Tutorial for TestConductor for Rhapsody in Ada

Rhapsody

Rhapsody in Ada
Tutorial

for

= IBM® Rational® Rhapsody”
—_ ® TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2017 BTC Embedded Systems AG.
All rights reserved.

TestConductor for Rhapsody for Ada

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

Ada application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,AdaStopWatch" from the folder
~Samples/AdaSamples/TestConductor” in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Object: S kophas atch(0]

Ewent: evkey .

Arguments:

[

: To start the application, press “Go” in
By

Rhapsody’s animation toolbar.

i Object: S bopie atch[0]
1zhar
ol BVt [eukey 3 To start the stopwatch, generate event
Arguments: “evKey(1)” using the animation toolbar.
[oo KE: To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.
Hiztary:

5 topta atch[0]-

0. When running, the stopwatch outputs the

elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

(oo] ()

n n n n
PP R e Gl G0 Pl Dol bk =k (20 130 (2D

Before testing the model

Before testing the tutorial model, one

® IBM Rational Rhapsody Developer for A has to rebuild the Rhapsody Ada framework. In

File Edit View Code Layout Took ‘Window Help order to do this, go to Rhapsody’s Code menu
O " Generate * and select “Build framework”.
Re Generate 4 This rebuilds Rhapsody’s framework which is
Edit . needed before we can test the tutorial model.
_ Please note that this is only needed once, you
Roundp "Il don't have to rebuild the f k again if
Force Roundtrip , on’t have to rebui e framework again if you
want to test other models.
Entire Model Vier Dynamic Model Code Associativity *

= o AdaStopinz _
(1 compor Build

(1 Package Rebuild 3
Open IDE ...
Target k
Debug 3
IDE Options
Generate Make,/Fun

Clean Redundant Source Files

Build Frarmework

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stopwateh ~ button that can be used to start and stop the stopwatch.
—_— The second part is the timer that is used in order to count
L LpButor the elapsed t!me. The Fhll’d part is the dlsplay that displays
] I o weveeneervas Tt B the elapsed time. Within the stopwatch the different
SKeySendiey P B e components are connected via ports and links.

|Buttan| = mincint

iDissey| Breceips Additionally, the stopwatch class itself relays both the
1 itsDisplay:Displa & 5 o - =
Display] ot - start/stop button and the display to its boundaries in order
opWatchOu Out ispla
[~ R i to be able to connect an external start/stop button and an
IDisplay| IDisplay @ShowTime(mein.. |Display externa| display -

The myStopWatch class represents a
oy StomWateh = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”

! Mellyieymykey that can be used as a start/stop button.
1 o 0
e Additionally, it connects the stopwatch to an
Bpresskey(key. | 7 external display “myDisplay” that displays the
nEtopWWatchin | 1 itsStopWWatch: StopWatch .
_@# elapsed time.
IKey
pStopWatchOut
1 jtshyDisplay: myDispla: IDisplay
pi
[

IDizplay

System Under Test

Entire Model Yiew ~ |
B8]) aStopia

Jawastopivatch
=] Camponents
(1 Object Madel Diagrams
= Packages
£ InterfacePkg
£ PredefinedTypes (REF)
3 PredefinedTypeslawa (REF)

= Ejj TPk /3
=] Companents
=-&1 TPkg_Stopiwatch_Comp
=] Configurations
=%, DefaultConfig
= j TestComponents
5

£ RequirementsPkg
#-F StopWatchPlg
=B SystemPlkg
= Profiles
®-Fg JavaDocProfile (REF)
g5 TestingProfile (REF)
=-Ld TestPackages
= &% TPkg_Stop\uatch
= (1 Compaonents
= &1 TPkg_StopWwatch_Comp
=3 Configurations
-, DefaultConfig
= (g TestCormponents
= TC_at_pIn_of_Stopitlatch

=49 TestContexts
= TCon_Stop'Watch
p
=4 Links

© i TC at pOUt of Stopiwatch = %UTS
= 9 TestContexts ol it=Stop\Watch
=3 TCon_StopWatch
=5 Links
Y iteStop\Watch_itsTC_
N Y iteStop\Watch_itsTC_

=g SUTs

=-&& Test Context Diagrams
¥y Structure_of_TCon_¢

=@ TestComponentinstance = q)’ TestCDnﬁgurations
3 it=TC_at_pIn_of_Stoy

%y DefaultiConfig
itsTC_at_pOut_of_St__.. __

2y, DefaultConfig

TC_at_pln_of_Stopwiatch
+ TC_at_pout_of_Stopwatch

Y itsStop\Wwatch_itsTC_at_pln_nf_Stoptwatch
L itsStopWatch_itsTC_at_pOut_of_Stopiiatch

=-&3 Test Context Diagrams
¥ Structure_of_TCon_Stop\Watch
= ‘ TestComponentinstances
@ iEStopWwarh z itsTC_at_pln_of_Stopvwatch
itsTC_at_pOut_of_Stopiwatch

Defining the System Under Test (SUT) is the first K
_step in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
have to create a test architecture. The needed
administrative framework will be placed in the folder

» 1 estPackages”.

