
1

IBM® Rational® Rhapsody® TestConductor Add On

Testing on an Integrity Target

Rhapsody®

IBM® Rational® Rhapsody®
TestConductor Add On

Testing on an Integrity Target

Release 2.8.0

2

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software including documentation and its fitness for any
particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and

IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2017 BTC Embedded Systems AG. All rights reserved.

3

Contents
Content
Contents..4

Contacting IBM® Rational® Software Support...5

Introduction...6

Execution of TestCases on the Integrity Target (animation based testing mode)...............7
Preparing the Code Generation Configuration..7

Settings of the Code Generation Component...7
Settings of the Code Generation Configuration..7
Properties of the Code Generation Configuration..7
Preparing the Test Architecture..8

Preparing the TestPackage..8
Properties of the TestPackage..8

Executing a TestCase...8

Execution of TestCases on the Integrity Target (assertion based testing mode)...............10
File IO needed for assertion based testing..10

Environment INTEGRITY5: Preparing the Code Generation Configuration...................................11
Settings of the Code Generation Component...11
Settings of the Code Generation Configuration..11
Properties of the Code Generation Configuration..11
Tags of the Code Generation Configuration:..13

Environment INTEGRITY5: Executing a TestCase...14

Computation of code coverage...14
Target configuration...14
Options file for computation of code coverage...15
Batch files for annotating the source code file during build...17
Building and executing tests with computation of code coverage..18

4

Contacting IBM® Rational® Software Support
IBM Rational Software Support provides you with technical assistance. The IBM Rational
Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,
read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational
Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in
your country (where available). For specific country phone numbers, go to
http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information
that you will need to describe your problem. When describing a problem to an IBM
software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time,
know the answers to these questions:

What software versions were you running when the problem occurred?

Do you have logs, traces, or messages that are related to the problem?

Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

5

http://www.ibm.com/planetwide
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/support/

Introduction
This document describes how TestCases can be executed with IBM® Rational® Rhapsody®
TestConductor Add On on an Integrity target, while Rhapsody is running on a Windows or
Linux host. We assume the basic installation is already done: The tools needed to develop
software for an Integrity target are installed (for example Greenhills multi IDE, compiler,
Integrity simulator, etc.). Rhapsody is installed on the Windows or Linux host and the
Rhapsody adapter for development of applications for an Integrity target is installed and
prepared. We will describe the execution of TestCases with the Integrity simulator using an
example.

In the first section of this document, testing on an Integrity target using the animation based
testing mode is described. For this testing mode, also a TCP/IP connection between Rhapsody
and the tested application is needed. In the second section, testing on an Integrity target using
the assertion based testing mode is described. This new testing mode is available since
Rhapsody 7.6.

6

Execution of TestCases
on the Integrity Target

(animation based testing
mode)

Please follow the steps as described in the sections below.

Preparing the Code Generation Configuration

Settings of the Code Generation Component

Add some settings in the Settings dialog of the CG Component:

• General::Include Path
<RhapsodyShare>/../TestConductor
Enter the full path to the Rhapsody Share folder instead of the variable $OMROOT
because the $OMROOT variable is not expanded during the build.

Settings of the Code Generation Configuration

Add some settings in the Settings dialog of the CG Configuration:

• Settings::Libraries
libivfs.a

• Settings::CompilerSwitches
-DTC_INTEGRITY
Please note the CompilerSwitches are added to a Makefile so each line must start with
a tab.

Properties of the Code Generation Configuration

Adjust some properties in the CG and in the CPP_CG subject (when testing a C application
use the corresponding properties of the subject C_CG instead); example using environment
INTEGRITY5:

• CPP_CG::INTEGRITY5::RemoteHost
Set the value to the IP of the Integrity simulator or target. This might be needed for the
Rhapsody Animation.

7

• CPP_CG::INTEGRITY5::IDEInterfaceDLL
<MultiInstallPath>/rhapsody_multi_ide.dll
Enter the full installation path of the installed multi IDE tool (for example:
C:\ghs\multi_614\rhapsody_multi_ide.dll).

• CPP_CG::INTEGRITY5::IntegrityRoot
<IntegrityInstallPath>
Enter the full installation path of the installed integrity sources (for example:
C:\ghs\int1104).

Preparing the Test Architecture

• The TestConfiguration of the TestContext shall depend on the CG Configuration with
the proper settings for Integrity. This way the application is started in the Integrity
simulator if the TestCase execution is activated.

Preparing the TestPackage

Properties of the TestPackage

• TestConductor::TestCase::ResetAppBeforeStartTest
“unchecked” - This means that TestConductor does not reset/start an already
running (e.g. started by Rhapsody) application again, if the user presses “Execute Test
Case”. So the test case execution is simple attached to the already running application.

