Tutorial for TestConductor for RiC

Rhapsody

RiC Tutorial

for

IBM” Rational® Rhapsody®
TestConductor Add On



Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2012 BTC Embedded Systems AG. All
rights reserved.



TestConductor for Rhapsody for C

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, flow
charts and source code. During
execution TestConductor verifies the
results against the defined
requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment



StopWatch Application

The StopWatch application, the example

C application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,CStopWatch® from the folder
~Samples/CSamples/TestConductor” in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Object: S kophas atch(0]

Ewent: evkey .

Arguments:

[

: To start the application, press “Go” in
By

Rhapsody’s animation toolbar.

i Object: S bopie atch[0]
1zhar
ol BVt [eukey 3 To start the stopwatch, generate event
Arguments: “evKey(1)” using the animation toolbar.
[ oo KE: To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.
Hiztary:

5 topta atch[0]-

0. When running, the stopwatch outputs the

elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

(oo ] ()

n n n n
PP R e Gl G0 Pl Dol bk =k (20 130 (2D



StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stapwatch button that can be used to start and stop the stopwatch.
—— The second part is the timer that is used in order to count
pin | pEny : pButton the elapsed time. The third part is the display that displays
o T owor Joutton [ teTmertimer %] | the elapsed time. Within the stopwatch the different
& evPresskey(Ke. . R minint t t d - r_t d I k
% B i components are connected via ports and links.
7 ! Ey—— Additionally, the stopwatch class itself relays both the
P)O_“t[ poy| | BsDisplayDisplay B| L iDisplay | WlewReset( start/stop button and the display to its boundaries in order
IDisplay ] [E%— to be able to connect an external start/stop button and an
& evShowimint,sin... external dlsplay .
The myStopWatch class represents a
my StopWatch = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
C My ] that can be used as a start/stop button.
T@, Additionally, it connects the stopwatch to an
& presskey(Keyval int)void pin |1 HsStopwatch: StopWWatch external d|Sp|ay “myDispIay” that diSp|ayS the
IKe elapsed time.
Qu : St et
1 itshyDisplay:myDisplay & ﬁp‘q] = setime{mint <:inf void
pl Digplay
[—0—
IDigplay




System Under Test

| . Defining the System Under Test (SUT) is the first
T oo Sy T— - step in the test workflow. This tutorial will focus on the

- Components

C
Do
2

e = s o StopWatch class. To define StopWatch to be the SUT, we
B 2 68 g TESnCOnfiguatios Defaultcenfl have to create a test architecture. The needed
S 5 Toparons | administrative framework will be placed in the folder
3 QS. Ekggitpnﬂprﬁitéh =% I\(:un_SU:pWai.:ch_Archltecture «
- coro ? G Depertiencis , 1 estPackages”.

3 TC_at_pln_of_StopWwatch
* TC_at_pOut_of_Stopkiatch

- & Ttcanees The System Under Test (SUT) is a part and

=i TCon_Stopiatch

H- (= Attributes . .
e b veperecis is the component being tested. A SUT can
= 9 TestContex # =5 Links . . . .
e ? 3 S consist of several objects. The SUT is exercised
- Links i | h . . . . .
3t - ﬂ‘{zs'??ﬁii“i‘ﬁéiam via its public interface operations and events by
‘4 tsStopWatch &4 Structure_of_TCon_Stoptiatch
| R s o @ fovomrenience: the test components.
2 wsTCJtJIrLuf,fStervvavchk z itsTC_at_pOut_aof_Stoplatch
® *,,ng.‘ggr?;.ﬁig;f S +- %y, TestConfigurations
- TCon_Stophiatch_TestControl +-{% TCon_Stop\Watch_TestControl
|
= Pl \ / aTestCantexts \
i_l %UJET:;ESP ? TCon_StopYvatch
+ % BUton
4.5, Displa =5 TestContaxts
; %Timer Features,. =49 TCon_Stopwatch 1 _ ST
+-1 Ohject Mad o Links itsStopWatch: StopWatch
@£ SystemPkg Delete from Maodel = g SUTs
i itsStophiatch
Create Testarchitecture =&l Test Context Diagrarns
p}ctuctre of TCon Stopiiat — —
+ ‘ TestComponentInstances plnT‘ poutT‘
+ TestConfigurations
Select the class " J
,StopWatch® in the browser Have a look on the newly created Test Context Diagram
0 and choose from context e ,Structure_of TCon_StopWatch “, and view the resulting parts in
menu ,Create the composite class ,TCon_StopWatch® of our test context.

\_ TestArchitecture®. AN %




Test Architecture

=

=
=

=-L3 TestPackages
=R 4 TPkg_Stop\watch
=~ Components
=g | TPkg_StopwWatch_Cormp
= Configurations
+ 83 «TestingConfiguration: DefaultConfig
+-2F Events
-5 Ohjects
=-C# TestPackages
=y TCon_StopWwatch_aArchitecture
+ 22 Dependencies
= TestComponents
+ TC_at_pln_of_Stopbiatch
+ TC_at_pOut_of Stopiwatch
=49 TestContexts
=89 TCon_StopWWatch
+ -2 Atributes
+- (2 Dependencies
5 Lirks
+-(2) Statechart
= ol SUTs
alb itsStopiiatch
&g Test Context Diagrams
4 Structure_of_TCon_StopWatch
= ‘ TestComponentnstances
z itsTC_at_pln_of_StopWWatch
itsTC_at_pOut_of_StopiWatch
#- %y TestZonfigurations
[y TCon_StopWwatch_TestControl

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test

- model besides the design model. After creation the

following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp*“ describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.