The System Under Test (SUT) is a part and
is the component being tested. A SUT can
consist of several objects. The SUT is exercised
via its public interface operations and events by
the test components.

/

\

="y TestConfigurations I

=-E7 StopWatchPkg
—15 Classes

Select the class
~StopWatch® in the browser
and choose from context
menu ,Create
TestArchitecture®.

/

-

u TestContesds
TCon_StopWatch

=9 TestContexts

=4 TCon_Stopivatch
H-5 Links
=il SUTS
i itsStophiatch
=i Test Context Diagrams
E ‘ TestComponentInstances
+- %y, TestConfigurations

«SUT»
itsStopWWatch: StopWatch

1 1
pInT pOutT

_

Have a look on the newly created Test Context Diagram
.Structure_of TCon_StopWatch “, and view the resulting parts in
the composite class ,TCon_StopWatch® of our test context.

Test Architecture

q
q

q

- I3 TPkg_StopWatch

=~ Components
-ﬁ_l/ TPkg_Stquatch_Cqmp
: ‘[0 Configurations

= _j TestComponents
j TC_at_pIn_of_StopWatch
i @ Ports
...... @ pln
j TC_at_pOut_of StopWatch
1,_—,-4' Generalizations
[e T [Display
+ V_E,- Operations
(= Ports

4 {EJ Statechart
—33 TestContexts
—33 TCﬂn_StopWatch
+ U Links
gl SUTs
. gl itsStopWatch
- EJ& Test Context Diagrams
: “-hg Structure_of TCon_StopWatch
—‘ TestComponentlnstances
P itsTC_at_plIn_of_StopWatch
. itsTC_at_pOut_of StopWatch
=] q‘), TestConfigurations
------ q‘,, TestConfiguration

------ - wAnimationBasedTestingConfiguration» DefaultConfig

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp*“ describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

«TestContexte
TCon_StopWatch
1 wSUM
itsStopWatch:StopWatch
pln pOut
pln pOut
1 «TestComponentln 1 «TestCompons
itsTC_at_pIn_of itsTC_at_pOut_i

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

The class ,TC_at_pln_of StopWatch"
realizes the required interface ,IKey“ and thus
can be connected to the “pIn” port of the
stopwatch class that provides this interface.

The class ,TC_at_pOut_of StopWatch®
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

Is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

Is an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them

fitsTCan.rte_init();

|
|
evShow(m=0, 5=0, b=FALEE]

¥

festConductor ASSERT MAME(Initial" true);

final state

Operation Body:

0 declare

o7 wins : Integer := 0;

os secs : Integer :-= 0O;

09 begin

10 —= Cheack that imitially the &time is 0:0

11 wmins := EtopWatchlkyg. StopWatch. getMinithis. itsS8topat
1z secs = ScopWatchPhyg. ScopWatch. getfecithis. its8topat
13 TestConductor. ASSERT NAME("Check initial time",

14 (min==0) amd (s=cs=0));
15

1& —— mow set time ko 03721 and check that sekding of &3
17 == s5ets the correct time

13 StopWatchPkyg. StopWatch. setTime (this. it=S8topWatch_all,
12 mins = StopWatchPhkyg. StopWatch. getMinithis. its3topifat
Z0 secs = StoplWatchPhyg. StopWatch. getlecithis. itsStopilfat
Z1 TestConductor. AZEERT_NAME (“"Check if time setting is <
zZZ (min==3) amd (sec==Z1)]);
23 end;

with TestConductor will be discussed in the following sections. The

«SUT»
TGpn Stogly jon: Stopy Teenstop | different kinds of definitions have their own strengths:
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stop Watch: Stopil _pOut_of Sto

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

11

Test Case: Sequence Diagram |

B TestScenario: Checklnit in TPkg_Sto... [= |[B|X]

To manually create a sequence diagram

-

TCan_.Stop'Watch | . TC at pln_of Sto.| ..TC_at pOut . : .
e = —— — test case we have to define a test scenario
st which is represented as a sequence diagram
TCon_Stopw TCon_Stopw TCon_Stopw and link it to a test case. TestConductor
e Sty %a*pﬁ:”fgt—;; ‘% ot of Gio simplifies this process with a single command.
| | |
| | |
|
| | # 4 Test Context Diagrams
| | =%, TestCases
| | =% to_check_init)
: ! Bl Shlnstances
= _Ei TestScenarios
N E—'llp CheckInit
N N N
=59 TestContexts) 5%, TestCases
= TCon Stopiwatch Create SD TestCase 5 X, P—p——
; ;‘G[‘;_E; Create Flowchart TestCase . SDInstances
b4 Test Context Diagrams Create Code TestCase == Tllascenarins
‘ TestComponentinstances Create Statechart TestCase - E:S Checklnit
%y TestConfigurations
and choose from the Rename the test case to
Select the test con"[‘e.xt e context menu .Create SD ,tc_check_init*. Rename the
»1Con_StopWatch® in the TestCase" ” test scenario to ,Checklnit*
Rhapsody-Browser ...)L - PN and open it.)