Executing a TestCase

• Start the Integrity MULTI Project Manager and load a kernel project (this kernel
project must contain: Debugging, Dynamic Load, Resource Manager, File System
Client, Core File Collection)

• Start the MULTI Debugger/Simulator via “Debug <kernel>” menue entry point

• Connect <kernel> with the simulator (for example “INTEGRITY Simulator for
PowerPC (isimppc)”)

• In the MULTI console, enter command: set_runmode_partner -auto

• In the MULTI console, enter command: c (this loads the kernel into the debugger /
simulator)

• Connect Rhapsody with the Integrity simulator: In Rhapsody, menu Code->Target-
>Connect

• Update the TestCase (from the context menu of the TestCase)

• Build the TestCase (from the context menu of the TestCase). It generates code,
compiles and builds the application.

• Download the built application to the simulator: In Rhapsody, menu Code->Target->
Download

8

• Press “Go” within the simulator, in order to launch the downloaded application within
the simulator. Note, that the Animation Toolbar within Rhapsody gets active, after the
user has started the application in the simulator.

• Execute the TestCase (from the context menu of the TestCase). Then the test case
execution is simple attached to the already running application, while TestConductor
is driving and monitoring the TestCase execution on the host machine. TestConductor
shows the status of the test execution in the test execution window.

• Inspect the result of the TestCase execution: TestConductor automatically adds the
detailed html result for the TestCase execution to the Rhapsody model.

Also, execution of several TestCases in a row is possible by invoking “Execute TestContext”
on a TestContext or by invoking “Execute TestPackage” on a TestPackage.

9

Execution of TestCases
on the Integrity Target

(assertion based testing
mode)

Please follow the steps as described in the sections below. Depending on the used
environment (INTEGRITY5, Integrity5ESTL) some properties or tags must be set differently.

This table shows the Integrity environments supported by TestConductor. For all supported
environments, some properties and tags need to be adjusted manually (see details in the next
sections).

Environment C++ C

INTEGRITY5 Supported Supported

Integrity5ESTL

File IO needed for assertion based testing

In assertion based testing mode, the tested application must be able to read and write files.
Files are used to pass arguments to the tested application and the application writes
information about the results of assertions to a file. When computing code coverage, also
information used to compute the code coverage is written to a file.

For Integrity TestConductor uses per default the function hostio_fopen to open a file directly
on the host. If another function should be used instead some files in the TestConductor
installation need to be modified to support this: TestConductor.h, TestConductor_C.c,
TestConductor_C.h, TCCoverage.h. These files can be found at the location
<RhapsodyShare>/../TestConductor/
Replace all occurrences of hostio_fopen with the function which should be used instead. Also
when modifying the properties of the Code Generation Configuration (see below) the other
function should be used instead of hostio_fopen.

Check the Integrity documentation for information which folder of the host can be accessed
by the target.

If the target being used does not support file IO at all a different setup for assertion based
testing has to be applied. See document “Testing with TestConductor on a small target.pdf”.

10

Environment INTEGRITY5: Preparing the Code
Generation Configuration

Settings of the Code Generation Component

Add some settings in the Settings dialog of the CG Component:

• General::Include Path
<RhapsodyShare>/../TestConductor
Enter the full path to the Rhapsody Share folder instead of the variable $OMROOT
because the $OMROOT variable is not expanded during the build.

Settings of the Code Generation Configuration

Add some settings in the Settings dialog of the CG Configuration:

• Settings::Libraries
libivfs.a

• Settings::CompilerSwitches
-DTC_INTEGRITY
Please note the CompilerSwitches are added to a Makefile so each line must start with
a tab.

Properties of the Code Generation Configuration

Adjust some properties in the CG and in the CPP_CG subject (when testing a C application
use the corresponding properties of the subject C_CG instead); example using environment
INTEGRITY5:

• CPP_CG::INTEGRITY5::BLDTarget
sim800

• CPP_CG::INTEGRITY5::RemoteHost
Set the value to the IP of the Integrity simulator or target. This might be needed when
using instrumentation mode Animation.

• CPP_CG::INTEGRITY5::IDEInterfaceDLL
<MultiInstallPath>/rhapsody_multi_ide.dll
Enter the full installation path of the installed multi IDE tool (for example:
C:\ghs\multi_614\rhapsody_multi_ide.dll).

• CPP_CG::INTEGRITY5::IntegrityRoot
<IntegrityInstallPath>
Enter the full installation path of the installed integrity sources (for example:
C:\ghs\int1104).

11

• CPP_CG::INTEGRITY5::RTC_DownloadApplication
Checked, if TestConductor should automatically download the application to the
target.

