utorial for TestConductor for RIA

Rhapsody

RIA Tutorial

for

o IBM® Rational® Rhapsody”
_————— TestConductor Add On



Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®
Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2012 BTC Embedded Systems AG. All
rights reserved.



TestConductor for Rhapsody for Ada

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment



StopWatch Application

The StopWatch application, the example

Ada application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,AdaStopWatch® from the folder
~>amples/AdaSamples/TestConductor” in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Obiect | myStopwatch(d]

Ewvent: evkoey "

Arguments:

i To start the application, press “Go” in

ke

colon, similar to a stopwatch with blinking colon.

Rhapsody’s animation toolbar.
" Object | mpStopwiatchld]
n';;; Event [ avke 3 To start the stopwatch, generate event
Sy i “evKey(1)” using the animation toolbar.
M ame -El:lit
[ 6d |Kesva To stop the stopwatch, generate event
“‘evKey(1)” again using the animation toolbar.
Higtory:
myStapwatchi0)> When running, the stopwatch outputs the
9 elapsed time in minutes and seconds to the
1 console. Each second is printed twice, one time
=2 . .
i 2 with a colon and 0.5 seconds later without a
'3
.
4
=L
5



Before testing the model

Before testing the tutorial model, one
has to rebuild the Rhapsody framework. In order to do this,

LA R T G T A = e S & y| 90 to Rhapsody’s Code menu and select “Build framework”.

File Edit View Code Layout Tools ‘Window Help This rebuilds Rhapsody’s framework which is needed
D= Cenerate v || before we can test the tutorial model. Please note that this
Re Generate v || is only needed once, you don’t have to rebuild the
Edit , | framework again if you want to test other models.
Roundirip »
Force Roundirip r

Entire Model Vier  Dynamic Model Code Associativity *
= AdaStopiniz

(3 compor Build d
(1 Package  Rebuild b
Cpen IDE ..
Target 3
Debug ’
IDE Options
Generate,MakeFun

Clean Redundant Source Files

Build Framework




StopWatch Model

pStopyatchin
Q

—{ 10—

[Key

pStopyatchOut
—

IDisplay

Stopy¥atch

1 itsButton:Buttal &

PEny]

ey

pButton

|Buttan

B evPrasskey(k
S keySend(Key...

1 itsDigplay:Displa &

pOut
]

pDisplay
—

IDisplay

E ShowTime(m:in

|Display

pButton

= seciint
|Button| B min:int

pDisplay| @ reset)void

IDisplay

........

1 jtsTimerTimer &

myStopWWatch

T itshMykey:mykey

Epresskeyiiey. .

[

pBtopWatchin

1 itsStop¥Watch: StopyWatch
O

IKey

pStop¥WatchOut

1 itsMyDisplay:myDispla: &

IDisplay

L

pl
1—

IDizplay

The StopWatch model contains the

StopWatch class and its three parts. The first part is a
button that can be used to start and stop the stopwatch.
The second part is the timer that is used in order to count
the elapsed time. The third part is the display that displays
the elapsed time. Within the stopwatch the different
components are connected via ports and links. Additionally,
the stopwatch class itself relays both the start/stop button
and the display to its boundaries in order to be able to
connect an external start/stop button and an external
display .

The myStopWatch class represents a
sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
that can be used as a start/stop button.
Additionally, it connects the stopwatch to an
external display “myDisplay” that displays the
elapsed time.



System Under Test

Entire Model Yiew  ~ |
B8] ) aStopia

Javastopiwatrh
wFe - SRR TPk Stopiv
=1 Packages =1 Components

* B InterfacePkg = &1 TPkg_Stopwatch_Cormp

=] Configurations
=%, DefaultConfig

= j TestComponents
+

# £ PredefinedTypes (REF)
# 3 PredefinedTypeslawa (REF)
# £ RequirementsPkg
#-F StopWatchPlg
=B SystemPlkg
= Profiles
®-Fg JavaDocProfile (REF)
# g5 TestingProfile (REF)
=-Ld TestPackages
= &% TPkg_Stop\uatch
= (1 Compaonents
= &1 TPkg_StopWwatch_Comp
=3 Configurations
-, DefaultConfig
= (g TestCormponents
= TC_at_pIn_of_Stopitlatch

=59 TestContexts
= TCon_Stopttatch
p
=4 Links

# 4 TC at pOut of Stopiwatch -l SUTs
= @ Testcontests 4 itsStopWatch
=3 TCon_StopWatch
=5 Links
Y iteStop\Watch_itsTC_
Y iteStop\Watch_itsTC_
=il SUTs
a tsStopwatch
=-&& Test Context Diagrams
¥y Structure_of_TCon_¢

= @ TestComprrentinstance =%y, TestCanfigurations
3 it=TC_at_pIn_of_Stoy

itsTC_at_pOut_of_St__.. __ ‘l)’ DefauItCDnﬂg

:

2y, DefaultConfig

TC_at_pln_of Stopwiatch
+ TC_at_pout_of_Stopiiatch

L itsStopWatch_itsTC_at_pIn_of_Stopiwatch
L itsStopWatch_itsTC_at_pOut_of_Stopliatch

=&y Test Context Diagrams

¥ Structure_of_TCon_StopiWatch
= ‘ TestComponentinstances
itsTC_at_pln_of_Stopitatch
itsTC_at_pOut_of_Stopiatch

Defining the System Under Test (SUT) is the first stejd

_in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
have to create a test architecture. The needed
administrative framework will be placed in the folder
»1estPackages”.