12

Test Case: Sequence Diagram li

=3 RequirementsPkg
=1 E—'! Requirements
[EY REQ_nit
[E? REQ_Running_1
[E? REQ_Punning_2
[E REQ_SetTime
[E? RECQ_Stopping
£ stoptatchPkg
£ SstemPhg
E_‘| TutatialPka
(L3 Profiles
=-L3 TestPackages
=% TPka_Stopiwatch
D Components
} TestComponents
=-f4# TestContexts
(=¥ TCon_Stopiwatch
L Links

Requirement : REQ_Init in RequirementsPkg

General Description | Relations | Tags

Mame: REQ_Init
Sterentype:
Type:

1D:

Fiequirerment

Defined in:

Specification:

3]
A
Propertiez

v| B2

After starting the stopwatch, the st

<

i SUTs

Locate QK

shall display 0 minutes and 0 seconds (0:0).

opwatch

test case.

w
b3

&) Test Context Diagrams

=%, TestCases

=-# ko_check_init)
E—‘ﬂ, SDInstances
= El TestObjectives
W REC_Init

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

Init” is indeed fulfilled by

/

= ’5.: TestCases

ERPN - chieck init
E] .

TestObjective”

‘ TestScenario !

Select the test case and
select “Add New ->
TestingProfile ->

-

-

\

? x| 5
Depends on: - -
T Select Model Element §|
=B Requirements -
‘ b Tty
EY REQ_Running

EY REQ_Stopping
£ StoowatchPka -

[o |

Cancel |

Select requirement “REQ_Init”
as target of the test objective”

/

\

%, TestCases

=R to_check_init
E_';'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_Init”.

/

Test Case: Sequence Diagram lil

.TCD...ZSTDpWﬁtCH

Define action and reaction of the system

under test. We will specify the ,Checklnit®

scenario, where the SUT shall emit event
“‘evShow” with current time 0:0 after starting

#al T
TCon_Stop\ TCon_StopWy TCon_Stop\
atch.its>top atch.itsTC at atch.itsTC_at
Waatch: StopWy _pln_of Stop _pOut_of Sto

]
evshowl(m=0, 5=[|] , b=TRLIE] |
m

the SUT. This output shall be generated
automatically by the SUT, since no further
input is needed for that.

é N N
+SUTs
TCaon_Stopy TCon_Stopiy TCDn__SmpW | | | «5UT»
Vf};ﬁ:gtgtssuﬂv atcl: ‘L?Tgt-oat atgu;ts;céﬁé TCon_StopW | | TCon_StopW | | TCon_Stopwy
I . - R : =+ T evshow(m=0, 5:[|]. b=TRLUE) | atch.itsStap | | atch.itsTC_at | | atch.itsTC_at
message_0() ‘ ‘ | Watch: Stopvy _pln_of Stop _pOut_of Sto

Features...

Auto Realize

Add Execution Occurrences

Draw the message
“‘evShow” from the SUT to
the test component
“TCon_StopWatch.itsTC at
_pOut_of StopWatch”.

/

Specify argument values
m =0, s=0, b =TRUE for the
message.

- /

evshow(m=0, s=q], b=TRLE) |
m

That's it already. The test
case specification is

complete.

o

14

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either

|] ,PASSED" or ,FAILED".
YD f_@: {}
Narne Status File/lte... | Ling/Progress The progress displays how many steps are
- ¥, t_check_init €3 FAILED finished yet. In case of a passed test 100% have
Fp SD_tc 0 @ FalLED 1 0% (0/2) to be achieved.
The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.
/—w TCon_Stopiiatch \ / =% JestCases] \
+ I_‘ Links) ‘Testcamponenﬂnstances
¥ {‘ SUTs TestConductor #- %y, TestConfigurations
&g Test Context Diagrams = %;gsﬁcef;?“tﬂs
=%, TestCases — B TestCase must be built before execution. Build and Execute now? e
‘ TestCumpDnenﬂ Features... 2%
"""""""""" Edit TestCase SDInstances OK l [Abbrechen DJOR)
Update TestCase _Nimi: —_— gtih:?LED File/te... | Line/Progress
Build TestCazse L |:'.:| [FalED
Execute TestCase
To execute a test case, simply right-click the test case and select The test case execution
“Execute TestCase” from the context menu. In case the test model dialog is a dockable dialog
0 needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main

and/or build the executable.

