm_plot_with_autonumber 493
stm_plot_with_break 497
stm_plot_with_headerline 501
stm_r_ac_actor_ac 244
stm_r_ac_affecting_mx 254
stm_r_ac_associates_uc 256
stm_r_ac_basic_ac 244
stm_r_ac_boundary_box_ac 244
stm_r_ac_by_attributes_ac 244
stm_r_ac_callback_binding_ac 244
stm_r_ac_carried_out_by_md 253
stm_r_ac_component_instance_ac 245
stm_r_ac_continuous_instance_ac 245
stm_r_ac_control_ac 245
stm_r_ac_control_terminated_ac 245
stm_r_ac_data_store_ac 245
stm_r_ac_def_of_instance_ac 245
stm_r_ac_def_or_unres_in_ch 252
stm_r_ac_defined_environment_ac 245
stm_r_ac_defined_in_ch 252
stm_r_ac_described_by_ch 252
stm_r_ac_explicit_defined_ac 246
stm_r_ac_ext_11_ac 246
stm_r_ac_external_ac 246
stm_r_ac_external_router_ac 246
stm_r_ac_generic_instance_ac 246
stm_r_ac_imp_best_match_ac 246
stm_r_ac_imp_mini_spec_ac 247
stm_r_ac_imp_none_ac 247
stm_r_ac_imp_sb_bind_ac 247
stm_r_ac_imp_truth_table_ac 247
stm_r_ac_instance_ac 247
stm_r_ac_instance_of_ch 252
stm_r_ac_instance_of_def_ac 247
stm_r_ac_internal_ac 248
stm_r_ac_is_occurrence_of_ac 248
stm_r_ac_is_principal_of_ac 248
stm_r_ac_lifeline_ac 248
stm_r_ac_logical_desc_of_ac 248
stm_r_ac_logical_parent_of_ac 248
stm_r_ac_logical_sub_of_ac 249
stm_r_ac_meaningly_affecting_mx 254
stm_r_ac_meaningly_using_mx 254
stm_r_ac_mini_spec_ac 249
stm_r_ac_mini_spec_hyper 53
stm_r_ac_name_of_ac 249
stm_r_ac_offpage_instance_ac 249
stm_r_ac_parent_of_ds 253
stm_r_ac_parent_of_router 255
stm_r_ac_physical_desc_of_ac 249
stm_r_ac_physical_parent_of_ac 249
stm_r_ac_physical_sub_of_ac 249
stm_r_ac_procedure_like_ac 250

stm_r_ac_resolved_to_ext_ac 250
stm_r_ac_root_in_ch 252
stm_r_ac_router_ac 250
stm_r_ac_self_terminated_ac 250
stm_r_ac_source_of_af 251
stm_r_ac_subroutine_bind 54
stm_r_ac_subroutine_bind_enable 55
stm_r_ac_subroutine_bind_expr 56
stm_r_ac_subroutine_binding_ac 250
stm_r_ac_synonym_of_ac 250
stm_r_ac_target_of_af 251
stm_r_ac_termination 57
stm_r_ac_throughout_st 255
stm_r_ac_top_level_in_ch 253
stm_r_ac_unresolved_ac 251
stm_r_ac_unresolved_in_ch 253
stm_r_ac_use_case_ac 251
stm_r_ac_using_mx 254
stm_r_ac_within_st 255
stm_r_actor_defined_in_ch 269, 270, 271
stm_r_actor_explicit_defined_actor 269
stm_r_actual_parameter_exp 60
stm_r_actual_parameter_type 61
stm_r_af_containing_laf 260
stm_r_af_from_source_ac 257
stm_r_af_from_source_ds 259
stm_r_af_from_source_mx 261
stm_r_af_from_source_router 261
stm_r_af_input_to_ac 257
stm_r_af_output_from_ac 257
stm_r_af_to_target_ac 257
stm_r_af_to_target_ds 259
stm_r_af_to_target_mxstm_r_af_to_target_mx 261
stm_r_af_to_target_router 261
stm_r_af_within_flows_co 258
stm_r_af_within_flows_di 258
stm_r_af_within_flows_ev 259
stm_r_af_within_flows_if 260
stm_r_af_within_flows_mx 261
stm_r_af_within_labels_co 258
stm_r_af_within_labels_di 258
stm_r_af_within_labels_ev 259
stm_r_af_within_labels_if 260
stm_r_af_within_labels_mx 261
stm_r_an_by_attributes_an 266
stm_r_an_def_or_unres_in_ch 268
stm_r_an_defined_in_ch 268
stm_r_an_explicit_defined_an 266
stm_r_an_imp_best_match_an 266
stm_r_an_imp_definition_an 266
stm_r_an_imp_none_an 266
stm_r_an_imp_truth_table_an 267
stm_r_an_name_of_an 267
stm_r_an_synonym_of_an 267
stm_r_an_unresolved_an 267
stm_r_an_unresolved_in_ch 268
stm_r_ba_continued_in_af 262
556 Data Port Reference Guide

Index
stm_r_ba_defined_in_ch 262
stm_r_bb_defined_in_ch 272
stm_r_bb_explicit_defined_bb 272
stm_r_bf_from_source_mx 329
stm_r_bf_to_target_mx 329
stm_r_bf_within_flows_co 327
stm_r_bf_within_flows_di 327
stm_r_bf_within_flows_ev 328
stm_r_bf_within_flows_if 328
stm_r_bf_within_flows_mx 329
stm_r_bf_within_labels_co 327
stm_r_bf_within_labels_di 327
stm_r_bf_within_labels_ev 328
stm_r_bf_within_labels_if 328
stm_r_bf_within_labels_mx 329
stm_r_bt_defined_in_ch 262
stm_r_ca_contained_in_mx 272
stm_r_cd_info 62
stm_r_ch_access_status 64
stm_r_ch_activitychart_ch 274
stm_r_ch_ancestors_of_ch 274
stm_r_ch_by_attributes_ch 274
stm_r_ch_connected_to_sb 281
stm_r_ch_creation_date 65
stm_r_ch_creator 66
stm_r_ch_define_ac 273
stm_r_ch_define_an 273
stm_r_ch_define_co 277
stm_r_ch_define_di 277
stm_r_ch_define_ds 277
stm_r_ch_define_dt 278
stm_r_ch_define_ev 278
stm_r_ch_define_fd 278
stm_r_ch_define_if 279
stm_r_ch_define_md 279
stm_r_ch_define_mx 280
stm_r_ch_define_router 280, 374
stm_r_ch_define_sb 281
stm_r_ch_define_st 281
stm_r_ch_defining_ac 273
stm_r_ch_defining_cd_inst_ac 273
stm_r_ch_defining_md 279
stm_r_ch_defining_mx 280
stm_r_ch_defining_st 281
stm_r_ch_descendants_of_ch 274
stm_r_ch_describing_ac 273
stm_r_ch_describing_md 279
stm_r_ch_describing_mx 280
stm_r_ch_dictionary_ch 274
stm_r_ch_explicit_defined_ch 274
stm_r_ch_flowchart_ch 275
stm_r_ch_generic_ch 275
stm_r_ch_modification_date 67
stm_r_ch_modification_status 68
stm_r_ch_modulechart_ch 275
stm_r_ch_name_of_ch 275
stm_r_ch_offpage_ch 275