The System Under Test (SUT) is a part and
Is the component being tested. A SUT can
consist of several objects. The SUT is exercised
via its public interface operations and events by
the test components.

="y TestConfigurations I

=B StapiatchPlg
=B Classes
+ Button
+ Digpla

-

aTesAContaxdts
TCon_StopWWatch

=¥ TestContexts

=B
=-Eh Tirner
-1 Object Mad

Features...

Deiete From Model

=i TCon_Stopiatch
+-L Links
=il SUTs

«SUT»
itsStopWWatch: StopWWatch

£ SystermPkg

Create TestArchitecture

Select the class
~StopWatch* in the browser
and choose from context
menu ,Create
TestArchitecture®.

)

il itsStophiatch
=i Test Context Diagrams
+ ‘ TestComponentInstances
%y, TestConfigurations

1 1
pInT pOutT

Have a look on the newly created Test Context Diagram
.otructure_of TCon_StopWatch “, and view the resulting parts in

the composite class ,TCon_StopWatch® of our test context.

\




Test Architecture

SR Y 1Pko_Stopii/atch |
=-{_] Components
q =& ] TPka_StopWatch_Comp
=-{_ Configurations
-, DefaultConfig
— =g, TestComponents
= j TC_at_pIn_of_StopWatch
[+--0 Ports
=g, TC_at_pOut_of_Stopwatch
-4 Generalizations
- Operations
+--0 Ports
& Statechart
= =-£39 TestContexts
=49 TCon_StopWatch
L Links
Sl SUTs
4l itsStopWatch
[=l-&'g Test Context Diagrams

#d Structure_of_TCon_StopWatch

El ‘ TestComponentInstances

itsTC_at_pIn_of_StopWatch
itsTC_at_pOut_of_StopWatch

=%y, TestConfigurations
%y, DefaultConfig

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
,1Con_StopWatch Comp* describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
Instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.



Test Context

o TestContexds
TCan_StopWWatch

its=StopWatch: Stoptatch

wSUTw

pin

pln

pOut

pOut

1 ocTestEc-mpoln_elntlnstance.TestEc
itsTC_at_pln_of StopWWatch:

1 ocTestComponﬁtlnstance.TestE"E-,
itsTC_at_pOut_of StopWatch:

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test

“context. TestConductor generated corresponding test

components for ports and associations of the SUT.

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

The class ,TC_at_pln_of StopWatch®
realizes the required interface ,IKey" and thus
can be connected to the “plIn” port of the
stopwatch class that provides this interface.

The class ,TC_at pOut_of StopWatch®
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.



Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let's have a look at the test cases. A test case ...

IS a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

IS an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

10



Test Case Specification

How to manually create test cases and how to execute them ¥
with TestConductor will be discussed in the following sections. The

«SUT»
TCon_StopW TCon_StopW con sopw | different kinds of definitions have their own strengths:
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stop Watch: StopW _pOut_of_Sto

| | Sequence diagram test cases can be recorded
: {_evshow(m=a,s=o_h=F AL;E) automatically or created by hand. In some cases they have
| | already been specified during the analysis phase of the
1 project, and define the actions and reactions of the SUT.

The graphical formalism boosts the readability and

understanding.

fitsTCan.rte_init();

Statechart test cases are a well known and convenient

fTestConductor ASSERT_NAME(Initial" true); means to specify behavior based on states and modes.
¥
| el state Source code test cases are often preferred by
eration Body: .

——— experienced programmers.
B8 seais Craghesim O
s e imitially the time is 0-0
e e i e et e seseae 111 SUMMAry TestConductor, the Rhapsody test case
L e e i aese T o= @Xecution engine, works with all kinds and combinations of
s e 000
i: :: :Z:rssf;é‘iift;j*oflii and check that setting of &3
18 StopWatchPky. StopWatch. setTime (this.itsStopatch.all,
19 mins := StopWatchPkyg.StopWatch. getMin(this.itsStopat
z0 secs := StopWatchPkg.StopWatch. getSecithis. itsStopWat
zl TestConductor .  ASSERT_NAME ("Check if time setting is c
2z (mins=3) and (secs=2Z1)});
23 end




Test Case: Sequence Diagram |

B! TestScenario: Checklnit in TPkg_Sto... [= |[B]X]

TCon_...:StopiWatch JTC at pln of Sto. | TC at_pOut.
25T
TCan_StopW TCon_Stopwy TCon_Stopy
atch.itsStop atch.itsTC_at atch.itsTC_at
YWatch: StopW _pln_of_Stap _pOut_of_Sto
I

# 4 Test Context Diagrams
=%, TestCases
=% to_check_init?)
El sDInstances
=] _Ei TnlastScenarius

To manually create a sequence diagram
= test case we have to define a test scenario
which is represented as a sequence diagram
and link it to a test case. TestConductor
simplifies this process with a single command.