Test Context

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

« TestContexts
TCon_StopyWatch

The composite class ,TCon_StopWatch® is

1 wSUTw
itsstopWatch: StopWWatch

1 1

pln pOut

pln

pOut

1 «Tes’t‘l:’]ljmponen 1 «Tes’lt'nl:umpm%
itsTC_at_pln_of itsTC_at_pOut

the part container for the SUT object and the
created test component objects.

The class ,TC_at_pln_of StopWatch"
realizes the interface ,|IKey" and thus can be
connected to the “pIn” port of the stopwatch
class that provides this interface.

The class ,TC_at_pOut_of StopWatch®
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.




Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

Is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

Is an operation of a test context that specifies how a

set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
flow charts and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.



Test Case Specification

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

TCon_stapyy
atch.itsTC_at
_pln_of Staop

«SUTs
TCon_stapyy TCon_Stophhy
atch.itsStop atch.itsTC_at
YWatch: StopWy _pDut_of Sto

evshow(m=0, =0, b=FALS EH

Test Case : check_set_time in TCon_StopWatch

General | Description | Implementation | Arguments | Felations | Tags

woid TCon_Stopiwatch_check_zet_time[)

Properties

I// Check tkat initially the time is 0:0
int mins = StopWatch getMin(&(we->its3topWatch)):
int secs = 3topWatch getdec (& (we->its3topWatch));
RTC_ASSERT_MAME ("Check initial time",

[fmins == 0) && [Zecs ==

[Imins == 3] L& [sews ==

o1y

SF mow set time to 03:21 and check that setting of
A4 time indeed sets the correct time

StopWatch setTime (& (me->its3topWatch), 3,
winz = StopWatch getMin(&(we->itsStopWatch)):
secs = StopWateh getlec (& (me->itsStopWatch)):
RTC_ASSERT MAME ("Check if time setting is correct”,

21):

21y

MCon_StopWWatch_rtc_init{me-=itsTCon);

JRTC_ASSERT_NAME(Initial" 1);

¥
final

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Flow chart test cases also benefit from their graphical
nature, but in contrast to sequence diagrams, the use of
complex data types (structs) and control structures (if-
then-else) is supported out-of-the-box.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

10



Test Case: Sequence Diagram |

E“ TestScenario: Check_Init in TPkg StopWaich_1

To manually create a sequence diagram
test case we have to define a test scenario

which is represented as a sequence diagram

TG af_pln_of | TCo. StopWatch| . TC at_pOut...
«5lUTs
TCon_Stoph?y TCon_StopWy TCon_StopWy
atch.itsTC_at atch.it=Stop atch.itsTC_at
_pln_of Stop Watch: StopW | | _pOut_of Sto

i‘i Test Context Diagrams
=% TestCases
=% to_check_init?)

L chInstances
[=l _Ei TestScenarios
E—'llp CheckInit

and link it to a test case. TestConductor
simplifies this process with a single command.

-

L Link

b SUTs

i Test Context Diagrams
‘ TestComponentinstances
%y TestConfigurations

Select the test context
,1Con_StopWatch® in the
Rhapsody-Browser ...

... and choose from the
e context menu ,Create SD

Create SD TestiCase

Create Flowchart TestCasze
Create Code TestCase
Create Statechart TestCase

TestCase“..

2N

=% TestCases
=

Rename the test case to
»{C_check init‘. Rename the
test scenario to ,,Checklnit*

and open it.

/

11



Test Case: Sequence Diagram li

=57 RequirementsPkg
== Requirerments
[19] REQ_Init
[11] REQ_Running_1
1L REQ_Running_2
|1l REQ_SetTime
1bdl REQ_Stopping
£7 StopwatzhPkg
£7 SystemPkg
£7 TutorialPkg
) Profiles
=L TestPackages
=% TPkg_StopiMatch
0 Components
¥ Events
- Objects

Requirement : REQ_Init in RequirementsPkg

General | Description | Relations | Tags | Properties

Mame: RECQ_Init
Stereatype: » JE
Type: Requirement ¥

10

Defined in:

Specification:

After starting the stopwatch, the stopwatch
shall display O minutes and 0 seconds (0:0).

Locate OK

= L3 TestParkages

E&

v

= % TCon_StopWatch_architecture

s Dependencies
TestComponents
-9 TestContexts

=9 TCon_Stopiatch

= attributes

(24 Dependencies

5 Links
() Statechart
i SUTs

&l Test Context Diagrams

=% TestCases

=% 5D_tc_00)
EY spinstances
-6 TestOhjectives
W REQ_Init

test case.

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by

the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

/

= ”:.: TestCases
to_check_initd
=

EEY

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

Depends on:

M Select Model Element

X]

E-! REC_Running

TestScenario !

\

‘ =Bl Requirements s
= [T

EY REQ_Stopping
£ StoowatchPka -

[ o |

Cancel |

Select requirement “REQ_Init”
as target of the test objective”

/

\

=% TestCases

=R to_check_init
E_';'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links

the test case to the
requirement “REQ_Init”.

/




Test Case: Sequence Diagram lil

12" TestScenario: Check_Init in TPkg StopWatch_1 *

Define action and reaction of the system

under test. We will specify the ,Checklinit"
scenario, where the SUT shall emit event

.. TC_at_pln_of.. | TCo...Stop'atch . TC_at_pOut.. “‘evShow” with current time 0:0 after starting
the SUT. This output shall be generated
«SUTs automatically by the SUT, since no further
TCon_Stop | [ TCon_StopW TCon_Stopiy input is needed for that.
atch.itsTC at atch.itsStop atch.itsTC_at
_pln_of Stop Watch: Stophh _pOut_of Sto
| evShow(m=0, =0, b=TRLIE) |
| | |
4 N N [ N
=0
TCon__StopW TCon__StopW TCon_Stophh TCDT]SL;{D»F]W TCon_StopW
\.njgct:ﬁgtsomfw atghlttsgfcg?; EVShDW(FH:D, s=0, h:TRUE:I atch.itsTC at atch.itsStop atch.itsTC at
S St _pIn_Df_St_op Watch: Stopi _pOut_of_étu

evShow(m=0, =0, b=TRUE) l

| Features... |

evShaw(int,int, RiCEoolean)

Draw the message
“‘evShow” from the SUT to
the test component “TCon_
StopWatch.itsTC _at_pOut_

of StopWatch”.
_olop )

Specify argument values
m =0, s=0, b =TRUE for the
message.