stm_r_ch_parent_ch 275
stm_r_ch_procedural_sch_ch 275
stm_r_ch_referenced_all_by_ch 276
stm_r_ch_referenced_by_ch 276
stm_r_ch_root_ch 276
stm_r_ch_seq_diag_ch 276
stm_r_ch_statechart_ch 276
stm_r_ch_subchart_ch 276
stm_r_ch_unresolved_ch 276
stm_r_ch_usage_type 69
stm_r_ch_use_case_ch 277
stm_r_ch_version 70
stm_r_ch_with_notes_ch 277
stm_r_ch_with_nt 280
stm_r_changes_log 63
stm_r_cn_deep_history_cn 283
stm_r_cn_history_cn 283
stm_r_cn_history_or_term_in_st 284
stm_r_cn_in_st 284
stm_r_cn_source_of_ba 282
stm_r_cn_source_of_bm 282
stm_r_cn_source_of_bt 283
stm_r_cn_source_of_tr 284
stm_r_cn_target_of_ba 282
stm_r_cn_target_of_bm 282
stm_r_cn_target_of_bt 283
stm_r_cn_target_of_tr 284
stm_r_cn_termination_cn 283
stm_r_cn_value 71
stm_r_co_array_co 287
stm_r_co_by_attributes_co 287
stm_r_co_by_structure_type_co 287
stm_r_co_callback_binding_co 287
stm_r_co_contained_in_di 288
stm_r_co_contained_in_if 288
stm_r_co_def_or_unres_in_ch 286
stm_r_co_default_val 72
stm_r_co_defined_in_ch 286
stm_r_co_expliicit_defined_co 287
stm_r_co_flowing_through_af 285
stm_r_co_flowing_through_mf 289
stm_r_co_labeling_af 285
stm_r_co_labeling_mf 289
stm_r_co_name_of_co 287
stm_r_co_single_co 288
stm_r_co_synonym_of_co 288
stm_r_co_unresolved_co 288
stm_r_co_unresolved_in_ch 286
stm_r_ddb_list_names 73
stm_r_design_attr 74
stm_r_di_array_di 292
stm_r_di_array_missing_di 292
stm_r_di_basic_di 292
stm_r_di_bit_di 292
stm_r_di_bit_queue_di 292
stm_r_di_bits_array_di 292
stm_r_di_bits_di 293
Rational Statemate 557

Index
stm_r_di_bits_queue_di 293
stm_r_di_by_attributes_di 293
stm_r_di_by_structure_type_di 293
stm_r_di_callback_binding_di 293
stm_r_di_contained_in_if 298
stm_r_di_containing_co 291
stm_r_di_containing_fd 298
stm_r_di_def_or_unres_in_ch 291
stm_r_di_defined_in_ch 291
stm_r_di_explicit_defined_di 293
stm_r_di_flowing_through_af 290
stm_r_di_flowing_through_mf 298
stm_r_di_integer_array_di 294
stm_r_di_integer_di 294
stm_r_di_integer_queue_di 294
stm_r_di_labeling_af 290
stm_r_di_labeling_mf 298
stm_r_di_missing_di 294
stm_r_di_name_of_di 294
stm_r_di_parent_of_di 294
stm_r_di_queue_di 295
stm_r_di_queue_missing_di 295
stm_r_di_real_array_di 295
stm_r_di_real_di 295
stm_r_di_real_queue_di 295
stm_r_di_record_array_di 295
stm_r_di_record_di 296
stm_r_di_single_di 296
stm_r_di_string_array_di 296
stm_r_di_string_di 296
stm_r_di_string_queue_di 296
stm_r_di_subdata_item_of_di 296
stm_r_di_synonym_of_di 297
stm_r_di_union_array_di 297
stm_r_di_union_di 297
stm_r_di_unresolved_di 297
stm_r_di_unresolved_in_ch 291
stm_r_di_user_type_array_di 297
stm_r_di_user_type_di 297
stm_r_di_user_type_queue_di 297
stm_r_ds_by_attributes_ds 301
stm_r_ds_contained_in_ac 299
stm_r_ds_def_or_unres_in_ch 300
stm_r_ds_defined_in_ch 300
stm_r_ds_explicit_defined_ds 301
stm_r_ds_in_ac 299
stm_r_ds_is_occurrence_of_ds 301
stm_r_ds_is_principal_of_ds 301
stm_r_ds_name_of_ds 301
stm_r_ds_resides_in_md 302
stm_r_ds_synonym_of_ds 301
stm_r_ds_target_of_af 299
stm_r_ds_unresolved_ds 302
stm_r_ds_unresolved_in_ch 300
stm_r_dt_array_dt 304
stm_r_dt_array_missing_dt 304
stm_r_dt_bit_dt 304