/

\_

N 128 Checkinit
N N N
= TestContexts =-# TestCases
ER d[Con Smoiatch Create SD TestCase 5K, [———
; ;‘B‘_T_i Create Flowchart TestCase , SDINstances
i3 Test Context Diagrams Create Code TestCase == @ I ’
@ TestComponentinstances Create Statechart TestCase - RS
%y TestConfigurations
and choose from the Rename the test case to

Select the test con}elxt é(.)ntext e Cromte SD tc_check_init*. Rename the
,1Con_StopWatch® in the TestCase® test scenario to ,Checkinit*
Rhapsody-Browser ... a and open it.

NG J J

12



Test Case: Sequence Diagram Il

=3 RequirementsPkg
=-E Requirements
[EY REQ_Init
[E? REQ_Running_1
[E? REQ_Running_2
[E? REQ_SetTime
[E? RECQ_Stopping
£ stopwatchPkg
E_‘l SystemPlg
£ TutorialPkg
(L3 Profiles
=-E% TestPackages
=% TPka_Stopiwatch
(Z Components
j TestComponents
=] 8] TestZontexts
(=9 TCon_StopWateh
L Links

lh SUTs

<

E=

Requirement : REQ_Init in RequirementsPkg
General | Description | Relations | Tags | Properties
M ame: REQ_Init
Stereotype: w %
Type: Requirement v
1D:
Defined in:
Specification:

After starting the stopwatch, the stopwatch
shall display 0 minutes and 0 seconds (0:0).

Locake QK

v
>

&g Test Context Diagrams

=%, TestCases

=% to_check_init()
E—“J', SDInstances
=] H, TestObjectives
L REQ_Tnit

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the
test case.

/

=% TestCases
=% [

Features. ..

Acd MNew

TestingProfile

TestingProfile ->
TestObjective”

OfflineTestResult
TestCbjective
TestScenario

Select the test case and
select “Add New ->

[Depends on:

& Select Model Element

X

‘

=B Requirements
& @

E-! REC_Running
EY REQ_Stopping

£ StopwatchPkg

[ o |

Cancel |

-~

Select requirement “REQ_Init”
as target of the test objective”

)

\

=B
=

TestCases
% tc_check_init()
__;'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_Init”.

)

13



Test Case: Sequence Diagram Il

Define action and reaction of the system
under test. We will specify the ,,Checklinit*
scenario, where the SUT shall emit event
“‘evShow” with current time 0:0 after starting
«SUT» the SUT. This output shall be generated

TCon_StopW | TCon_StopW | | TCon_StopW automatically by the SUT, since no further input
atch.itsStop atch.itsTC _at atch.itsTC_at . y by ’ P
is needed for that.

Watch:Stop¥V | | _pln_of Stop _pOut_of Sto

'TCo...:StopWatck

] T
@w , b=TRUE) |
W

4 N N )

«SUT»
«SUT»

TCon_StopW¥ TCon_StopW TCon_StopW | | |
atch.itsStop atch.itsTC_at atch.itsTC_at TCon_StopW TCon_StopWV TCon_StopWV

Wamh‘|s'°pw ‘pln‘o‘f‘smp ‘pom‘ff‘sm evShow(m=0, qu]. b=TRUE) ’ atch.itsStop atch.itsTC_at atch.itsTC_at
message_00 | | ________%‘ Watch:StopW | | _pln_of_Stop _pOut_|of_St0
Features... -

| | |
| Select Mr::‘--igr:— k ! ! ! W' b=TRUE) |
! 2:;0;:::1;1 Occurrences ‘ | M
E)raW the”message Specify argument values
evShow” from the SUT to m=0,s =0, b = TRUE for the That's it already. The test
o the test component e message. e case specification is
“TCon_StopWatch.itsTC_at complete.

N _pOut_of StopWatch”. JAN ) U )




Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

MName
-1 ¥, tr_check_init
By sD_tc_o

Status
Ed FAILED
E3 FAILED

2=l
ot
File/lte... = Line/fProgress
1 0%  (0/2)

The status, the final result can be either
,PASSED" or ,FAILED".

The progress displays how many steps are
finished yet. In case of a passed test 100% have
to be achieved.

The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.

/— H3 TCon_Stopiwatch
5 Links
* g SUTs

=%, TestCases

‘ TestCumpDnenﬂ

[ SRR S S

\

RPNt check initg)

&g Test Context Diagrams

Features...

Edit TestCase SDInstances
Update TestCase

Build TestCase

Execute TestCase

TestConductor

! E TestCase must be built before execution. Build and Execute now?

CK l l Abbrechen

N N

=B Testcases
o

=i TestCompDnentInstances
#- %y, TestConfigurations
= E’S TesBcenarle
By, chacknit

2=
ST

Marme Line/Progress

Status

File/Ite. ..