/

That's it already. The test

| evzhow(m=0, =0, b=TRLUE) :
| S
e case specification is

complete.

- /




Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either

| ] ,PASSED" or ,FAILED".
YD f_@: {}
Narne Status File/lte... | Ling/Progress The progress displays how many steps are
- ¥, t_check_init €3 FAILED finished yet. In case of a passed test 100% have
Fp SD_tc 0 @ FalLED 1 0% (0/2) to be achieved.
The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.
/—w TCon_Stopiiatch \ / =% JestCases ] \
+ I_‘ Links ) ‘Testcamponenﬂnstances
¥ {‘ SUTs TestConductor #- %y, TestConfigurations
&g Test Context Diagrams = %;gsﬁcef;?“tﬂs
=%, TestCases — B TestCase must be built before execution. Build and Execute now? e
‘ TestCumpDnenﬂ Features... 2%
"""""""""" Edit TestCase SDInstances OK l [ Abbrechen DJOR )
Update TestCase _Nimi: —_— gtih:?LED File/te... | Line/Progress
Build TestCazse L |:'.:| [ FalED
Execute TestCase
To execute a test case, simply right-click the test case and select The test case execution
“Execute TestCase” from the context menu. In case the test model dialog is a dockable dialog
0 needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main

and/or build the executable.

\

/

browser window

14



Test Case Execution I

#5UTs
TCon_Stop TCon_Stop
Watch.itsSio Watch.itsTC
pWWatch;Sto _at_pln_of_

The test case execution FAILED with

TCon_Stop
W atch,itsTC
_at_plut_of

Rhapsody TestConductor. To analyze the
reason TestConductor offers two kind of
views. The HTML-report displays a textual

summary and can be found directly under the

| evShowe(m =0, s = 0, b = TRIUE): Check of in value okargument b failed
e

SDInstance "'SD_tc_0'

test case in the Rhapsody-Browser.

TestConductor created a debug sequence
diagram to display the error. The red arrow
visualizes the faulty step and the reason.

TestConductor expects the parameter value

, T RUE" for argument “b”, but observes the

Status: FALLED value ,FALSE" during actual test execution.
Progress: 0% (©/2) The expected value was not specified
e N correctty~ by-accident.
v (2) 3 ?}ﬂ DEOKE 3 éﬁ =%y TestCases
; ; =% t_chedk_init()
Name Status Fi... LinefPngress Mame Status Fi... Line/Progress —EJI; Shlnstances
-1%, tc_check_init @ FALED :

-1¥, t_rhedk_init 3 FaILED
Show as SD o
Add to rmodel

To open the debug
sequence diagram right
click the item SD_tc 0 in
the TestConductor
execution dialog...

Show as SD

Add to model

e ... and select “Show as SD”

\

/

\

L TestOhjectives

B 5f TestResults
g TCon_Stoptiiatch to_chedk_init_0.html

_EH; TestScenarios

In the browser, underneath the
test case, you can find the
generated html report. Double

~

click the report to open it. )




Test Case Execution lll

The test execution PASSED with

MName Status
-1¥, tr_check_init (&) PASSED
Bpso_tc.o (@ PasseD

Fi...

1

T Rhapsody TestConductor after we corrected
SEOE X the expected parameter value for argument “b”
from “TRUE” to “FALSE” in the test scenario
,Checklnit“. After changing the scenario and
100% (2/2) re-executing the test case, the test case is
passed.

Line/Progress

Refer to the user guide to get
familiar with the extended functionality
of TestConductor.

=-#, tr_check_init()
E_I_n shInstances
Ll TestOhjectives
% TestResults

1] E-E

TestScenarios

2N Checknit

To correct the test case
0 open the test scenario
,Checklnit*“.

a N N

B TestScenario: Check_Init in TPkg StopWaich
TCon_StopWat... StopWatch LT at pStop..| TG at_pSto.. i
2]
«SUTs -
TCon_Stapi TCon_Stophy | | TCon_Stophy Marme Status Fi.? /Progress
atch.itsStop atch.itsTC_at atch.itsTC_at - Vr tr_check_init Q PASSED
Watch: Stopiy _pStopWatch _pStopWatchl

| | | Bposotr o @ PaSSED 1 100% (2/2)
evShow(m=0, =0, b=FALSE)| |
| | |
| | |

For argument “b”, change the Re-execute the test case by
exptected value from “TRUE” pressing the “Start” button in
to “FALSE”. the top right corner of the

execution dialog.

- 2N /




Test Case: Source Code |

Test Case : check_set_time in TCon_StopWatch

General | Description | Implermentation | arguments | Relations | Tags || Properties

void TCon_Stop'w atch_check_zet_time(]

I«"f Check that initizlly the time is 0:0
int mins = ScopWatch getMin(& (me->itadcopWatch) ) ;
int secs = StopWatch getlec (& (me->its3topWatch) ) ;
RTC ASSERT MAME ("Check initial time",

[lmins == 0) &£ (secs == 011);

A4 now set time to 03:21 and check that setting of
A4 time indeed sets the correct time

StopWatch setTime (£ (me->itsStopWatch), 3, 21);
wmins = StopWatch getMin(&(we->its3topWatch)):

To manually create a source code test case
create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of macros
like e.g. ,RTC_ASSERT_NAME" that can be used
to execute checks during test case execution. If the
function “StopWatch_setTime” works as expected,
the test case passes.