stm_r_dt_bit_queue_dt 304
stm_r_dt_bits_array_dt 304
stm_r_dt_bits_dt 304
stm_r_dt_bits_queue_dt 305
stm_r_dt_by_attributes_dt 305
stm_r_dt_by_structure_type_dt 305
stm_r_dt_condition_array_dt 305
stm_r_dt_condition_dt 305
stm_r_dt_condition_queue_dt 305
stm_r_dt_containing_fd 309
stm_r_dt_def_or_unres_in_ch 303
stm_r_dt_defined_in_ch 303
stm_r_dt_enum_values 75
stm_r_dt_enums_dt 306
stm_r_dt_explicit_defined_dt 306
stm_r_dt_integer_array_dt 306
stm_r_dt_integer_dt 306
stm_r_dt_integer_queue_dt 306
stm_r_dt_missing_dt 306
stm_r_dt_name_of_dt 306
stm_r_dt_queue_dt 307
stm_r_dt_queue_missing_dt 307
stm_r_dt_real_array_dt 307
stm_r_dt_real_dt 307
stm_r_dt_real_queue_dt 307
stm_r_dt_record_array_dt 307
stm_r_dt_record_dt 307
stm_r_dt_single_dt 308
stm_r_dt_string_array_dt 308
stm_r_dt_string_dt 308
stm_r_dt_string_queue_dt 308
stm_r_dt_synonym_of_dt 308
stm_r_dt_union_array_dt 308
stm_r_dt_union_dt 308
stm_r_dt_unresolved_dt 309
stm_r_dt_unresolved_in_ch 303
stm_r_dt_user_type_array_dt 309
stm_r_dt_user_type_dt 309
stm_r_dt_user_type_queue_dt 309
stm_r_elem_in_ddb_list 79
stm_r_element_type 76
stm_r_ev_array_ev 311
stm_r_ev_by_attributes_ev 311
stm_r_ev_by_structure_type_ev 311
stm_r_ev_callback_binding_ev 311
stm_r_ev_contained_in_if 312
stm_r_ev_def_or_unres_in_ch 310
stm_r_ev_defined_in_ch 310
stm_r_ev_explicit_defined_ev 311
stm_r_ev_flowing_through_af 310
stm_r_ev_flowing_through_mf 313
stm_r_ev_labeling_af 310
stm_r_ev_labeling_mf 313
stm_r_ev_name_of_ev 311
stm_r_ev_single_ev 312
stm_r_ev_synonym_of_ev 312
stm_r_ev_unresolved_ev 312
558 Data Port Reference Guide

Index
stm_r_ev_unresolved_in_ch 310
stm_r_fch_connected_to_sb 281
stm_r_fd_array_fd 315
stm_r_fd_array_missing_fd 315
stm_r_fd_bit_fd 315
stm_r_fd_bit_queue_fd 315
stm_r_fd_bits_array_fd 315
stm_r_fd_bits_fd 315
stm_r_fd_bits_queue_fd 316
stm_r_fd_by_attributes_fd 316
stm_r_fd_by_structure_type_fd 316
stm_r_fd_condition_array_fd 316
stm_r_fd_condition_fd 316
stm_r_fd_condition_queue_fd 316
stm_r_fd_contained_in_di 314
stm_r_fd_contained_in_dt 314
stm_r_fd_contained_in_mx 319
stm_r_fd_defined_in_ch 314
stm_r_fd_explicit_defined_fd 316
stm_r_fd_integer_array_fd 317
stm_r_fd_integer_fd 317
stm_r_fd_integer_queue_fd 317
stm_r_fd_missing_fd 317
stm_r_fd_name_of_fd 317
stm_r_fd_queue_fd 317
stm_r_fd_queue_missing_fd 317
stm_r_fd_real_array_fd 318
stm_r_fd_real_fd 318
stm_r_fd_real_queue_fd 318
stm_r_fd_string_array_fd 318
stm_r_fd_string_fd 318
stm_r_fd_string_queue_fd 318
stm_r_fd_user_type_array_fd 319
stm_r_fd_user_type_fd 319
stm_r_fd_user_type_queue_fd 319
stm_r_fn_name_of_fn 320
stm_r_fn_unresolved_in_ch 320
stm_r_formal_parameter_names 80
stm_r_gds_visibility_mode 81
stm_r_global_interface_report 504
stm_r_hyper_key 82, 83
stm_r_if_basic_flowing_af 321
stm_r_if_basic_flowing_mf 326
stm_r_if_basic_if 324
stm_r_if_by_attributes_if 324
stm_r_if_contained_in_if 324
stm_r_if_containing_co 322
stm_r_if_containing_di 323
stm_r_if_containing_ev 323
stm_r_if_containing_if 324
stm_r_if_defined_in_ch 322
stm_r_if_explicit_defined_if 324
stm_r_if_flowing_through_af 321
stm_r_if_flowing_through_mf 326
stm_r_if_labeling_af 321
stm_r_if_labeling_mf 326
stm_r_if_name_of_if 325

stm_r_if_or_unres_in_ch 322
stm_r_if_synonym_of_if 325
stm_r_if_unresolved_if 325
stm_r_if_unresolved_in_ch 322
stm_r_included_gds 84
stm_r_inherited_gds 85
stm_r_laf_contained_in_laf 263
stm_r_laf_from_source_ac 263
stm_r_laf_from_source_ds 264
stm_r_laf_from_source_mx 264
stm_r_laf_from_source_router 265, 374
stm_r_laf_input_to_ac 263
stm_r_laf_output_from_ac 263
stm_r_laf_to_target_ac 263
stm_r_laf_to_target_ds 264
stm_r_laf_to_target_mx 264
stm_r_laf_to_target_router 265, 374
stm_r_line_width 234
stm_r_lmf_contained_in_mf 330
stm_r_lmf_from_source_md 330
stm_r_lmf_input_to_md 330
stm_r_lmf_output_from_md 330
stm_r_lmf_to_target_md 330, 334
stm_r_local_interface_report 505
stm_r_md_basic_md 337
stm_r_md_bus_md 337
stm_r_md_by_attributes_md 337
stm_r_md_carrying_out_ac 335
stm_r_md_contains_ds 336
stm_r_md_contains_router 341, 374
stm_r_md_control_md 337
stm_r_md_def_of_instance_md 337
stm_r_md_def_or_unres_in_ch 335
stm_r_md_defined_environment_md 337
stm_r_md_defined_in_ch 335
stm_r_md_described_by_ch 335
stm_r_md_environment_md 338
stm_r_md_explicit_defined_md 338
stm_r_md_external_md 338
stm_r_md_generic_instance_md 338
stm_r_md_implementation 86
stm_r_md_instance_md 338
stm_r_md_instance_of_ch 336
stm_r_md_instance_of_def_md 338
stm_r_md_library_md 338
stm_r_md_logical_desc_of_md 339
stm_r_md_logical_parent_of_md 339
stm_r_md_logical_sub_of_md 339
stm_r_md_name_of_md 339
stm_r_md_offpage_instance_md 339
stm_r_md_physical_desc_of_md 339
stm_r_md_physical_parent_of_md 340
stm_r_md_physical_sub_of_md 340
stm_r_md_purpose 87
stm_r_md_regular_md 340
stm_r_md_resolved_to_ext_md 340
stm_r_md_root_in_ch 336
Rational Statemate 559