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model

- ¥, to_chedk_init
20 tc_0

@ FaleD

[ FalED

The test case execution
dialog is a dockable dialog

o needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main
and/or build the executable. AN browser window )

15



Test Case Execution Il

The test case execution FAILED with

TCon_Stopw TCon_StopW TCon_StopW Rhapsody TestConductor. To analyze the reason
atch.itsStop atch.itsTC_at atch.itsTC_at : :
Watch: StopW ~ pln.of. Siop “o0ut_of Sto TestConductor offers two kind of views. The

l

evSho m=D,s=D,b=FALSE):!Event Sending - F'arame]tervalues do not match. HTML-report dlSpIayS el teXtuaI Summary and

. % can be found directly under the test case in the
Rhapsody-Browser. TestConductor created a

l | | debug sequence diagram to display the error.

evShow(m=0,s=0 ,b=TRUE) ]

The red arrow visualizes the faulty step and the
reason. TestConductor expects the parameter
value ,TRUE" for argument “b”, but observes the

Total number of SDs used: 1 ) -
Tt = 67 ST e sk 1 value ,FALSE" during actual test execution. The
Total number of executed SD instarves: 0 expected value was not specified correctly... by
accident.
4 N [ N [ N\
2 2l =% TestCases
SR ) ) DO % b I%I # tr_check_init()
Marne Status Fi... Line/Progress Mame Status Fi...| Line/Progress B sDinstances
- %, tr_check_init €3 FAILED =M te_chedcnit @ FALED I TestObijectives
£ Eela JIED 1 0% (0/2) = =5f TestResults
Show as SD Sod Toon_Stopwatch_ fe_check_init_0.htrl
Add to rodel . _EH; TestScenarios

To open the debug

sequence diagram right In the browser, underneath the
click the item SD_tc_0in e . and select "Show as SD’ e test case, you can find the
the TestConductor generated html report. Double

click the report to open it.

N execution dialog... ) L J




Test Case Execution llI

The test execution PASSED with

] —

|
G

Rhapsody TestConductor after we corrected
the expected parameter value for argument “b”
from “true” to “false” in the test scenario

Mame Status Fi... Line/Progress » ) )
S%, tr_check_int & PASSED ,,Checklnl_t . After changing the scenario gnd
Bpso_tc 0 @ PASSED 1 100% (2/2) re-executing the test case, the test case is
passed.
Refer to the user guide to get
familiar with the extended functionality
of TestConductor.
4 é N )
«SUT» )
= 3’5___. b:_check_init{} TCon__StopW TCon__StopW TCDn__StopW (=l
b £} SDirstarces i kv B @
+ H TEStDthEEti'I.I‘ES Marne Status Fi. {Progress

+- 2 TestResults
TestScenarios
2N Checkinit

To correct the test case
open the test scenario
»Checklnit®.

\_

L evShow(m=q, s=0, b=FALSE) l

| [

For argument “b”, change the
exptected value from “TRUE”
to “FALSE”.

)

\

- ¥, tw_check_init @ PassED

Hisotco @ PasseD 1 100% (2/2)

Re-execute the test case by
pressing the “Start” button in
the top right corner of the
execution dialog.

)




Test Case: Source Code |

To manually create a source code test case
create a code test case and write the test code into

the edit field under the implementation tab of the
test case. TestConductor provides a set of functions

Operation Body:
0& declare
o7 nins : Integer := 0;
08 secs : Integer == 0;
09 begin
10 —-= Check that initielly the time is 0:0
11 nins := StopWatchPkyg.StopWatch. getMin(this.itsStopWatch. all);
1z secs = StopWatchPkg. StoplWatch. getSecithis.itsStopWatch.all);
13 TestConductor.  ASSERT_NAME("Check initial time",k
14 (mins=0) and (secs=0));
15
16 - now set time to 03:21 and check thaet setting of time indeed
17 -- sets the correct time
12 StopWatchPky. StopWatch. setTime (this. itsStopWatch.all, 3,21} ;
19 nins := StopWatchPkyg. StopWatch. getMinithis. itsStopWatch.all);
z0 secs := StopWatchPkyg. StopWatch. getSec({this.itsStopWatch.all); passes'
z1l TestConductor  ASSERT_NAME("Check if time setting is correct',
2z (mins=3) and {(secs=21));
23 end;
z4

like e.g. ,TestConductor ASSERT_NAME® that can
be used to execute checks during test case
execution. If the function “setTime” (line 08) of the
stopwatch works as expected, the test case

/ =39 TestContexts
1T Con_Stop

_ \Watch
H-5 Links
+glh SUTs
+-ig Te Create SD TestCase

= "._.- Te  Create Flowchart TestCase
-5
+ ‘ T¢  Create Statechart TestCase
+- %y, Test_onhigurations

Create Code TestCase

Select the test context
,1Con_StopWatch" and
choose from the context
menu ,Create Code
TestCase®.