\

/

browser window

15

Test Case Execution I

The test case execution FAILED with
Rhapsody TestConductor. To analyze the

TCon_Stopyy TCon_Stopyy
atch.itsStop atch.itsTC_at
YWiatch: Stopht _pln_of_Stop

TCon_StopWy
atch.itsTC_at
_pOut_of_Sto

evShanﬁm=El 5=0,b=FALSE]: I

Event Sending -

F'arame]lter values do not match.

[T
evShow(m=0,s=0 ,h=TRUEj

reason TestConductor offers two kind of views.
The HTML-report displays a textual summary
and can be found directly under the test case in
! the Rhapsody-Browser.

| TestConductor created a witness sequence

diagram to display the error. The red arrow
visualizes the faulty step and the reason.
TestConductor expects the parameter value

Total number of SDs used: 1 »1 RUE® for argument “b”, but observes the
Total nurmber of SD instances in test: 1 value ,FALSE" during actual test execution.
Total number of executed SD instances: 0 The expected Value was nOt SpeCified
correctly... by accident.
4 N [N N
21 3 =%, TestCases
ICE. A : : DJOR A . %2 to_check_initd)
Name Status Fi... | Line/Progress REIME SIS oo | LITEFTEEEEE Bl ShInstances
- ¥, tr_rheck_init €3 FAILED =% Ltc—hBCk—‘t @ FaLED w4 Testobjectives
N =D - O £10 = : = TestResults

Show as SD
Add 1o rmodel

To open the witness
sequence diagram right
click the item SD_tc 0 in
the TestConductor
execution dialog...

Add to model

e ... and select “Show as SD”

- /

o

+ 5—'5 TestScenarios

el T Con_Stoptaatch_ tc_check_init_0.himl

In the browser, underneath the
test case, you can find the

generated html report. Double
click the report to open it. D

Test Case Execution lll

The test execution PASSED with

MName Status
-1¥, tr_check_init (&) PASSED
Bpso_tc.o (@ PasseD

Fi...

1

2=l
Dot b

Line/Progress

100% (2/=)
passed.

Refer to the user guide to get
familiar with the extended functionality
of TestConductor.

Rhapsody TestConductor after we corrected
the expected parameter value for argument “b”
from “true” to “false” in the test scenario
,Checklnit“. After changing the scenario and
re-executing the test case, the test case is

\

¢SUT»
= 3‘_-___. b:_cheu:k_init{} TCan__StopW TCDn__StDpW TCDn__StDpW (=l
Ed SOlnsta atch.itsStop atch.itsTC_at atch.itsTC_at
e ns _n':E_S Watch: Stopy _pln_of Stop _pOut_of Sto ¥ 6
W, TestObjectives | | | Name Status Fi. Slizd/Progress
+- o TestResults evShowrm={, =0, b=FALSE) | =% t_theck_init @ PaSSED
=I- =y TestScenarios :\M Biootro @ PASSED 1 100% (2/2)
2N Checknit : : .
“b” Re-execute the test
To correct the test case For argument “b”, cha“nge th? e-execute “e es” case b_y
open the test scenario exptected value from “TRUE pressing the “Start” button in
Checklnit* to “FALSE”. the top right corner of the
? | N PAN execution dialog.

/

Test Case: Source Code |

Operation Body:

06 declare

o7 mins : Integer -= 0;

ns zecs : Integer :-= 0O;

0% begin

10 -= Check that inmitielly the time is 050

11 mins = StopWatchPkg. StopWatch. getMin(this. it=sStopWatch_all) ;
1z secs = StopWatchPky. StopWatch. getSecithis. itsStopWatch. all) ;
1z TestConductor. AZEERT_MNAME ("Check initial time",

14 (mins=0) and i{secs=0)];

1t

1le —— neow sek time o 0321 and check thaet setbting of time indeed
17 —-— sats the corract time

13 StopWatchPky. StopWatch. setTime (this_ itsS8topWatch all , 3,210 ;
13 mins = StopWatchPky. Stoplatch. getMinithis. itsStopWatch_alll;
Z0 secs = StopWatchPhky. StopWatch. getSecithis. itsStopWatch_all) ;
Z1 TestConductor ASSERT NAME ("Check if time setting is correct”,
Zz (min=s=3) and (secs=Z1)1);

23 end;

Z4

To manually create a source code test case
create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of
functions like e.g.
»1estConductor ASSERT NAME" that can be used
to execute checks during test case execution. If the
function “setTime” (line 08) of the stopwatch works
as expected, the test case passes.

& 9 TestContexts ’ N
= 33 TCon_Stopbvatch
+-L Links
gl SUTs

LT

Create Code TestCase

T
+ ‘ Te Create Statechart TestCase
%y, Test_onngurations

TestCase"“.