Index
stm_r_md_source_of_mf 341
stm_r_md_storage_md 340
stm_r_md_synonym_of_md 340
stm_r_md_target_of_mf 341
stm_r_md_top_level_in_ch 336
stm_r_md_unresolved_in_ch 336
stm_r_md_unresolved_md 340
stm_r_mf_containing_lmf 333
stm_r_mf_from_source_md 333
stm_r_mf_input_to_md 333
stm_r_mf_output_from_md 333
stm_r_mf_to_target_md 334
stm_r_mf_within_flows_co 331
stm_r_mf_within_flows_di 331
stm_r_mf_within_flows_ev 332
stm_r_mf_within_flows_if 332
stm_r_mf_within_flows_mx 334
stm_r_mf_within_labels_co 331
stm_r_mf_within_labels_di 331
stm_r_mf_within_labels_ev 332
stm_r_mf_within_labels_if 332
stm_r_mf_within_labels_mx 334
stm_r_msg_all 88
stm_r_msg_defined_in_scen 89
stm_r_msg_graphic 90
stm_r_msg_included_in_ord_insig 91
stm_r_msg_labels 190
stm_r_msg_previous_msg 102
stm_r_msg_where_tc_begins 92
stm_r_msg_where_tc_ends 93
stm_r_mx_affected_by_ac 343
stm_r_mx_affected_by_mx 358
stm_r_mx_affected_by_st 368
stm_r_mx_affected_by_tr 370
stm_r_mx_affecting_mx 358
stm_r_mx_by_attributes_mx 358
stm_r_mx_callback_binding_mx 358
stm_r_mx_comb_elements_mx 359
stm_r_mx_component_instance_mx 359
stm_r_mx_constant_parameter_ch 347
stm_r_mx_containing_fd 354
stm_r_mx_def_of_instance_mx 359
stm_r_mx_def_or_unres_in_ch 347
stm_r_mx_defined_in_ch 347
stm_r_mx_explicit_defined_mx 359
stm_r_mx_flowing_from_router 366
stm_r_mx_flowing_through_af 342
stm_r_mx_flowing_through_mf 357
stm_r_mx_flowing_to_router 366
stm_r_mx_generic_instance_mx 359
stm_r_mx_in_definition_of_an 345
stm_r_mx_in_definition_of_co 350
stm_r_mx_in_definition_of_di 351
stm_r_mx_in_definition_of_dt 352
stm_r_mx_in_definition_of_ev 353
stm_r_mx_in_definition_of_fd 354
stm_r_mx_in_definition_of_if 355

stm_r_mx_in_definition_of_mx 359
stm_r_mx_in_parameter_ch 348
stm_r_mx_influence_ac 343
stm_r_mx_influence_md 356
stm_r_mx_influence_st 368
stm_r_mx_influence_value_of_an 345
stm_r_mx_influence_value_of_ch 348
stm_r_mx_influence_value_of_co 350
stm_r_mx_influence_value_of_di 351
stm_r_mx_influence_value_of_dt 352
stm_r_mx_influence_value_of_ev 353
stm_r_mx_influence_value_of_fd 354
stm_r_mx_influence_value_of_if 355
stm_r_mx_influence_value_of_mx 360
stm_r_mx_influenced_by_ac 343
stm_r_mx_influenced_by_an 345
stm_r_mx_influenced_by_co 350
stm_r_mx_influenced_by_di 351
stm_r_mx_influenced_by_dt 352
stm_r_mx_influenced_by_ev 353
stm_r_mx_influenced_by_fd 354
stm_r_mx_influenced_by_fn 355
stm_r_mx_influenced_by_if 356
stm_r_mx_influenced_by_md 356
stm_r_mx_influenced_by_mx 360
stm_r_mx_influenced_by_sb 367
stm_r_mx_influenced_by_st 368
stm_r_mx_information_through_mf 357
stm_r_mx_inout_parameter_ch 348
stm_r_mx_instance_mx 360
stm_r_mx_instance_of_ch 348
stm_r_mx_instance_of_def_mx 360
stm_r_mx_labeling_af 342
stm_r_mx_labeling_mf 357
stm_r_mx_labeling_msg 358
stm_r_mx_labeling_tr 370
stm_r_mx_logical_desc_of_mx 360
stm_r_mx_logical_parent_of_mx 360
stm_r_mx_logical_sub_of_mx 361
stm_r_mx_meaningly_affecting_mx 361
stm_r_mx_meaningly_using_mx 361
stm_r_mx_name_of_mx 361
stm_r_mx_offpage_instance_mx 361
stm_r_mx_out_parameter_ch 348
stm_r_mx_parameter_mx 361
stm_r_mx_parameter_of_ch 348
stm_r_mx_physical_desc_of_mx 362
stm_r_mx_physical_parent_of_mx 362
stm_r_mx_physical_sub_of_mx 362
stm_r_mx_refer_to_ac 343
stm_r_mx_refer_to_an 345
stm_r_mx_refer_to_co 350
stm_r_mx_refer_to_di 351
stm_r_mx_refer_to_ds 352
stm_r_mx_refer_to_dt 352
stm_r_mx_refer_to_ev 353
stm_r_mx_refer_to_fd 354
560 Data Port Reference Guide