=%, TestCases
#-% to_check_init()
PR - Check time()

Rename the created test
case to ,tc_check time*
and open the features
dialog.

e edit field under the

\

=-F9 TutorialPkg
=-B Classes
=-H TestCaseClass
=@ Operations
=k check time()

Replace the content of the

implementation tab of the test
case with the content from the
“tc_check_time” operation in

the Tutorial package. )

18



Source Code Test Case: Execution

F Execute the test case with Rhapsody
IOE X TestConductor.
Pem— v— File/Iteration  Line Both assertions evaluate to true and the
¥, tr_check_time @ PASSED test case passes. unble-clicking an
) Check initial time @ PASSED  TCon_Sto.. 141 evaluated assertion in the execution
2] Check if time setting is correct @ PASSED  TCon_Sto.. 148 window highlights the assertion in the test
model.
bﬁéra‘hon Boay:
02 begin
10 = Check that initielly the time is 0:0
11 nins := StopWatchPkyg. StopWatch. getMini{this. itsStopWatch.all) ;
1z secs = StopWatchPkyg.StopWatch. getSecithis.itsStopWatch.all) ;
13 TestConductor  ASSERT_NAME({"Check initial time",k
14 (mins=0) and (secs=0));
15
e N _ N N
=89 TCU Edit TestCase SDInstances =@ TCc  Edit TesiCase SDInstances
[ S Update TestCase Narne Status
b Upatese @ pyild TestCase =% tc_check_time © PassED
F$Y  Build TestCase i r—— {5) check initial time © PasSED
=%,  Execute TestCase EE YN  Excculs TestCase B '8 setting is correct [@)] PASSED
% fr_check it %o to_check_init() tion
L.¥ t_check tir‘r'||ée|:"::| L tc_check_time()

Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

Select test case
»IC_check_time“ and select
“Execute TestCase” from
the context menu.

\

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

)

19



Test Case: Statecharts |

This is a statechart defining TestCase behavior

In Statechart TestCases you can use ASSERT macros like :
TestConductor ASSERT_MAME(n,g), e.q.
TestConductor ASSENT 5L g T68¢ w0 ™"

For the list of available
or the TestConductar.

fitsTC

¥

state 1

=9 TestContexts

+-Lo Agsociation Ends
+-"y) Dependencies

+- & Operations
#-(&) Statechart

B @ Tags
=9 TCon_StopiWatch command.
- Attributes
+-Ly Links
+- & Operations
gl SUTS
+-kg Test Context Diagrams
=%, TestCases

+-# to_check_init?)

=% tc_check_progress{)

="y Dependencies
B <StatechartTestCase» TCSC

tc 0

To manually create a statechart test case we
have to define a test scenario which is represented
- as a statechart and link it to a test case. Technically,
the test case has a dependency to a
TestComponent that contains the statechart.
TestConductor simplifies this process with a single

SR 3 TCon_Stopliatch
g% S Create SD TestCase
< ig Te
=B T

Create Flowchart TestCase w
%,  Create Code TestCase N
Create Statechart TestCase
Update TestContext

N

—-%, TeshCases
+-% tr_check_init()

SRR - _check_progress()

% tr_check time

Rename the test case to

Select the test context
,1Con_StopWatch* and
select “Create Statechart
TestCase”.

“tc_check_progress”

4 - - )

=%, TestCases
- %, tr_check_init()
=%, tc_check_progress)
+-"x) Dependencies

=W TestObijectives
2k m.ﬁ"

%, tc_check_time()

e Add a test objective (using

“‘Add New -> TestingProfile
->TestObjective”) to

requirement REQ_Running_b

20



Test Case:

Statecharts Il

initial

tm(100)/

TCon_StopYWatch.ric_init(this.itsTCaon. all);

v

state_1
i

fdeclare

/--Check that initially the time is 0:0
declare
mins : Integer .= 0;
secs : Integer ;= 0;
begin
mins :=
StopWatchPkg. StopWatch. getMin(this. its StopWatch. all);
secs =
StopWatchPkg. StopWatch. getSec(this.itsStopWatch. all);

TestConductor ASSERT_NAME("Check initial time",
{(mins=0) and (secs=0)));
end;
-‘——"-—\_

——

state_3

localPortinboundCannector : StopWatchPkg. Stop¥Watch_port.pln.inbound.inbound_type;

begin

localPortinboundConnector:= StopWatchPky. Stop

StopWatchPkg. StopWatch
1

end;

final e
ot

Watch_port.pln.get_Inbound{StopWatct
_port.pn.inbound. Gen_InterfacePky_evPressKey{localPortinbo

\

state_4

fTCon_StapWatch.rtc_exit(this.itsTCon.all);

tm(B000)/declare
ming ; Integer == 0;
secs : Integer =1,

begin
mins := StopWatchPkg. StopWatch. getMin(this. its

Vitalize the statechart in order to execute it with
TestConductor. The statechart test case first checks
that initially the stopwatch’s time is indeed 0:0. After
starting the stopwatch, the statechart test case
waits 6 seconds, and then checks that indeed more
than 3 seconds have been counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function

,1estConductor. ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

( N
. =g TCSC_tc_0
i E-I g%ﬁ;ﬁfgﬁ +-L4 Association Ends
B Toscr # ) Dependenciss

#-L, desocie E Operations

-y Depenc = Statechart

# @ Operat il StatechartDiagram

= Statechiar . = T — .

o EE e e———

Replace the content of the
test component statechart
associated with this test case
with the statechart of the
Tutorial package.