• CPP_CG::Configuration::MainFunctionArgList
void

• For C++ only:
CPP_CG::Configuration::ImplementationProlog
extern “C” FILE* hostio_fopen(const char* filename, const char* mode);

Alternatively:

• For C only:
C_CG::Configuration::ImplementationProlog
extern FILE* hostio_fopen(const char* filename, const char* mode);

• For C++ only:
CG::Configuration::PreFrameworkInitCode
char c1[200];
char c2[200];
FILE *f;
int argc = 8;
char* argv[]={"-resultfile","rtcresult.rst","-logfile","rtclog.txt","-tcontext",c1,"-tcase",c2};
f = hostio_fopen("<CGPath>/test_args.txt", "r");
if (f != NULL) {
 if(fgets(c1, 200, f)) {

int i = strlen(c1);
if (c1[i - 1] == '\n')

c1[i - 1] = '\0';
if (c1[i - 2] == '\r')

c1[i - 2] = '\0';
}
if(fgets(c2, 200, f)) {

int i = strlen(c2);
if (c2[i - 1] == '\n')

c2[i - 1] = '\0';
if (c2[i - 2] == '\r')

c2[i - 2] = '\0';
}
fclose(f);

}
<CGPath> Replace this with the path to the CG folder on your host. Use forward
slashes for this path (like “C:/model/MyComponent/DefaultConfiguration”).

Alternatively:

• For C only:
CG::Configuration::PreFrameworkInitCode
char c1[200];
char c2[200];
FILE *f;

12

int argc;
char* argv[];
argc = 8;
f = hostio_fopen("<CGPath>/test_args.txt", "r");
if (f != NULL) {
 if(fgets(c1, 200, f)) {

int i = strlen(c1);
if (c1[i - 1] == '\n')

c1[i - 1] = '\0';
if (c1[i - 2] == '\r')

c1[i - 2] = '\0';
}
if(fgets(c2, 200, f)) {

int i = strlen(c2);
if (c2[i - 1] == '\n')

c2[i - 1] = '\0';
if (c2[i - 2] == '\r')

c2[i - 2] = '\0';
}
fclose(f);

}
argv[0]="-resultfile";
argv[1]="rtcresult.rst";
argv[2]="-logfile";
argv[3]="rtclog.txt";
argv[4]="-tcontext";
argv[5]=c1;
argv[6]="-tcase";
argv[7]=c2;
<CGPath> Replace this with the path to the CG folder on your host. Use forward
slashes for this path (like “C:/model/MyComponent/DefaultConfiguration”).

Tags of the Code Generation Configuration:

• rtc_testexecution_script_content
C:
cd $CONFIGDIR
echo $tcontext>test_args.txt
echo $tcase>>test_args.txt
"$executable" -resultfile "$rtc_resultfile" -logfile "$rtc_logfile" -tcontext $tcontext -tcase
$tcase
TIMEOUT 30

• rtc_result_filename
<TargetDirOnHost>/rtcresult.rst
<TargetDirOnHost> Replace this with the folder on the host machine which can be
accessed by the application running on the target (like “C:/ghs/int1104/sim800”).

After applying these changes, TestConductor tests can be executed on the Integrity target
using the standard TestConductor work flow: Create and specify tests, update, build and
execute tests.

13

Environment INTEGRITY5: Executing a TestCase

• Start the Integrity MULTI Project Manager and load a kernel project (this kernel
project must contain: Debugging, Dynamic Load, Resource Manager, File System
Client, Core File Collection)

• Start the MULTI Debugger/Simulator via “Debug <kernel>” menue entry point

• Connect <kernel> with the simulator/target

• In the MULTI console, enter command: set_runmode_partner -auto

• In the MULTI console, enter command: c (this loads the kernel into the debugger /
simulator)

• Connect Rhapsody with the Integrity simulator: In Rhapsody, menu Code->Target-
>Connect

• Update the TestCase (from the context menu of the TestCase)

• Build the TestCase (from the context menu of the TestCase). It generates code,
compiles and builds the application.

• Download the built application to the simulator: In Rhapsody, menu Code->Target->
Download (not needed if property CPP_CG::INTEGRITY5::RTC_Download
Application is checked)

• Execute the TestCase (from the context menu of the TestCase). The application is
downloaded on the target (if property CPP_CG::INTEGRITY5::RTC_Download
Application is checked). Then the application is launched on the target (by the user
who must press “Go” within the simulator), while TestConductor is driving and
monitoring the TestCase execution on the host machine. TestConductor shows the
status of the test execution in the test execution window.

• Inspect the result of the TestCase execution: TestConductor automatically adds the
detailed html result for the TestCase execution to the Rhapsody model.

Also, execution of several TestCases in a row is possible by invoking “Execute TestContext”
on a TestContext or by invoking “Execute TestPackage” on a TestPackage.