Index
stm_r_mx_refer_to_if 356
stm_r_mx_refer_to_md 356
stm_r_mx_refer_to_mx 362
stm_r_mx_refer_to_router 366, 374
stm_r_mx_refer_to_sb 367
stm_r_mx_refer_to_st 368
stm_r_mx_referenced_by_ac 344
stm_r_mx_referenced_by_ch 349
stm_r_mx_referenced_by_md 357
stm_r_mx_referenced_by_st 369
stm_r_mx_resolved_to_ext_ac 344
stm_r_mx_resolved_to_ext_md 357
stm_r_mx_resolved_to_ext_mx 362
stm_r_mx_resolved_to_ext_router 366
stm_r_mx_root_in_ch 349
stm_r_mx_source_of_af 342
stm_r_mx_source_of_ba 346
stm_r_mx_source_of_bm 346
stm_r_mx_source_of_bt 347
stm_r_mx_source_of_tr 370
stm_r_mx_synonym_of_mx 362
stm_r_mx_target_of_af 342
stm_r_mx_target_of_ba 346
stm_r_mx_target_of_bm 346
stm_r_mx_target_of_bt 347
stm_r_mx_target_of_tr 370
stm_r_mx_text_def_unres_in_ch 349
stm_r_mx_text_unresolved_in_ch 349
stm_r_mx_textual_defined_in_ch 349
stm_r_mx_unresolved_in_ch 349
stm_r_mx_unresolved_mx 363
stm_r_mx_used_by_ac 344
stm_r_mx_used_by_mx 363
stm_r_mx_used_by_st 369
stm_r_mx_used_by_tr 370
stm_r_mx_using_mx 363
stm_r_mx_with_combinationals_mx 363
stm_r_next_msg 94
stm_r_nt_body 95
stm_r_om_om_md 371
stm_r_omd 96, 97, 100
stm_r_ord_insig_all 98
stm_r_ord_insig_graphic 99
stm_r_parameter_binding 101
stm_r_parameter_mode 207
stm_r_pm_member_workareas 529
stm_r_pm_operator_projects 529, 531
stm_r_pm_project_databank 529, 532
stm_r_pm_project_manager 529, 533
stm_r_pm_project_members 529, 534
stm_r_pm_project_workareas 530
stm_r_pm_projects 529, 535
stm_r_router_by_attr_router 373
stm_r_router_contained_in_ac 371
stm_r_router_def_or_unres_in_ch 372
stm_r_router_defined_in_ch 372
stm_r_router_exp_def_router 373

stm_r_router_in_ac 371
stm_r_router_name_of_router 373, 375
stm_r_router_res_to_ext_router 373
stm_r_router_resides_in_md 373
stm_r_router_source_of_af 372
stm_r_router_synonym_of_router 373, 375
stm_r_router_target_of_af 372
stm_r_router_unresolved_in_ch 372, 374
stm_r_router_unresolved_router 374
stm_r_rt_note 202
stm_r_sb_action_lang 103
stm_r_sb_action_lang_expression 104
stm_r_sb_action_lang_local_data 105
stm_r_sb_ada_sb 377
stm_r_sb_ada_user_code 106
stm_r_sb_ansi_c_sb 377
stm_r_sb_ansi_c_user_code 107
stm_r_sb_bit_sb 377
stm_r_sb_bits_sb 377
stm_r_sb_by_attributes_sb 377
stm_r_sb_connected_chart 108
stm_r_sb_connected_flowchart 110
stm_r_sb_connected_statechart 109
stm_r_sb_connected_to_ch 376
stm_r_sb_connected_to_fch 376
stm_r_sb_connected_to_sch 376
stm_r_sb_def_or_unres_in_ch 376
stm_r_sb_defined_in_ch 376
stm_r_sb_explicit_defined_sb 378
stm_r_sb_fn_with_side_effect_sb 378
stm_r_sb_function_sb 378
stm_r_sb_global_data 111
stm_r_sb_global_data_mode 112
stm_r_sb_globals_usage_sb 378
stm_r_sb_imp_action_lang_sb 378
stm_r_sb_imp_ada_code_sb 378
stm_r_sb_imp_ansi_c_code_sb 379
stm_r_sb_imp_best_match_sb 379
stm_r_sb_imp_kr_c_code_sb 379
stm_r_sb_imp_none_sb 379
stm_r_sb_imp_procedural_sch_sb 379
stm_r_sb_integer_sb 379
stm_r_sb_kr_c_sb 380
stm_r_sb_kr_c_user_code 113
stm_r_sb_missing_sb 380
stm_r_sb_name_of_sb 380
stm_r_sb_parameters 114
stm_r_sb_parameters_sb 380
stm_r_sb_proc_sch_local_data 115
stm_r_sb_procedural_fch_sb 380
stm_r_sb_procedural_sch_sb 380
stm_r_sb_procedure_sb 380
stm_r_sb_real_sb 381
stm_r_sb_return_type 117
stm_r_sb_return_user_type 118
stm_r_sb_return_user_type_name_type 119
stm_r_sb_statemate_action_sb 381
Rational Statemate 561

Index
stm_r_sb_string_sb 381
stm_r_sb_synonym_of_sb 381
stm_r_sb_task_sb 381
stm_r_sb_truth_table_expressions 219
stm_r_sb_truth_table_local_data 220
stm_r_sb_unresolved_in_ch 377
stm_r_sb_unresolved_sb 382
stm_r_sb_user_type_sb 382
stm_r_sch_connected_to_sb 281
stm_r_sep_all 120
stm_r_sep_graphic 121
stm_r_single_fd 318
stm_r_st_affecting_mx 385
stm_r_st_and_st 386
stm_r_st_andlines 122
stm_r_st_basic_st 386
stm_r_st_by_attributes_st 386
stm_r_st_callback_binding_st 386
stm_r_st_containing_cn 385
stm_r_st_def_of_instance_st 386
stm_r_st_def_or_unres_in_ch 384
stm_r_st_default_entry_to_st 387
stm_r_st_defined_in_ch 384
stm_r_st_done_throughout_ac 383
stm_r_st_done_within_ac 383
stm_r_st_explicit_defined_st 387
stm_r_st_generic_instance_st 387
stm_r_st_history_connector_st 387
stm_r_st_instance_of_ch 384
stm_r_st_instance_of_def_st 387
stm_r_st_instance_st 387
stm_r_st_logical_desc_of_st 388
stm_r_st_logical_parent_of_st 388
stm_r_st_logical_sub_of_st 388
stm_r_st_meaningly_affecting_mx 385
stm_r_st_meaningly_using_mx 385
stm_r_st_name_of_st 388
stm_r_st_offpage_instance_st 388
stm_r_st_physical_desc_of_st 388
stm_r_st_physical_parent_of_st 389
stm_r_st_physical_sub_of_st 389
stm_r_st_reaction_activity_st 389
stm_r_st_root_in_ch 384
stm_r_st_source_of_tr 390
stm_r_st_static_reactions 123
stm_r_st_static_reactions_hyper 124
stm_r_st_synonym_of_st 389
stm_r_st_target_of_tr 390
stm_r_st_top_level_in_ch 384
stm_r_st_unresolved_in_ch 384
stm_r_st_unresolved_st 389
stm_r_st_using_mx 386
stm_r_tc_all 126
stm_r_tc_defined_in_ch 390
stm_r_tc_graphic 127
stm_r_tr_affecting_mx 392
stm_r_tr_attr_enforced 128