21



Statechart Test Execution

Marme

- ¥, to_check_progress
2] Check initial time
{»] Check elapsed time

state_1 —

fdaclara

() PASSED
) PASSED
() PASSED

Execute the test case with Rhapsody

= TestConductor. Both assertions evaluate to

DROE - -1

File/Tteration = Line

TCSC tc_... 408
TCSC to_... 709

= itsStoph

. k.itsStoph

TestConductor ASSERT_NAME('Ch
({mins=0) and (sec=0)));

state_3

Jle and the test case passes.

=%, TestCases
% to_check_init))
L - check progress()
% to_check_time()

0 Select the test case

,{C_check progress® ...

/ Edit TestCase SDInstances \ / \
Update TestCase |
- —— MName Status
Build TestCase -1¥, tr_chedk_progress & PassED
T @ PassSED

Ex  Edit TestCase SDinstances
Update TestCasea
Build TestCase

Execute TestCase

e ... and choose from
context menu the items
,Build TestCase*
and ,Execute TestCase“.

2] Check initial tire

e In the execution window,

select the assertion and
double-click “Show Assertion”
in order to highlight the

\_ assertion in the model. Y.

\_



Create Test Cases Using Test Case Wizard - SDs

evPresskey

StopWatch myDisplay

(Keyval = 1) I

Create Test Case

Map instance lines to test architecture

Flease select test architecture for test caze:

{E B> >
Con_Stopwatch

Flease select test case kind

- 23
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

/|E| &l TUtl:lHalPkg \ l::reate Test Case \ /EI x{" IESt‘:aSES \
B Classes &
H i | il =y SDInstances
= D Seguence Diagrams M inztance lines ta test architecture = SUINStance:
EJ StopW atchRunning TCon_Stopw TCon_Stopw TCon_Stopw
_ atch.itsTC_at atch.itsStap atch.itsTC_at
] Fleaze select test architecture for test caze: _pln_of_Stop Watch: StopW _pQut_af Sto
Rational Rhapsody Gateway <cnew> | T :
Con Sto

o Select the sequence diagram e In the test case wizard e “SD _tc_0” has been created
“StopWatchRunning” in the dialog, the test context which is based on a new test
tutorial package and select “TCon_StopWatch” is scenario containing the same
“Create TestCase...”. already highlighted. Press messages as the original SD,

NG

OK to proceed.

As a result, a new testcase

but life lines adapted to the test
J \__ context structure. .




Create Test Cases Using Test Case Wizard -
Operations

) 24
The test case wizard can also be used to

test operations that are defined in the model.

[+ E PredefinedT;f'pesAda (ilEF)
[+ b RequirementsPkg
=B StopwatchPkg |

=-B Classes Operation Body:

The wizard allows to create three different kinds

[+ Button 04 -- or the TestConductor.ads file in the imstallation .
£ oo of test cases: sequence diagram test cases,

= Q StopWatch
*\} Dependenc
[+~ Links
=B Operations

ies

09 begin

07 osc_arg l: Integer;
08 osc_arg 2: Integer;

10 StopWatchPky.StopWatch. setTime (this.itsStopWatch.all,

statechart test cases or code test cases.

Independent of the chosen kind of test case, the

& getmin() 11 osc_arg_l, osc_arg_2); .
S — I S B created test case calls the selected operation.
sethimeiInteger m,Intec 45 g m .
@] pats q Additionally, the test case already contains a
e 2 Timer tocate | ok | apply | | check that can be refined by the user in order to

&) C_] Object Model Diagr
b SystemPkg
#-£ TutorialPkg
{1 Profiles
C% TestPackages

ams

' check the out values of the operation.

+ |_| Li._l._

ce=1 SDijab:h
-} Dependencies

Select operation
“setTime” of class
StopWatch in the browser
and select “Create
TestCase...”

Flease select test case kind:

Statechart TestCasze

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

o 0 Rational Rhapsody Gateway Code TestCase i . AvaiN
50 TestCaze 08 osc_arg 2: Integer;
Code TestCaze 09 begin

10

11 osc_arg l, osc_arg 2);
1z TestConductor.ASSERT NAME("Initial",true);
— 13 end;

\

(= %, TestCases
%

S Code_fc 00

=kl TestObjectives
M setTime

StopWatchPky. StopWatch. setTine (this.itsStoplla

As a result, a new code test
case has been created that
contains a call to operation
“setTime” and also a dummy
assertion that can be refined.