=%, TestCases

] 'S .
© &) Te Create SD TestCase &S b:_ChECk_lr'llt

L Lol o
=-#, Tt Create Flowchart TestCase [S tl_l_f 1eCk _fime()

o Select the test context e Rename the created test e Re_plfgcle the con:]ent of the
,TCon_StopWatch“ and case to ,tc_check_time* _ed'tl ield under t 9[) e
choose from the context and open the features imp em.entatlon tab of the test
menu ,Create Code dialog. case with the content from the

N 7 N
-KI TutorialPkg
—IEE'- Classes
! -Q class_with_testcase
. =-{= Operations
b te_check_tirme()

o -

“tc_check_time” operation in
VAN the Tutorial package.)

Source Code Test Case: Execution

19
FE Execute the test case with Rhapsody
DECE X TestConductor.
Sy— — File/lteration | Line Both assertions evaluate to true and the
2%, t_check_time @ PASSED test case passes. Double-clicking an
£ Check initial time @ PASSED TCon Sto... 141 evaluated assertion in the execution
] Check if time setting is correct @ PASSED TCon_Sto.. 148 window highlights the assertion in the test
model.
Lli:n'erauon |=1ululiy
0% begin
10 —= Check that ipitielly the time is O: 0
11 mins = StopWatchPky. ScopWatch. getMinithis=s. itsStopWatch_all) ;
1z secs = StopWatchPky. Stopllatch. getfecithis. itcsStopWatch.all) ;
1z TestConductor. AZEERT_MAME ("Check initial time",
14 (min=s=0) and (secs=0)1;

1kt

4 N _ N N
=9 TCt Edit TestCase SDInstances =-%9 TCo Edit TestCase SDInstances
+

= Update TestCase #5 Update TestCase Narme Status
b TR @ pLild TestCase ¥, tr_rheck_time @ PasSED
)Ty Build Test_ase e T {7) check initial time © PaSSED
=%, Execute TestCase (= HELLIE [Bestase Al N

&= IC_check_init #o to_check_init()

¥ - chieck time() L® - check time()

0 Select test case e Select test case e In Ithet ?t:(ecutlor:-t W|ndo\:jv, -
“tc_check_time” and then ,{c_check_time* and select fSeheC Ae asr’_ffe fon and C;C
select “Build TestCase” “Execute TestCase” from hi rﬁwhtstrie 'on :?_or_e;ho
from the context menu. the context menu. Igd 'QIJ e assertion in the

model.

_ NG O\ %

Test Case: Statecharts |

-1} TestComponents
3 e To manually create a
This is a statechart defining TestCase behaviar :% g;ﬁ:ﬁ::; s statechart test case we have to
In Statechart TestCases you can use ASSERT macros like =-(%2) Statechart . .] .
TestConductor ASSERT_NAME(n.g), .. :% StatechartDiagram define a test scenario which is
TestConductor ASSERT_MAME("Check_1", attribute_ . %y default of initial
Far the list of availablg mactos see TestCnnlductqr Uz +[&_fé Comments r.epr.esented as a StateCharF and
or the TestConductor java file in the installation directc imé"lﬁgitatﬂ link it to a test case. TeChnlca”y,
+- gl TC_at_pIn_of_StopWatch
%g ch_at_gnut_ﬂf_sg} veteh :he t_erst f[:gse has a (t:ktaﬁe:[nder][cy
m = TestContexts 0 a lestLomponen at contains
=} TCon_StopWatch
Gy Dependencie the statechart. TestConductor
H-{= Links . e - o
it SUTs simplifies this process with a
+)-id Test Context Diagrams .
fitsTCan.rtc_init); 5% TestCases single command.
¥ +:.: tc_check_init()

tc_check_progress()
= [c} Dependencies

W StatechartTestCases TCSC_tc 0

state_1

N N :)

=%, TestCases

Stopinatch -
L Links - =% TestCases %, tr_check_init)

- X i K,
b S\ Create SO TestCase + iy tC_rheck_initl) P:_n:hen:k _prugress(}
ok Tt BBy i chieck progress() ") Dependencies

Create Flowchart TestCasze - o
2%y Te et Code Toste ® to check time =k TestOhijectives
T rea acde | esu_ase = E:l

: %$ Create Statechart TestCase ®, b:_check_ti.i:neﬂ
Update TestContext
0 Select the test context 9 Rename the test case to e o _
,TCon_StopWatch“ and “tc_check_progress” Add a test objective (using

“Add New -> TestingProfile
->TestObjective”) to
requirement REQ_Running_}

select “Create Statechart
TestCase”.