%y TestLontiguratians

Select the test context
,1Con_StopWatch” and
choose from the context
menu ,Create Code
TestCase®.

dialog.

Rename the created test
case to ,tc_check_time*
and open the features

secs = StopWatch getSec(&(we->itsitopWatch)):
RTC_ASSERT MNAME ("Check if time setting is correct”,
[Imin=s == 3) £& ([(secs == 21)))1:;
& B9 TestContexts i N N )
= & TCon_Stopbvatch
i n -7 = TutorialP
: Y ;‘G';S =%, TestCases 6 5 q kg
oy SUTs %, tc_check_init() g Classes
+-hg Te Create SD TestCase ¥ — — . — E CodeTestCase
=%y, R PRt check time()
w T¢  Create Flowchart TestCasze v = ;
» - = E Operations
BRe® Create Code TestCase E r heck Eimed
c check Eimel)
+ ‘ Te  Create Statechart TestCase SC_tHECE e

Replace the content of the
edit field under the
implementation tab of the test
case with the content from the

“tc_check_time” operation in

VAN the Tutorial package. )




Source Code Test Case Execution

=
DRORE <3 -E],
Marme Status File/Tteration | Line
- ¥, tc_check_time () PASSED
1) Check initial time @ PassED  TCon_Sto.. 141 | |
B Chedk if time setting is correct (&) PASSED  TCon_Sto.., 148

A4 now set time to 03:21 and check that setting of
S8 time dndeed sets the correct time

StopWatch setTime (& (me->its3topWateh), 3, 21):

mins = StopWatch geclin&(me->itsdtopWacch)):

secs = 3topllatch getlec (& (me->its3topWatch)) ;

BTC A3ZERT NAME ("Check if timwme sercting is correct™,

[secs == 21))111:

[ (mins == 3) &&

Execute the test case with Rhapsody
TestConductor.

Both assertions evaluate to true and the
test case passes. Double-clicking an
evaluated assertion in the execution
window highlights the assertion in the test
model.

s N N N
=89 TCt  Edit TestCase SDInstances =@ TCr  Edit TestCase SDInstances
- Update TestCase #5 Update TestCase Name _ Status
il . = * ol Build Test—ase - ¥, tc_chedk_time @ PassED
! BEuild TestCase +- Bl i ) Check initial time ® PasseD
- ®,  Execute TestCase - x| Bedliz Tesicass Y Check if tim correct [@) PASSED
£ % t-_check_init()
SRRt ek tirne ()

Select test case

Select test case

“tc_check_time” and then
select “Build TestCase”

from the context menu. the context menu.

»{c_check_time" and select
“Execute TestCase” from

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

/




Test Case: Flow Charts |

In Flowchart TestCases you can use ASSERT macros like :

RTC_ASSERT_NAME(n e), e.q.

RTC_ASSERT MAME({"Check 1", me-=zistClass_1. attribute_x == 42);
For the list of available macros see TestConductor UserGuide

or the testconductor_Coh file in the installation directory

) :

RTC_ASSERT_MAME("Initial",1);

To manually create a flow chart test case we
have to define a test scenario which is represented
as a flow chart and link it to a test case.

TestConductor simplifies this process with a single

command.

‘ = TestCases

+-# te_check_init))
+-B. te_check_timel)
=B, te_check_time_FC()

~

+ E FlenwchartOfTe_check_kime_FiC
+ ‘ TestComponentInstances
a N 4
= {9 TestContexts =l by Test Cantext Dia
 Cpo L grams
=M ¥ TCon_Skop'Watch Zreate 30 TestZase &% Structure_of_TCon_StopWatch
#l- Links Features. =%, TestCases
- SUTs Add New Create Code TeskCase #- % te_check init()
= by Test Context +- % bo_check_timef)
&7 Structure]  Cut iZreate Statechart TestCase - X, PR ———
=%, TestCases Copy a7 R
0 Select the test context e ... and choose from the e Rename the created test case
,1Con_CashRegister” in context to ,tc_check time FC* and
the Rhapsody-Browser ... menu ,Create Flowchart open the flow chart.
TestCase”.
. NG \

19



Test Case: Flow Charts i

L ]

}

int mins = StopWWatch_getMin(&(me-=itsStopy¥atchl);
int secs = Stop¥Watch_getSec(&(me-=itsStopWWatch));

RTC_ASSERT MAME[ Check initial time”, [(mins == 0 && (secs == O}j);

.

StopWWatch_setTime{&(me-=itsStopWWatch), 3, 21);
mins = StopWWatch_gethin{&ime-=its StopWatch));
secs = StopWWatch_getSec{&(me-=itsStopWatch]);

[rnins == 3] [el=e]

RTC_ASSERT_MAME("Check if time setting is correct”,
((ming == 3) && (secs == 2100},

‘ P 1

o

Define the flow chart in order to execute it with
TestConductor. The Rhapsody-TestConductor-

- macro ,RTC_ASSERT_NAME" takes a name-

parameter and a condition. If the conditions
[mins==3] and [secs==21] evaluate to true the test
case will pass.

Obviously the flow chart test case is very similar to
the source code test case we discussed some
pages before. The difference in comparison with
the source code test case is the graphical nature of
this test case.