)




Debugging Test Cases

2=l
) o[

Marme Status Fil... Line/fProgress
- ¥, 5D_tr_0 EXECUTIMNG
BpsD_tc_0  ACTIVE 1 25% (2/3)
TCon_StopW TCon_StopW TCon_StopW
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stop Watch: StopW _pOut_of_Sto
tm(500) at ROOTRunning,prestate
| |
H % P M ! A {,"I / - evShDW(m=D,ST[D,b=FALSE)

| Ei‘
howTime({m =0, [s =0, b=FALSE)

K;vShow(m =0,5%0,b=FALSE)

|

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find

l —— the reason why the test case fails.
l r
-4 - \ / \ / \
=% TestCases . ff
#-%, Code_tc_0 - 2.6 k2
i i S A O . MNarme Status Fil... = Line/Progress
x'_ [ T Mame Status Fil... = Line/Progress -¥, 5D .0 EXECUTING
7w T Efif TestCase SDinstances -1%, sD_tc.0 © FalED B op 0 ACTIVE L R
Update TestCase Ey 50t 0 FAILED 1 50% (48) .
Build TestCasze [ A I = U |!
Execute TestCase
0 Select test case After the test case has e tE)xecute ,thettﬁstg‘;"sﬁnigin
“SD _tc_0” and select failed, turn on debug : ytﬁressmg ! e o e|1 lil,l on
“Execute TestCase”. execution mode by clicking In the exe;:u '?r:‘ 1a ﬁ%h (t)Wt
the debug button in the you CS” step R:ﬁUQ de’ es
execution dialog. case Dy using khapsody's
\_ L ) U animation toolbar. Y.

25



Executing Multiple Test Cases

Executing multiple test cases can be

I done by executing a complete test context or
_____ oo%bs a complete test package. When a test context
Marme Status File,/Theration Line/Progress .
— @ TCon_Stopwatch © FaLED or a test package is executed, all test cases
% Code_t-_0 © FASSED within the context or test package are executed.
£ mitial @ PassED TCon_Stop... 132
L% o0 tc 0 © FALED After all test cases have been executed,
Fp S0t 0 @ FaeD 1 0% (4/8) TestConductor computes an overall test result
- ¥, tr_check_init @) PASSED
B sp_tc 0 © PassED 1 100% (2/2) for the test context or the test package.
-1¥, tc_rheck_progress @) PASSED
{5 check inttial time.~~ @ PASSTS e . .
B) chock elapsed tme. @ FASS . Test Context: TCon_StopWatch
—¥, tr_check_time @ pagg) Code D PASSED
£+ Check initial time @ pPass| SD_tc 0 FAILED
£ check if time sett.,, @ Pass| to_check_init PASSED
tc_check_progress PASSED
t_check_time PASSED
/B B TestContexts ) N\ (=® --.-.--H- - \ (- \
S8 4 TCon_Stopiiatch = Lo S el Name Status Fi
L | inbe i 5 Links . - & TCon_StopWwatch © FalLED
‘,;‘,  Create Statechart TestCase ﬁ ?t Build Test-ontext “1¥%, Code_tt O © PasSED
2% ll ::I}{t ERal  Crecute TestContext % elmta 9 racsen ™
b - L% . =¥, 5D _tc. 0 & FaILED
T"Esttcc—l__'l::r Update TestContext [ WY Update Testarchitecture Hy sD_te_n @ FalED 1

q); Test_onmguraTions

AR =iees  Build TestContext

The results are shown in the

0 Execute TestContext ti ind A |
execution window. As always,
Select the test context e Select the test context e ) » )
“TCon_StopWatch” and again and press "Execute asszg:tv.:r?ign bo E'se%hféw
selectTUpdate TestContext”. All test cases show the reasons of failed
TestContext”. After that, will be executed one after test cases

“ i » the other.
\_ select “Build TestContext”. ) U AN )




Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can

be answered either by using a test case
requirements matrix or by generating a

S asenisal muolq

To: Requirement  Scope: JavaStopWiatch

EY REQ_Init |E"! REQ_Running_2 |E"! REQ_Stopping |E"! REQ_Rurning_1 |E"! REQ_SetTime |

_ te_check_init 1 REQ_Init

_ to_check_time
. bo_check_progress

T | e e sl

25D _te 0
. Code_tc 0

Q REQ_Running_1

requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but

presented as a textual report. It can be

generated by ReporterPlus using a predefined

\

template.
(Gt 4 N

_} -::-.1-I.'.I—1-—|.- tives lHequverage )] To: Requirement  Scope: AdaStopiatch

&b WrERSelm Stereatype: | ] [ m B} REQ_Int |} REQ Rumning 1 [EY F

#-(1 Components Ui —— TS " S [X. to_check_int 11 REQ_Int

+- (g, TestCompanents R 12 couierenCowerzce n TIINE 7, % to_check_time :
TableMatrix [l TestRequirementtiatrix SFc'g';"e [adastopwatch =l % : :;hecclr_mogfess 14 REQ_Running_1
Annotations 4 TestResultTable ¥ Include D[%.:endams ("From'" Scop § * COE;C?C -
TestingProfile 4 TestScenario "o = B —