\ 2N AN

Test Case: Statecharts |l

/-Check that initially the time is 0:0
declare

mins : Integer =10,

secs Integer =10,

begin

mins =
StopWatchPky. StopWatch. getMinithis. itsStopWWatch. all);
sBCS =

StopWatchPky. StopWatch. get3ec(this. its StopWatch. all);

tm (100
TCon_Stop¥atch.ric_init(this.itsTCaon. all);

TestConductor ASSERT_MAME("Check initial time",
¥ {imins=0) and (secs=0Y));

state_1

fdeclare

final - state_4

tm(BE000)/declare
ming : Integer = 0;
secs Integer =T,

begin

MCon_StopWWatch rtc_exitithis.itsTCon. all); mins ;= StopWatchPko. StopWatch. gethinithis. its

Vitalize the statechart in order to execute it with
TestConductor. The statechart test case first
checks that initially the stopwatch’s time is indeed
0:0. After starting the stopwatch, the statechart test
case waits 6 seconds, and then checks that indeed
more than 3 seconds have been counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function

»1estConductor. ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

~

—EI TutorialPkg

-.E Classes

BB TCSC e 0

P +.,g-" Aszociation En
+ Dependencies |22 Dependencies
+g Operations ey zlsages InterfacePky
=-{2) +.§ Operations

B @

-\i TES‘t':IDr'ﬂFIDﬂEHtS
il «SCArbiters TCSC_tc_0
: +.5-1 Ascociation Ends

Replace the content of the test
component statechart associated
with this test case with the statechart
of the Tutorial package.

21

Statechart Test Execution

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to

J=-Chedk that initially the time i=0:0
declare

T inz : Int =0;
true and the test case passes. s e
e
i mins ==
trm 1000 Stopifatch Plhg. Stopitateh gethdinfthis. itsS5topl
ﬂﬂ TCon_Stopuatch.ie_init(this.itsTCon.ally; secE =
Stopifatch Plg. Stopiifatch . getSeothis itsStoph
DO <2 h T !
- : - - estConduc‘to.r..ﬂxSSERT_NAM EM"Ch
Marme Status File/Tteration = Line ((mins=01 and (secs=00
- ¥, t_check_progress) PASSED
5] Check initial time @ PASSED TOSC to... 408
Q Check elapsed time () PASSED TCSC tc ... 709
é N a Edit TestCase SDinstances N [N
Update TestCase |
- —— Marme Status
=&, TestCases) Build TestCase -1¥ t_chedk_progress © PASSED
%0 to_check_init() Ex Edit TestCase SDInstances {2] Check initial time © PassED
:1' t':':EI: Lot ressy) Update TestCase 3 - time
v T _check_time() Build TestCasze
Execute TestiCase
0 Select the test e ... and choose from e In the execution window,
te ec;] E es case“ context menu the items select the assertion and click
»(C_CNeCcK_progress: .. ,Build TestCase” “Show Assertion” in order to
and ,Execute TestCase". highlight the assertion in the
\. J J __model. J

Create Test Cases Using Test Case Wizard - SDs

mykey :StopWatch

evShow(m=0, s=0, t

— e ——

Create Test Case

Map instance lines to test architecture

Please select test architecture fortest case:

LENEW

TCon SopWaich

To create a test case based on
existing sequence diagrams,

operations or requirements, you
can use the TestConductor test case
wizard. For an existing sequence

diagram, the test case wizard creates
evPressey(KeyVal=1) an analogue test case with the same
message structure as the original
ol Please select test case kind: Sequence dlagram
— For a requirement the test case wizard
creates a test case with the chosen
requirement as the test objective.
/ EI&I TutorialPkg Create Test Case \ / =% IESEESES) \
H-{E Classes _ . _ =
E‘D Sequence Diaararme Map instance lines to test architecture £ SDII"IS'EEIII"IEE.S
: =L TestObjectives
) - D:l] StupwEtchRunn|nq TCon_Stopi TCUn__Slup\N TCon_StopWy
] Flease select test architectune for best caze: f‘pﬁ';_“ni}ﬁ} V\a};ﬁﬂﬁtéﬁﬁﬁv f;%huf_s;fgf;
Rational Rhapsody Gateway Cnews, | I e, =0, sy }

Select the sequence
diagram
“StopWatchRunning” in

“Create TestCase...”.

tutorial package and select

OK to proceed.
O\

e In the test case wizard
dialog, the test context
the “TCon_StopWatch” is
already highlighted. Press

As a result, a new testcase
e “SD_tc_0” has been created

which is based on a new test

scenario containing the same

messages as the original SD,
but life lines adapted to the test

context structure. -/

23

Create Test Cases Using Test Case Wizard -

Operations

E PredefinedTypesada (REF)
& RequirementsPkg
15 StopwatchPkg
-8 Classes

-- Button
-- Display
EIE Stopwakch
-y} Dependencies
&Ly Links
E| E Cperations
B getMind
----- B getsec
----- E setTime(Inkeger m, Inke:
ﬁ Parts
---E| Ports

E]--% Timer

<

Operation Body:

07 osc_arg l: Integer;
08 osec_arg Z: Integer;
0% begin

11 osc_aryg l, osc_arg Z);
1Z TestConductor. ASSERT NAME("Initial", true);
12 end;

14

1]

04 -- opr the TestConductor. ads File in the installation
oL
06 declare

10 E2topWatchPkg. StopWatch. setTime(this. itsStoplatch_ all,

Locate | OK | Apphy | |

-{_1 object Model Diagrams

E]---& SystemPlkg
E]---& TutarialPkg
21 Profiles

[f TestPackages

. 24
The test case wizard can also be used to

test operations that are defined in the model.
The wizard allows to create three different
kinds of test cases: sequence diagram test
cases, statechart test cases or code test cases.
Independent of the chosen kind of test case,
the created test case calls the selected
operation. Additionally, the test case already
contains a check that can be refined by the
user in order to check the out values of the
operation.