4 N

= B TukarialPkg
—-B classes
8 CodeTestCase
-8 FlowchartTestCase
= E Ciperations

Replace the content of the
o flow chart of the test case with

the content from the flow

chart in the Tutorial Package.

. /

20



Flow Chart Test Case Execution

-1 Execute the test case with Rhapsody
v = % & TestConductor.

Marme Status File/Tkeration Line/Progress
=¥, tc_check_time_FC () PASSED The ,RTC_ASSERT_ NAME®“ macro
Q Check. inikial kimne O PASSED TCon_StopiWatch.c 161

Q Check.if time sekting is u:u:urreu:to PASSED  TCon_Stopvatch.c 172 evaluates to true and the test case paSSGS.

[mins == 3] [elze]

¥
O O
( RTC_ASSERT MNAME("Check if time setting is correct”, }

(fmins == 3) && (secs == 21)));
] |} m]

4..{.}#.
4 N [ N [~ N\
b g Test Conkext Diagrams Update TestCase
= “;.-' TestZases Marne Status File/Tte
“L" tc_check_init{} Fxprube Teshage -] % tc_check_Fimfa_F_C @ PasseD
“;." tl:_l:hE-'Ek_til'l'lE-'l::l Build TestCase iletiru:l is correct o E T_
SRt check_time_FC() Execute TestCase ) Show Assertion B
1 SR © . aro orooso rom © 1o siccuton vnaow
tc check time FC* context menu the items p o
G — — Build TestCase® double-click “Show Assertion
;nd Execute TestCase“. in order to highlight the

\ AN AN assertion in the model. )




Test Case: Statecharts |

B _ _ To manually create a statechart test case we
This is a statechan defining TestCase behavior X . . .
In Statechart TestCases you can use ASSERT macras like have to define a test scenario which is represented
TestConductor. ASSERT _MAME(n e, e.g. . .
TestConductor ASSEM™ & 4 T¢50 " 7 - -as a statechart and link it to a test case.
Far the list of available +-L Agsociation Ends H
or the TestConductor. s benoncios Technically, the test case has a dependency to a
£ 8 Operations TestComponent that contains the statechart.
6 Tags TestConductor simplifies this process with a single
initial =49 TestContexts
_ =9 TCon_Stopwatch command.
- Attributes
+ -y Links
+-[@ Operations
il SUTS
fitsTC + -k Test Context Diagrams
v =%, TestCases
+-# tr_check_init?)
state 1

=%, tr_check_progress()
=-*s) Dependencies

) i - %, TestCases i )
--%, TestCases +-E to_check_init{)
24 S Creats SD TestCase - % t0_check_init() =% tr_check_progress()

X % .
Hobg TE e -
= x-q' 1 Create Flowchart TestCase % » Dependencies

L tC_check time() =L TestObjectives
#-%,  Create Code TestCase - ) m
+ ‘ T4 ; h =

% to_check_time()

tc_check_progressi)

@ T Update TestContext
0 Select the test context e Rename the test case to e Add a test objective (using
,TCon_StopWatch* and “tc_check_progress” “Add New -> TestingProfile
select “Create Statechart ->TestObjective”) to
TestCase”. requirement REQ_Running_1

\ 2N 2N /




Test Case: Statecharts |l

;l Define the statechart in order to execute it with
TestConductor. The statechart test case first
¢ checks that initially the stopwatch’s time is indeed
kbt it o e 0 0:0. After starting the stopwatch, the statechart test
Stw;ImH case waits a bit more than 3 seconds, and then
(lins ==0) e secs == QU checks that indeed 3 seconds should be counted
by the stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody

brAlB00TFF mow skart shopwatch
RICGEN_PORT(me-=itsTCon-=itsTC_at_pIn_of

ach i, everessiey(1); TestConductor macro ,RTC_ASSERT_NAME®
again. If both checks are passed, the complete test

skate_4 .
case is passed.
/ - _:‘ TCSC 0 0 \ / I Transitinn : 3 in statechart_0
= & TutorialPkg + I—| Association Ends ] General | Description || Tags | Properties
=8 Classes +-"x) Dependencias s Name
=By Tesc i @@ operations Stereotype v
* I._' ASSOCE  o).(&) Statechart evTCStart o . ]
# = Depent =l StatechartDiagram
+ (g Operai}; 5 e — ’ e 1 Trigger : evTCStartin TPka_Stopiwatch
= Statechart = -
i=llStatechartDiagram i o
= Co- - . Locate oK
0 Replace the content of the e Add “evTCStart” as trigger of
test component statechart the transition from state
associated with this test case “initial” to state “state_1”
with the statechart of the

\_ Tutorial package. Y. \_ Y.




Statechart Test Case Execution

Marme
="
v tr_check_progress ) PASSED
£+ Check initial tirme @ PasSED
&) check elapsed time ) PassED

TCSC_te_... 408
TCSC_to_,.. 709

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to

==l
Do true and the test case passes.
File/Theration Lins

trn 32000/

H now check if time has elapsed accordingly

int mins = StopWWatch_getMin{me->itsStopWWatch];
int secs = StopWWatch_getSecime-=itsStopWatch);

RTC_ASSERT MAME{"Check elapsed time",

{1
final_state

{imins == 0) && (secs == 3)));

fCon_StopWWatch_rtc_exit(me-=itsTCon];

=-* TestCases
® tc_check_init()
L® - check progress()

% to_check_time()

0 Select the test case

,{C_check_progress” ...

\_

/ Edit TestCase SDInstances

Update TestCase
Build TestCase

Ex  Edit TestCase SDinstances

\

Update TestCasea
Build TestCasze

Execute TestCase

N N

MName Status
@ PassSED
@ PassSED

-1 ¥, t_rheck_progress
T 2] Check initial tire

'8 check & time

,Build TestCase"

and ,Execute TestCase”.