stm_r_tr_attr_name 129
stm_r_tr_attr_val 130
stm_r_tr_by_attributes_enforced 391
stm_r_tr_by_attributes_tr 394
stm_r_tr_default_of_st 393
stm_r_tr_default_tr 394
stm_r_tr_from_source_cn 391
stm_r_tr_from_source_mx 392
stm_r_tr_from_source_st 393
stm_r_tr_longdes 131
stm_r_tr_meaningly_affecting_mx 392
stm_r_tr_meaningly_using_mx 392
stm_r_tr_notes 132
stm_r_tr_to_target_cn 391
stm_r_tr_to_target_mx 392
stm_r_tr_to_target_st 393
stm_r_tr_using_mx 393
stm_r_tt_cell 133
stm_r_tt_cell_hyper 134
stm_r_tt_cell_type 135
stm_r_tt_mum_of_out 138
stm_r_tt_num_of_col 136
stm_r_tt_num_of_in 137
stm_r_tt_num_of_row 139
stm_r_tt_row 140
stm_r_tt_row_hyper 141
stm_r_uc_associates_ac 256
stm_r_uc_explicit_defined_uc 256
stm_r_xx 142
stm_r_xx_all 144
stm_r_xx_array_lindex 146
stm_r_xx_array_rindex 147
stm_r_xx_attr_enforced 148
stm_r_xx_attr_name 150
stm_r_xx_attr_val 152
stm_r_xx_bit_array_lindex 154
stm_r_xx_bit_array_rindex 155
stm_r_xx_cbk_binding 156
stm_r_xx_cbk_binding_enable 157
stm_r_xx_cbk_binding_expression 159
stm_r_xx_cbk_binding_expression_hyper 160
stm_r_xx_chart 161
stm_r_xx_combinationals 163
stm_r_xx_containing_fields 164
stm_r_xx_data_type 165
stm_r_xx_default_val 166
stm_r_xx_definition_type 167
stm_r_xx_des_attr_name 170
stm_r_xx_des_attr_val 172
stm_r_xx_description 174
stm_r_xx_displayed_name 176
stm_r_xx_explicit_defined_xx 177
stm_r_xx_expr_hyper 178
stm_r_xx_expression 179
stm_r_xx_graphic 183
stm_r_xx_instance_name 185
stm_r_xx_keyword 187
562 Data Port Reference Guide

Index
stm_r_xx_labels_hyper 192
stm_r_xx_longdes 193
stm_r_xx_max_val 195
stm_r_xx_min_val 196
stm_r_xx_mini_spec 197
stm_r_xx_mode 198
stm_r_xx_name 199
stm_r_xx_notes 203
stm_r_xx_number_of_bits 204
stm_r_xx_of_enum_type 205
stm_r_xx_of_enum_type_name_type 206
stm_r_xx_reactions 208
stm_r_xx_select_implementation 210
stm_r_xx_string_length 211
stm_r_xx_structure_type 212
stm_r_xx_stubs_name 125
stm_r_xx_synonym 214
stm_r_xx_text 216
stm_r_xx_truth_table 218
stm_r_xx_type 221
stm_r_xx_type_expression 226
stm_r_xx_uniquename 227
stm_r_xx_user_type 229
stm_r_xx_user_type_name_type 230
stm_run_simulation_profile 505
stm_save 506
stm_start_transaction 509, 510
stm_trigger_of_reaction 511
stm_uad_attribute 513
stm_uad_dictionary 514
stm_uad_interface 515
stm_uad_list 516
stm_uad_n2 517
stm_uad_protocol 519

stm_uad_resolution 520
stm_uad_state_interface 521
stm_uad_structure 522
stm_uad_tree 523
stm_unload 524
stm_unload_all 527
Strings 398
Subroutines 376

T
Timing constraints 390
Transaction handling 11, 12, 13
Transitions 391
Trigger/action 398
Types of data 537

U
UNIX 16
User-defined types 303
Utility functions 395

example 399
generating chart plots 398
list of 400
producing reports 397
report and plot functions 397

W
Windows 15
Workareas 398
Rational Statemate 563

Index
564 Data Port Reference Guide

	Dataport Library Overview
	Function Types
	Dataport Interface
	Working with the Dataport

	Using Dataport Functions
	Dataport Function Calls
	Calling Conventions
	Function Name
	Element Type Abbreviations
	Function Input Arguments
	Example

	Function Return Values
	Special Cases of Return Values

	Using Functions in C Language Programs
	Include Files
	Information Retrieval Process
	Initializing the Retrieval Process
	Transaction Handling
	Automatic Transaction Mode
	Self Transaction Mode

	Preparing and Executing Programs
	Windows Systems
	UNIX Systems

	Sample Program
	Sample C Program
	Program Description
	Main Section and Program Setup
	Creating the Lists
	Retrieving the Information
	Writing the Graphical Information
	Writing the Textual Information
	Drawing the Names of the Elements
	Drawing the Activity Box
	Constructing the Activity Type
	Constructing the Activity Termination Type
	Global Variable Declarations
	Program Definitions
	Include File Statements

	Program Output

	Single-Element Functions
	Overview of Dataport Single Element Functions
	Calling Single-Element Functions
	Single-Element Function Input Arguments
	Single-Element Function Examples
	Example 1: Returning a State’s Synonym and Description
	Example 2: Returning Enumerated Type Values
	Example 3: Writing a Portion of the Long Description
	Example 4: Extracting Textual Information