/Elg StopWatch
-4 Dependencies
-5 Links

EI@ Operations

: H gEtMinl:l

Rational Rhapsody Gateway

Flease select test case kind:

Code TestCaze

5D TestCase

Code TestCase

""" |;| getsec() Statechart Testiase
= setTimeteer teers . =

N (= %, TestCases i) N
%

ol Cocle_tc_ 00
= bl TestObjectives
e setTime

s mg=a

08 osec_arg Z: Integer;

0% begin

10 StopWatchPky. StopWatch. setTime (this itsEtopila
11 ose_aryg 1, osc_aryg Z);

1Z TestConductor. ASSERT NAME("Initial",trus);

_ TestCase...”

“setTime” of class
StopWatch in the browser
and select “Create

| In the test case wizard e As a result, a new code test
Select operation dialog, select “Code

TestCase” as test case
kind and press OK.

12 end;

case has been created that
contains a call to operation
“setTime” and also a dummy
assertion that can be refined.

L /

Debugging Test Cases

Mame
-1¥, 5D tc O
By sD_tc_o

O B e |

S
V2% B
Status Fil... Line/Progress
EXECUTIMNG
ACTIVE 1 5% (2/8)
TCon_StopW TCon_Stop\ TCon_StopW
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Staop Watch: Stoph _put_of Sto

| tmi500) at ROOT.Running.prestate
| |

| evShow(m =0, S—TD, b= FALSE)
- - |
ea T -+ g hawmTirme(m = 0, s = 0, b= FALSE)

I

| wgn, b= FALSE)
| |

|

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

Execute TestCase

Select test case
“SD _tc_0” and select
“Execute TestCase”.

execution dialog.

—-#, TestCazes ; K
¥ Code_tc_00) : ‘ﬁ DROIEAL
- SO OO L Mame Status Fil... | Line/Progress

B oa o e Narme Status il... | Line/Progress =% SD_t D EXECUTING
7w I B4t TedtCase SDInstances <% sD_ o FAILED BySDt 0 ACTIVE 1 =% 2
Update TestCase By sD_tc 0 FAILED S0% {4/8)
Build TestCase CIRF W | W &b T o

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the

e Execute the test case again
by pressing the “Start” button

in the execution dialog. Now
you can step through the test
case by using Rhapsody’s

_ animation toolbar. /

25

Executing Multiple Test Cases

Executing multiple test cases can be

= |
DROE < -
MNarme Status File/Tteration Line/Progress
-1 & TCon_StopWatch 3 FALLED
-¥, Code_tc D @) PASSED
£ mitial @ PassED TCorn_Stop... 132
-¥. SD_tc 0 3 FallED
By oo tco B FaIlLED 1 S0% (4/8)
- ¥, tr_check_init @) PASSED
By oo tco @ PassED 1 100% (2/2)
-1¥, tc_rheck_progress @) PASSED package
£ check initial time @ Pass= === == 1
B) Chock elapsed tme. @ PASS Test Context: TCon_StopWatch
—¥%, tr_check_time @ Pasg| Code_tt D PASSED
2] Check initial time @ pPass| S0 0 FAILED
£ Chedk if time setti.. (@ PASS| to_check_init PASSED
tc_check_progress PASSED
tc_check_time PASSED
/EI 9 TestContexts N\ (F® TESUE Py)
o =83 TCon_Stopiiatch
Ly Finbe H ;ilﬂks , .
i ‘;‘Ji 1. Build TestContext
ERNMIL Exccute TestContext

‘ TestCor,
%y TestCon

Build TestContext
Execute TestContext

Select the test context
“TCon_StopWatch” and
select “Update
TestContext”. After that,

select “Build TestContext”.)

X

w

= T

Update TestArchitecture

2y TEST_OrmIgUr oS

e Select the test context

again and press “Execute
TestContext”. All test
cases will be executed one

after the other.