... and choose from
context menu the items

e In the execution window,

select the assertion and
double-click “Show Assertion”
in order to highlight the

J L assertion in the model. )

24



Create Test Cases Using Test Case Wizard - SDs

StopWatch :myDisplay

| evShow(m=0, =0, b=FAL3E) |

| evPresskey(KeyVal=1) |

I ap instance lines to test architecture

Flease select test architecture for test caze:

Flease select test case kind:

L. 25
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

0 Select the sequence e In the test case wizard
diagram dialog, the test context
“StopWatchRunning” in the

tutorial package and select
“Create TestCase...”.

RN

“TCon_StopWatch” is
already highlighted. Press
OK to proceed.

/EI 3 TutorialPkg I Create)IEcHE 3ee N (&= B ;I’estCases N
B Classes &
= D Sequence Diaarams Map instance lines to test architecture Ep S0Instances
v — T — =k Testobjectives
EJ StopiatchRunnr 10 TCan_Stopi TCan_Stop#/ TCan_Stop'
Flease select test architecture for test caze: imf;{gt—;; V@;ﬁgﬁléts;;&, ﬁ;%”ugf;%?;
Rational Rhapsody Gateway new | s }
e gl in]
| T

As a result, a new testcase
e “SD_tc_0” has been created
which is based on a new test
scenario containing the same
messages as the original SD,

but life lines adapted to the test
context structure. -/

2N




Create Test Cases Using Test Case Wizard -
Operations

26
The test case wizard can also be used to
| _ test operations that are defined in the model.
1 2 PredefinedTypesc (REF) : .
J: %::;;\:;Z‘;li‘;f;kg General | Description | Implementation | Argumerts | Relations | Tags | Properties The leard a"OWS to Create th ree dlfferent
- ?%ﬁiz;w v TCar, StopWatch Code_to_0l) kinds of test cases: sequence diagram test
i§+ Eéi's,c’k;h e S e s e e e ke =2 cases, statechart test cases or code test cases.
- 8 gt U e e e a5l Independent of the chosen kind of test case,
EgetSec(z ) S4 or the teatconductor C.h file in the installation dir the Created teSt Case Ca"S the Selected
setTimedint m,int s int osc ar : . g
s 0 pars int omcare2, operation. Additionally, the test case already
+ orts StopWatch setTime [ &me->itsStopWatch,osc arg 1,o0sc arg 2); 0 D
, S RTC_ASSERT WAME("Initial®,1); —TTY L contains a check that can be refined by the

| 3 8 SHeck bl igrns : " user in order to check the out values of the

. Locate (8]4 .
= ﬁ TukarialPkag operatlon .

- H Stopwatch N N (&% TestCases i ) N

. ) =Ry Code_tc_00)
: I_=‘| E;%PI_EHdEHEIES . Flease select test caze kind: - E:l Tegtr:lb]'e[ti'.,reg
= E D RatiDnal RhapSDd'y' Gatewa':," Code TestCase he mmanls Relations | Tags | Properties

5D TestCase

Code TestCaze void TCon,_Stop'atch_Code_tc.0)
Statechart TestCase int osc arg 1;
_ary_

int osc_arg 27
StopWatch_setTime (&we-ritsStopWatch,osc_arg_l,o0sec_arg_2):

RTC_ASSERT NAME ("Initial”,1);

0 Select operation e In the test case wizard e As aresult, a new code test
case has been created that

“setTime” of class dialog, select “Code ) I )
StopWatch in the browser TestCase” as test case SO”E?'”S,? Cad t<|3 ope:jatlon
and select “Create kind and press OK. setTime” and also a dummy
TestCase " assertion that can be refined.

\ 2N 2N /




Debugging Test Cases

R Debugging failed test cases can also be done
DRORE -3 1 with TestConductor. When a test case fails, one can
Narmie Status Fil... Line/fFrogress turn on debug execution mode in TestConductor’s
-¥, SD_tcO EXECUTING execution window. After switching on debug mode,
By SDtc 0 ACTIVE 1 25% 2/8) when executing the test case one can step through
tooncStW || Taon. Stoow Lo it by using the “Go Step”, “Go Idle”, etc. buttons of
L | =orefe ] Rhapsody’s animation toolbar. Additionally, when
| o eenberass | stepping through the test case, one can use
VTSR @' , b o I Rhapsody’s animation features to inspect animated
I = -+ evshow(m =10, 5= = 2 H .
|/ '! QSh mefemBb=rAEs statecharts, animated SDs, etc. in order to find the
| ﬂwﬂme(mﬂ-sﬂ-rmwal reason why the test case fails.
I SyShow(m =10, =0, b = FALSE) I In this mode, the application is not terminated
| -~ M automatically after the test case has ended.
« - N N
=% TestCases i éﬁ
%, Code_tc_00) ﬁ D @[3
7% Erang : L Mame Status Fil... | Line/Progress
n X‘. I: -I"" e Marme Status Fil... = Line/Progress -1¥%. S0t D EXECUTING
Edit TestCase SDInstances -1¥%, SD_tc_0 FAILED B S0 10 ACTIVE 1 5% (2/8)
Update TestCase By sotc 0 FAILED 1 S0% (4/2) :
Build TestCaze M B > B T D72 I

Execute TestCase

Select test case
“SD _tc_0” and selec
“Execute TestCase”.

t

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the
execution dialog.