	List of Functions
	stm_check_out_item
	stm_check_in_item
	stm_lock_item
	stm_unlock_item
	stm_r_ac_mini_spec_hyper
	stm_r_ac_subroutine_bind
	stm_r_ac_subroutine_bind_enable
	stm_r_ac_subroutine_bind_expr
	stm_r_ac_termination
	stm_r_ac_xx_ac
	stm_r_actual_parameter_exp
	stm_r_actual_parameter_type
	stm_r_cd_info
	stm_r_changes_log
	stm_r_ch_access_status
	stm_r_ch_creation_date
	stm_r_ch_creator
	stm_r_ch_modification_date
	stm_r_ch_modification_status
	stm_r_ch_usage_type
	stm_r_ch_version
	stm_r_cn_value
	stm_r_co_default_val
	stm_r_ddb_list_names
	stm_r_design_attr
	stm_r_dt_enum_values
	stm_r_element_type
	stm_r_elem_in_ddb_list
	stm_r_formal_parameter_names
	stm_r_gds_visibility_mode
	stm_r_hyper_key
	stm_r_self_hyper_key
	stm_r_included_gds
	stm_r_inherited_gds
	stm_r_md_implementation
	stm_r_md_purpose
	stm_r_msg_all
	stm_r_msg_defined_in_scen
	stm_r_msg_graphic
	stm_r_msg_included_in_ord_insig
	stm_r_msg_where_tc_begins
	stm_r_msg_where_tc_ends
	stm_r_next_msg
	stm_r_nt_body
	stm_r_oactor
	stm_r_omd
	stm_r_ord_insig_all
	stm_r_ord_insig_graphic
	stm_r_ouc
	stm_r_parameter_binding
	stm_r_previous_msg
	stm_r_sb_action_lang
	stm_r_sb_action_lang_expression
	stm_r_sb_action_lang_local_data
	stm_r_sb_ada_user_code
	stm_r_sb_ansi_c_user_code
	stm_r_sb_connected_chart
	stm_r_sb_connected_statechart
	stm_r_sb_connected_flowchart
	stm_r_sb_global_data
	stm_r_sb_global_data_mode
	stm_r_sb_kr_c_user_code
	stm_r_sb_parameters
	stm_r_sb_proc_sch_local_data
	stm_r_sb_proc_fch_local_data
	stm_r_sb_return_type
	stm_r_sb_return_user_type
	stm_r_sb_return_user_type_name_type
	stm_r_sep_all
	stm_r_sep_graphic
	stm_r_st_andlines
	stm_r_st_static_reactions
	stm_r_st_static_reactions_hyper
	stm_r_stubs_name
	stm_r_tc_all
	stm_r_tc_graphic
	stm_r_tr_attr_enforced
	stm_r_tr_attr_name
	stm_r_tr_attr_val
	stm_r_tr_longdes
	stm_r_tr_notes
	stm_r_tt_cell
	stm_r_tt_cell_hyper
	stm_r_tt_cell_type
	stm_r_tt_num_of_col
	stm_r_tt_num_of_in
	stm_r_tt_num_of_out
	stm_r_tt_num_of_row
	stm_r_tt_row
	stm_r_tt_row_hyper
	stm_r_xx
	stm_r_xx_all
	stm_r_xx_array_lindex
	stm_r_xx_array_rindex
	stm_r_xx_attr_enforced
	stm_r_xx_attr_name
	stm_r_xx_attr_val
	stm_r_xx_bit_array_lindex
	stm_r_xx_bit_array_rindex
	stm_r_xx_cbk_binding
	stm_r_xx_cbk_binding_enable
	stm_r_xx_cbk_binding_expression
	stm_r_xx_cbk_binding_expression_hyper
	stm_r_xx_chart
	stm_r_xx_combinationals
	stm_r_xx_containing_fields
	stm_r_xx_data_type
	stm_r_xx_default_val()
	stm_r_xx_definition_type
	stm_r_xx_des_attr_name
	stm_r_xx_des_attr_val
	stm_r_xx_description
	stm_r_xx_displayed_name
	stm_r_xx_explicit_defined_xx
	stm_r_xx_expr_hyper
	stm_r_xx_expression
	stm_r_xx_ext_link
	stm_r_xx_graphic
	stm_r_xx_instance_name
	stm_r_xx_keyword
	stm_r_xx_labels
	stm_r_xx_labels_hyper
	stm_r_xx_longdes
	stm_r_xx_max_val
	stm_r_xx_min_val
	stm_r_xx_mini_spec
	stm_r_xx_mode
	stm_r_xx_name
	stm_r_xx_note
	stm_r_xx_notes
	stm_r_xx_number_of_bits
	stm_r_xx_of_enum_type
	stm_r_xx_of_enum_type_name_type
	stm_r_xx_parameter_mode
	stm_r_xx_reactions
	stm_r_xx_select_implementation
	stm_r_xx_string_length
	stm_r_xx_structure_type
	stm_r_xx_synonym
	stm_r_xx_text
	stm_r_xx_truth_table
	stm_r_xx_truth_table_expression
	stm_r_xx_truth_table_local_data
	stm_r_xx_type
	stm_r_xx_type_expression
	stm_r_xx_uniquename
	stm_r_xx_user_type
	stm_r_xx_user_type_name_type
	stm_open_truth_table
	stm_calculate_element_magic_number
	stm_get_element_create_stamp
	stm_r_line_width

	Query Functions
	Overview
	Calling Query Functions
	By Attributes
	By Structure Type
	Name and Synonym Patterns

	Query Function Input Arguments
	Examples of Query Functions
	Example 1
	Example 2
	Example 3

	List of Query Functions
	Activities (ac)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: ds
	Input List Type: md
	Input List Type: mx
	Input List Type: router
	Input List Type: st
	Input List Type: uc

	A-Flow-Lines (af, ba, laf)
	Output List Type: af
	Input List Type: ac
	Input List Type: co
	Input List Type: di
	Input List Type: ds
	Input List Type: ev
	Input List Type: if
	Input List Type: laf
	Input List Type: mx
	Input List Type: router

	Output List Type: ba
	Input List Type: af

	Output List Type: ba
	Input List Type: ch

	Output List Type: bt
	Input List Type: ch

	Output List Type: laf
	Input List Type: ac
	Input List Type: af
	Input List Type: ds
	Input List Type: mx
	Input List Type: router

	Actions (an)
	Input List Type: an
	Input List Type: ch

	Actors (actor)
	Input List Type: actor
	Input List Type: ch

	Basic relation(br)
	Input List Type: ch
	Input List Type: actor
	Input List Type: uc

	Boundary Boxes (bb)
	Output List Type: bb
	Output List Type: ch

	Combinational Assignments (ca)
	Output List Type: mx

	Charts (ch)
	Input List Type: ac
	Input List Type: an
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ds
	Input List Type: dt
	Input List Type: ev
	Input List Type: fd
	Input List Type: if
	Input List Type: md
	Input List Type: mx
	Input List Type: nt
	Input List Type: router
	Input List Type: sb
	Input List Type: st