= Scoope: lAdaStopWalch ____I
¥ Include Descendants [“To" Scope)

o Open the features dialog of When double clicking the
Select the test package the matrix, rename it to matrix in the browser, the
“TPkg_StopWatch” and “ReqCoverage”, and set matrix view shows the
select “Add New -> the “from” scope and the relationship between the test
TestingProfile -> “to” scope to the complete cases and the requirements.
TestRequirementMatrix”. « ”

\_ q \_ model “AdaStopWatch”. AN

)

27



Assessing Test Case Requirement Coverage |l

Datei

o -

£ C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... Q@@
P~

~ | Ci\Test itRhapsody7 .5 2yreporterp lusiUserFiles\Cover ageReport. htm

Bearbetten  Ansicht Favoriten  Extras 7

v 0o suchen - (@I _iLive ~Al=] v Free s [10] | 5 Freeware [10] ¢ |

w @ | € C:\Test itRhapsody?.5.2YeporterplusiUserF... | |

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With

- e~ oeem - | REPOItErPlus a requirement coverage report

| [*#2]| X

» | [+

o=

-8

1 Requirement Coverage Report of Mo

All Reguirements
B! Requirement REQ_Init

B Redui {RED_R 1 N s ificati Covered by Test h h . f . h
B Recuiremen REQ_Running.2 s i Case report shows the same information as the
E! Requirement REQ_SatTima REQ_Init After starting the stopwatch, the stopwatch EC-C;:SCSZ*SW

E Reqguirement REQ_Stopping
[ Al Test Cases

Table of Contents
All Requirements

~| can be generated in different formats like Word,
Html, etc. The requirements coverage test

shall display 0 minutes and 0 seconds (0:0)

requirements coverage matrix, but presented as

REQ_Running_1

After starting the stopwatch, the stopwatch
shall count minutes and seconds.

tc_check_progress

(M Passed)

a textual report. Besides the requirements

REQ_Running_2 | between

After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon

coverage report, another predefined template

not covered

displayed minutes and seconds shall blink once in
a 1 second time interval.

The stopwatch shall provide a function "SetTime"

REQ_SetTime that sets the current time. not covered
4 ﬂ REQ_Stopping E_’\.’_Flﬁm_[ETLng' pressing the key of the stopwatch not covered I
Applet com/synergex/modeleyeq TOC,DirectNavigator started ' Eigener CompLiter T 100% -

(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

/

Check Model ¥
ReporterPLUS |

——— =

|

Report on all model elements. ..

Report on selected package. ..

From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

(ke

porterPLUS Wizard : Selec

“What would you like to do?

age
t PowerPoint Presentation

Generate Microsof
Sucher in:
2] TestReport.tpl
@ TestRequirermentCoverage. ipl
|#] UseCaseDiagramsDetailedRenort. ol

As format, select Html.
After that, select
“TestRequirementCoverage
tpl” as template for the

report to generate.

) Templates w

\

)

\

=1L )

Py

After generating the report,
the report can be viewed with
any browser that can display
Html files.

)

28



Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5])

Operations

covered

keySend
EventReceptions

evPresskey
Statechart: StatechartOfButton

ROOT .Running

covered

= 1=

covered

Detailed Coverage Summary of Display {5/5)

Operations

covered ShowTime
EventReceptions

covered evShow

Statechart: StatechartOfDisplay
ROOT.running

covered

covered

= 1=

covered

29

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test

State
Transition

Transition

cases, i.e, what is the achieved Model

Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model

coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts

State
Transition

Transition

etc. that shows the achieved model coverage.

(2 3 TestPackages

SRRy TPkg_Stopviatch

Test Package : TPkg_StopWatch in JavaStopWatch

EE

General | Description | Relations | Tags | Properties

View afl
e o
ATGTestCase O

CalloperationsCnlywhenCallstackErmpty
Cam =
SUT flat ™

Coveragekind

L T Sy

Open the features dialog
of the test package
“TPkg_StopWatch” and
turn on property
“TestConductor.TestCase.

ComputeCoverage”.

)

KEI 39 TestContexts

\

B/ Y TCon Stop\waich
'7 Lirks . )
ol S .
‘ﬂ 1. Build TestZontext
ERML  Crxecute TestContext

Update Testirchitecture

%
[ WY
q); Test_onmguraTions

Execute the test context
“TCon_StopWatch”.

@ P TestContexts

=9 TCon_Stopwatch

B Aibues
=@ CoverageResults Operations
E Y TCon_Shopiiatch
= KeySend
L Links p— T
& Operations VENEReceptions
o SUTs guFresskey

§3 Test Context Diagrar
=%y TestCases
=% Code_te_0()

\

Statechart: StatechartDfButton
= CoverageResults
. Q Tl:Z:ujﬂ _Stopatch Code - |
After execution has finished,
coverage reports can be
found both for individual test
cases as well as a cumulative
coverage report for the test
context.

)




Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save test
development time compared to traditional approaches.



More Information ...

For further information, especially
technical news, visit our internet

. e—— information portal or contact one of our
— e = = @) worldwide sale agencies.

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

» Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

31


http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