Execute the test case again
by pressing the “Start” button
in the execution dialog. Now
you can step through the test

case by using Rhapsody’s
animation toolbar. /

\

27



Executing Multiple Test Cases

Executing multiple test cases can be

=lxl .
e done by executing a complete test context or
Name Status File/lteration  Line/Progress a complete test package. When a test context
- TCon_Stoptwatch 3 FalLED .
L%, Corote 0 © PesseD or a test package is executed, all test cases
£) mitial © PASSED  TCon Stop.. 132 within the context or test package are
-¥ 8D_tc 0 @ FAILED
g O rao 1 % 415 executed. After all test cases have been
=% ij_check_imt © PassED executed, TestConductor computes an overall
SD_tc_0 © PassED 1 100% (2/2)
L%, & ook progress @ PASSED test result for the test context or the test
{5) check initial time @ PaSS . _— == y
B) Chock clapeod fme @ PASS Test Context: TCon_StopWatch
-1¥, tc_check_time @ pags| Codetc 0 FASSED
2] Chedk initial time @ pasg SDED FAILED
£ Check if tirme setti,,. @ PaSS tt_check_init P4SSED
te_check_progress PASSED
tc_check_time PASSED
/EI % TestContexts \ KE‘ g r:""'qf'h /N Staty F'\
= Co : _Stopiiatc arme |5 [
L, | inbe o Lirks -1 @ TCon_StopWwatch © FALED
o 5 id -¥, Code_tc_O © PassED
1 Te Build TestContext ¥ e
Rl Evecute TestContext . %Dlrlc't'ac: 8 EiiSEED 9
v N d _TC_|
@ Teotch @ T Update TestArchitecture B 5ot o € FAILED 1
E= estzorm, - S —_
Enp MM Build TestContext "y TeSTOTTIUraUOT The results are shown in the
Execute TestContext
0 Select the test text execution window. As always,
Select the test context electthe tes cc‘>‘n ex “Show as SD” resp. “Show
"TCon_StopWatch” and again and press Execute assertion” can be used to
select “Update TestCoq’ltle ét - All teft g show the reasons of failed
after the other. :

_ select “Build TestContext”.

/

28



Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a

S asenisal muolq

To: Requirement  Scope: JavaStopWiatch

€CE TestPackages
=0 ¥ TPk0_Stop\watch
+-_] Components
+ j, TestComponents

Annotations 4 TestResultTahle
TestingProfile 4 TestScenario

TableMatrix 2 TestRequirementhiatriz

0 Select the test package

“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->

\_ TestRequirementMatrix”.

EY REQ_Init |E"! REQ_Running_2 |E"! REQ_Stopping |E"! REQ_Rurning_1 |E"! REQ_SetTime |
#_ to_check_init 14 REG_Irit
#_ to_check_time
"’r_,- tc_check_progress H REQ_Running_1
%, 50 16 0
."r_,- Code_tc 0

requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but

presented as a textual report. It can be
generated by ReporterPlus using a predefined

Include Descendants ['To" Scope]

Open the features dialog
of the matrix, rename it to
“‘ReqCoverage”, and set
the “from” scope and the

“to”

scope to the complete

model “C_StopWatch”.

template.
/ Marng: ReqCoverage \

Stereatype: w {'{l
Lapout: TestRequirementCoverage in T
“From"
5 Cr;;"e: C_Stopwatch w

Include Descendants [From Scope]
"To" C_Shopiaatch w
Scope:

/

To: Requirement  Scope: JavaStopiVatch

- B REQ_nt | REQ_Ruring.2 |B} |

2 |®. to_check_init 1 REQ_Irit

: ¥ te_check_time

& |% to_check_progress |

R ERE

3 :’5‘,- Code_te_ 0
When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

)

/

29



Assessing Test Case Requirement Coverage I

= C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... Q@@
2~

@ oy v | ciTest itRhapsodyT.S. 2yeporterplusiUserFiles\Cover ageReport. htm ||| 41| X
Datei Bearbeiten Ansicht Faworten Extras 7
[~ I v |0 Suchen = (BRI _iLive ~All=] v Free s [10] ~ | B Freeware [10] ¢ | | |+
= - E — N »
W | € C:\Test itRhapsody?.5.2YreporerplusiUserF... | | E - B o ~ |k Seite v O Extras v
Table of Contents L
(] Requirement Coverage Report of Mot A” Requirements
[=EE] -l Requirements
B Requirement REQ_Init
B Requirement REQ_Running_1 Name Specification E:\;‘:red by Test
E Requirement REQ_Running_2 —
E : tc_check_init
B Requirement REQ_SetTime REQ_Init After starting the stopwatch, the stopwatch (M passed)
B! Requirement REQ_Stopping shall display 0 minutes and 0 seconds (0:0)
[ Al Test Cases e chack
REQ_Running_1 After starting the stopwatch, the stopwatch (icp:scsgdgmgress
9-+ | shall count minutes and seconds.
After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon
REQ_Running_2 | between not covered
displayed minutes and seconds shall blink once in
a 1 second time interval.
. The stopwatch shall provide a function "SetTime"
REQ_SetTime |y ot sets the current time. not covered
4 ﬂ REQ_Stopping ﬂﬁﬁm.tgljming' pressing the key of the stopwatch not cavered 3
Applet com/synergex/modeleyeq TOC,/DirectNavigator started ' Eigener Cornputer T 100% -

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
ReporterPlus a requirement coverage report
can be generated in different formats like Word,
Html, etc. The requirements coverage test
report shows the same information as the
requirements coverage matrix, but presented
as a textual report. Besides the requirements
coverage report, another predefined template
(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

/

Check Model r
ReporterPLUS

Report on all model elements. ..
Report on selected package. ..

From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

fre

porterPLUS Wizard : Selec

‘What would pou ke to do?

Generate HTML Page
Generate Microsoft PowerPaoint Presentation

Suchenim | () Templates

2] TestReport.tpl
@ TestRequirermentCoverage. ipl
|#] UseCaseDiagramsDetailedRenort. ol

As format, select Html.
After that, select
“TestRequirementCoverag
e.tpl” as template for the
report to generate.