/

done by executing a complete test context or
a complete test package. When a test context
or a test package is executed, all test cases
within the context or test package are
executed. After all test cases have been
executed, TestConductor computes an overall
test result for the test context or the test

" A
Mame Status Fi
- P TCon_StopWatch € FalLED
-¥, Code_tc_D @ PassED
& mitial © PassED Tq
-1¥, 5D_tc. 0 £ FalLED
By sh_tr o @ FAILED 1

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

/

26

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a
requirements coverage test report. A test case

requirements matrix shows the relationship

27

To: Requirement Scope: JavaStopatch

between test cases and requirements in @ I s o gt |2 neR 2[5 nE st B RER v B RER settne
matrix view. A requirements coverage test ;. s | R
report shows the same information, but B I e
presented as a textual report. It can be v
generated by Rational Publishing Engine or by
ReporterPlus using a predefined template.
/_ E} TEStPa':kaES \ / Mame: IHequverage \ / i \
= . TF'L:'I !:i+|'|[:|'|."'.|'.=4f|'f'| 1] To: Reguitemert Seope: AdaStopatch
E_n 0_ =0 atc Stereotype: I _VJ L - [REQ_Init ||3 REQ_Running_1 |E‘! F
=-{£3 Components e - —r g % tc_check_init 1 REQ_Ini
¥ -:i Testtn mpclnents ot ITestFlequuementEoverage |nTJ _E :' x e
TableMatrix l TestRequirermentvatrix SFC'SE"E |AdaStopwatch | i, | te_check_progress 1, REQ_Running_1
Annotations » TestResultTablz ’ ¥ Include DQ\:endants ["From" Scop g? : EEE;CIE? -
TestingProfile » TestScenario "ot |Ada8topWatch j LY tc |
Scope:

0 Select the test package

“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->

_ TestRequirementMatrix”.

¥ Include Descendants ['To" Scopel
Open the features dialog
of the matrix, rename it to
“‘ReqCoverage”, and set
the “from” scope and the
“to” scope to the complete
model “AdaStopWatch”. /) U

When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

/

Assessing Test Case Requirement Coverage I

All Requirements

Name ID
REQ Init no id

REQ Running 1 no id

REQ Running 2 no id

Covered By Test Case

= tc check init
in TPkg_StopWatch:: TCon_StopW

PASSED for CG Configuration
TPkg_StopWatch:: TCon_StopWat

» tc_check progress
in TPkg_StopWatch:: TCon_StopW

not executed

= not covered

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
Rational Publishing Engine a requirement
coverage report can be generated in different
formats like Word, Html, etc. The
requirements coverage report shows the list
of requirements, their coverage by test cases
and the outcome of the test case execution.
The report also contains information about
the specification of the test cases.

W an N
ReportGenerator
Schemas
Rational Publishing Engine Templates | | TestRequirementCoverage.dta
v ATG
] Generate report... | ProjectContentReport
SoftwareDesignDescription
TestConductor
UPDMReport
From Rhapsody’s tools Sel h
0 menu, select “Rational e “Te eclt?t € c e
Publishing Engine* dte”St iQUIrtalrrler}t c;;]/erage_
-> “Generate Report...”. a aslempiate forthe
report to generate and click
Next in the following dialogs.
/ARG /L

Q IBM Rational Rhapsody Report GEI‘bEI‘c!tD)

Configure the Output

Select output types needed and optionally change
stylesheets and output paths

Output Type Output File
Word

V| Html
PDF
HslFo

Select the desired output
format, html for example, and
click on Finish. After generating
the report, the report can be
viewed with any browser that
can display Html files.

\

/

28

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5)

Operations

~

Configuration : DefaultConfig in TPlkg_StopWatch_Comp

|Gene|a| I Description I Initizlization I Settings | Checks I Relations | Tags

Use defautt order
= | TestArchitecture
=I| AnimationBased TestingConfiguration
ComputeModelCoverage
ComputeRequirementCoverage D
Coveragekind SUT_hierarchical
NoConsoleApp O

Open the features dialog of the
code generation configuration
and turn on tag
“ComputeModelCoverage” and
set tag “CoverageKind” to

29

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test

State
Transition

Transition

State
Transition

Transition

\

stContexts
Con_Stopbidahch

Lirks
1 Build TestContext

- - B
_|

S@EIHRET

Execute TestContext

Update Testarchitecture
EET_OATIGQUFATIONS

-

1
I

Execute the test context
“TCon_StopWatch”.

cases, i.e, what is the achieved Model

Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts
etc. that shows the achieved model coverage.

/Eiga TCon_StopWatch

bﬁ Attributes

B-(22 Dependencies

B~ Links

E|.§ ModelCoverageResults
B rcor sicovieicn meow ot
@ Operations

Bl SUTs

&g Test Context Diagrams
E|" 1 TestCases

. E-% Codetc 00

After execution has finished,

“SUT _hierarchical’. J

\

e model coverage reports can
be found both for individual
test cases as well as a
cumulative coverage report
_ for the test context.

Elg MeadelCoverageResults
H Q TCon_StopWatch_ Code_tc_0_mcov_0.html

\

/

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save test
development time compared to traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

L information portal or contact one of our
= =—==T= worldwide sale agencies.
N T ¥ E— %

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

31

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