	Connectors (cn)
	Input List Type: ba
	Input List Type: bm
	Input List Type: bt
	Input List Type: cn
	Input List Type: st
	Input List Type: tr

	Conditions (co)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: if
	Input List Type: mf

	Data-Items (di)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: fd
	Input List Type: if
	Input List Type: mf

	Data-Stores (ds)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: ds
	Input List Type: md

	User-Defined Types (dt)
	Input List Type: ch
	Input List Type: dt
	Input List Type: fd

	Events (ev)
	Input List Type: af
	Input List Type: ch
	Input List Type: ev
	Input List Type: if
	Input List Type: mf

	Fields (fd)
	Input List Type: ch
	Input List Type: di
	Input List Type: dt
	Input List Type: fd
	Input List Type: mx

	Functions (fn)
	Input List Type: ch

	Information-Flows (if)
	Input List Type: af
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ev
	Input List Type: if
	Input List Type: mf

	M-Flow-Lines (bf, lmf, mf)
	Output List Type: bf
	Input List Type: co
	Input List Type: di
	Input List Type: ev
	Input List Type: if
	Input List Type: mx

	Output List Type: lmf
	Input List Type: md
	Input List Type: mf

	Output List Type: mf
	Input List Type: co
	Input List Type: di
	Input List Type: ev
	Input List Type: if
	Input List Type: lmf
	Input List Type: md
	Input List Type: mx

	Modules (md)
	Input List Type: ac
	Input List Type: ch
	Input List Type: ds
	Input List Type: md
	Input List Type: mf
	Input List Type: router

	Mixed (mx)
	Input List Type: af
	Input List Type: ac
	Input List Type: an
	Input List Type: ba
	Input List Type: bm
	Input List Type: bt
	Input List Type: ch
	Input List Type: co
	Input List Type: di
	Input List Type: ds
	Input List Type: dt
	Input List Type: ev
	Input List Type: fd
	Input List Type: fn
	Input List Type: if
	Input List Type: md
	Input List Type: mf
	Input List Type: msg
	Input List Type: mx
	Function Relationships
	Input List Type: router
	Input List Type: sb
	Input List Type: st
	Input List Type: tr

	Module-Occurrences (om)
	Input List Type: md

	Routers (router)
	Input List Type: ac
	Input List Type: af
	Input List Type: ch
	Input List Type: md
	Input List Type: router

	Subroutines (sb)
	Input List Type: ch
	Input List Type: sb

	States (st)
	Input List Type: ac
	Input List Type: ch
	Input List Type: cn
	Input List Type: mx
	Input List Type: st
	Input List Type: tr

	Timing Constraint (tc)
	Input List Type: ch

	Transitions (tr)
	Output List: tr
	Input List Type: cn
	Input List Type: enforced
	Input List Type: mx
	Input List Type: st
	Input List Type: tr

	Utility Functions
	Generating Lists
	Creating a List
	Loading a List

	Calling List Utility Functions
	Calling Report and Plot Functions
	Producing Predefined Reports
	Generating Chart Plots

	Calling Functions on Reactions
	Calling Functions of the Workarea

	Utility Function Examples
	Example 1
	Example 2

	List of Utility Functions
	stm_action_of_reaction
	stm_add_attribute
	stm_backup
	stm_commit_transaction
	stm_decode_color
	stm_delete_attributes
	stm_dispose_all
	stm_dispose_graphic
	stm_dispose_text
	stm_do_command_line
	stm_exit_simulation
	stm_exit_graphic_editor
	stm_finish_uad
	stm_frm_Reset_id
	stm_get_db_status
	stm_init_uad
	stm_internal_refresh
	stm_list_add_id_element
	stm_list_add_id_element_to_list
	stm_list_add_ptr_element
	stm_list_add_ptr_element_to_list
	stm_list_contains_id_element
	stm_list_contains_ptr_element
	stm_list_create_ids_list
	stm_list_create_ptr_list
	stm_list_create_id_list_with_args
	stm_list_create_ptr_list_with_args
	stm_list_delete_id_element
	stm_list_delete_id_element_from_list
	stm_list_delete_ptr_element
	stm_list_delete_ptr_element_from_list
	stm_list_destroy
	stm_list_extraction
	stm_list_extraction_by_chart
	stm_list_extraction_by_chart_id
	stm_list_extraction_by_type
	stm_list_first_id_element
	stm_list_first_ptr_element
	stm_list_intersect_ids_lists
	stm_list_intersect_ptr_lists
	stm_list_last_id_element
	stm_list_last_ptr_element
	stm_list_length
	stm_list_load
	stm_list_next_id_element
	stm_list_next_ptr_element
	stm_list_previous_id_element
	stm_list_previous_ptr_element
	stm_list_purge
	stm_list_sort
	stm_list_sort_alphabetically_by_branches
	stm_list_sort_alphabetically_by_levels
	stm_list_sort_by_attr_value
	stm_list_sort_by_branches
	stm_list_sort_by_chart
	stm_list_sort_by_levels
	stm_list_sort_by_name
	stm_list_sort_by_synonym
	stm_list_sort_by_type
	stm_list_subtract_ids_lists
	stm_list_subtraction_ptr_lists
	stm_list_union_ids_lists
	stm_list_union_ptr_lists
	stm_load
	stm_multiline_to_one
	stm_multiline_to_strings
	stm_open_truth_table
	stm_plot
	stm_plot_ext
	stm_plot_hyper_exp
	stm_plot_with_autonumber
	stm_plot_with_break
	stm_plot_with_headerline
	stm_r_global_interface_report
	stm_r_local_interface_report
	stm_run_simulation_profile
	stm_save
	stm_select_id
	stm_start_transaction
	stm_start_transaction_rw
	stm_trigger_of_reaction
	stm_uad_attribute
	stm_uad_dictionary
	stm_uad_interface
	stm_uad_list
	stm_uad_n2
	stm_uad_protocol
	stm_uad_resolution
	stm_uad_state_interface
	stm_uad_structure
	stm_uad_tree
	stm_unload
	stm_unload_all

	Project Management
	stm_r_pm_member_workareas
	stm_r_pm_operator_projects
	stm_r_pm_project_databank
	stm_r_pm_project_manager
	stm_r_pm_project_members
	stm_r_pm_projects

	Data Types
	Function Status Codes
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