~

~

e Wiow -

After generating the report,
the report can be viewed with
any browser that can display
Html files.

/

30



Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (2/5) 31

e Besides coverage of the requirements,
EventReceptions an important orthogonal information is which
o parts of the model are executed by the test
: ROOT Rurning State cases, i.e, what is the achieved Model
X reton Coverage when executing the test cases.
T —————y TestConductor can compute this information
Operations during test case execution. When model
e ——— coverage computation is turned on, after test
covered [ case execution TestConductor adds a model
— — coverage report to the test cases, test contexts
: Transtton etc. that shows the achieved model coverage.
Transition
em— - KE\ 39 TestContexts ) \ ﬁ 2 TestContexts - \
General | Description | Intialization | Settings | Checks | Relations | Tags pptx ; Iéilnks ) ER-] g% Operations

Build TestContext Lirks covered ShowTime
=/ TestArchitecture EJ‘ T Cperations

5
% & :
=| TestingCanfiguration BNl Eiecute TestContext ﬁ SUTs EventReceptions
(=] x"‘.
=

ComputeCodeCover| [J x\-‘ P ig;ézr;t:x covered evShiow

G @ T Update TestArchitecture Joscase | euShon

Coveragekind SUT_hierarchical 2y TEST_OrmIgUr oS = CoverageResults

R "} TCon Stopivatch_Code_tc |
0 On the tags tab of the e e After execution has finished,

configuration, turn on ercute the test ccintext coverage reports can be
“ComputeModelCoverage” TCon_StopWatch™. found both for individual test
and set “CoverageKind” to cases as well as a cumulative
“SUT _hierarchical” coverage report for the test

\_ AN AN context. Y.




Assessing Test Case Code Coverage |

Coverage Report

Environment Info Table Of Contents

Coverage Statistics

Goals Covered

Source Code

32
Besides coverage of the requirements
and model elements, an important additional
information is to what extend the code of the
SUT generated by Rhapsody’s code generator
is executed, i.e, which Code Coverage is
achieved when executing the test cases.
TestConductor can compute this information

Stat tC 70 43| 61.4% . 0
egisian Tswszgrzge 5 T157%| during test case execution. When code
Condition Coverage 0 0 n.a. 1 1
ey ey ————24  coverage co_mputatlon is turned on, after test
Modified Condition/Decision Coverage 20 7| 35% case execution Testconductor adds a COde
coverage report to the test cases, test contexts
etc. that shows the achieved code coverage.
é 4 I , I
- EJ} TPkg_Sh:ana’o:h Configuration : Release in TPkg_StopWatch_Comp
2 CDmpDnEntS General | Description | Initialization | Settings | Checks | Aelations | Ta0: | Properties
=7 TPkg_StopWatch_Comp -
=7 Configurations
+- 53 «TestingConfiguration» DefaultConfig =) MR
-5 inqConfiquration» Release =l| Testingtonfiguration
ComputeCodaCoverage
ComputeiModelCoverage O
Coveragekind SUT _hierarchical
Create a copy of the rhapsody
configuration “DefaultConfig”, On the tags tab of the configuration,
0 rename it to “Release” and e turn off “ComputeModelCoverage”
make it the active and turn on
configuration. “ComputeCodeCoverage”.
\ \_ %




Assessing Test Case Code Coverage Il

| 33
Coverage Report The Code Coverage report contains

En\nrnnmenrtrlnfn Table Of Contents Global Statistics Source Code detailed information to What extend the Code Of

m T ~ the SUT has been executed by the test cases.

@ i s, s ae) The report contains both a summary about the

m o | oo achieved coverage (e.g. statement coverage)

EI"I\."irC bl igj RiCBoolean HtopWatch_startBehavior (StopWatch® const me) Source CDdE aS We" aS detailed information about eaCh

R e — single line of code. The source code view
Cove' 6 108 done &= Dlspla;istartﬂehavlur(&tmef>1tlesplay)’): . .

: e T contains color coded presentations about the
s © : T coverage status of statements, decisions and
Statemer 6 111 RiCTask_start(sime->ric_task)); 70 43| 61,49 00
Decision ' m I R — -] conditions of the tested code.

Condition —o.o wnt ! 0 0 n.a.
Condition/Decision Coverage 20 7| 35%
Modified Condition/Decision Coverage 20 7l 35%
4 N B P TestContexts ) N /=y TCon_StopWatch_érchitecture
= 33 TiCon_StopWvatch - DEpEﬂdEﬂEiES
[ hatrumertation : ; lélln e i * TestComponents
. _ &g ¢ Build TestContaxt =59 TestContexts
[nztrumentation Mode: Maone o %, T ——— S ¥ TCDH_SmpWath
- : (= Aftributes
o @ T Ypdate Testirchitecture = I, CodeCaoverageResults
+- %y, TEST_ONTIQUT AU0NS |
On the settings tab of the e e After test case execution has
0 configuration, set Select the test context finished, by double clicking
Instrumentation Mode to _ell_ga!(réan;j dt? “lépqlzte the code coverage element in
“None”. TestContext”, clljlth the browser you can open the
b estontext-an erl code coverage report.
Execute TestContext”.

\ 2N 2N /




Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

4

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates of
requirements, model elements and generated source
code. Developers can easily and fast analyze reasons for
not covered elements.

highly automates the testing process and can save test
development time compared to traditional approaches.



More Information ...

For further information, especially
technical news, visit our internet

L information portal or contact one of our
= =—==T= worldwide sale agencies.
N T ¥ E— %

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

35


http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