Computation of code coverage

Computation of code coverage using the gnu compiler is supported for the Rhapsody
environment Integrity5 for C++ and C.

Target configuration

For computation of code coverage, the source code needs to be instrumented (annotated) with
some macros which are used to track the executed functions, statements, decision branches.
For a correct annotation TestConductor needs some information about the compiler and the
target system, the so called target configuration: The size and sign of some types, the endian
of the target, the compiler family and some more. To collect this information a small program
must be compiled (with the same compiler and compiler options which are used to compile

14

the tested application) and executed on the same target the tested application will be executed
on. The target configuration tool will collect the needed information and write it into an xml
file, this file can be used from then on for the instrumentation for code coverage until the
target configuration (compiler, compiler options, target) changes.

To build and execute the target configuration tool a Rhapsody model can be used which is
part of the TestConductor installation, in folder
TestConductor/CodeCoverage/TargetConfiguration. Copy the folder TargetConfiguration to a
folder which can be written to and open the project in Rhapsody in C++ or C. The project
contains one Code Generation Component for C++ and one for C, each with several
configurations for different environments. Set the Code Generation Configuration predefined
for the environment to be used as active configuration and adjust the settings in the properties
according to your environment: Compiler options, information about the Integrity installation
(like IntegrityRoot property). Generate code and build the tool.

To build and execute the target configuration tool a Rhapsody model can be used which is
part of the TestConductor installation, in folder
TestConductor/CodeCoverage/TargetConfiguration. Copy the folder TargetConfiguration to a
folder which can be written to and open the project in Rhapsody in C++ or C. The project
contains one Code Generation Component for C++ and one for C, each with several
configurations for different environments. Set the predefined Code Generation Configuration
ConfigIntegrity5 as active configuration and adjust the settings in the properties according to
your environment: Compiler options, information about the Integrity installation (like
IntegrityRoot property). Generate code, copy the file targetconf.cpp (or targetconf.c) from the
folder TargetConfiguration/src to the code generation folder and build the tool.

Now load the tool on the target and execute it. It will collect the necessary data and write it to
the file targetconf.xml (the location of this file depends on the Integrity environment being
used, refer to the Integrity documentation for details). Copy this file to a location which can
be accessed during compilation of the application you want to test, for example in the main or
code generation folder of the application's project.

Options file for computation of code coverage

To compute code coverage, the user must provide some information about the installation of
the Integrity environment and the Integrity version in an xml options file.

A template for an options file with some comments is provided in the TestConductor
installation: Copy file <RhapsodyInstall>/TestConductor/TCCodeAnnotationOptions.xml to
another location (for example, into the main folder of the Rhapsody project). Open the copy in
an editor and enter the needed attributes and values in the <Environment> section:

• Attribute <Compiler>

◦ name=”INTEGRITY”

◦ cppcompiler= When using C++, enter the name of the Integrity C++ compiler
(example: cxintppc.exe).

15

◦ ccompiler= When using C, enter the name of the Integrity C compiler (example:
ccintppc.exe).

• Attribute <TargetConfigFile>

◦ relative_path= Enter the path and file name of the target configuration xml file,
relative to the code generation folder.

Alternatively:

◦ absolute_path= Enter the full path of the target configuration xml file.

• Attribute <HostToolsEnvironment>

◦ name=”GHS”

• Attribute <GHS>

◦ host_data_dir= Enter the path to a folder on the host which can be used to
exchange files between the host and the target/simulator (example:
C:/ghs/int1104/sim800).

◦ bsp= Enter the Integrity board configuration to be used (example: sim800).

◦ os_dir= Enter the full path of the target operation system installation (example:
C:/ghs/int1104).

See figure 1 below for an example of an options file for computation of code coverage.

In the Rhapsody model, use a tag of the Code Generation Configuration to specify the path to
the options file: Open the feature dialog of the Code Generation Configuration and go to the
Tags section. Then enter the path (including name and extension) to the options file into the

16

Figure 1: Code coverage options to provide information about the Integrity environment
(example for C++)

tag CodeCoverageOptionsFilename. You can use an absolute path or a path relative to the
code generation main folder (location of the Makefile).

Batch files for annotating the source code file during build

To be able to collect code coverage information during test execution the source code needs to
be annotated with macros collecting the coverage information. This is done by a tool which is
part of the TestConductor installation. For parsing and annotating the code the tool must be
provided with some information like the list of defines and include paths (the same which are
passed to the compiler). By creating two batch files the code annotation tool
(TCCodeAnnotation.exe) can be called including this information during the build of the
tested application.

1. Create a file “annotate.bat” in the code generation folder with this content (in one
line):
<RhapsodyInstall>/TestConductor/TCCodeAnnotation.exe <CGPath> <Includes>
<Defines> %1

<RhapsodyInstall> The Rhapsody installation path.
<CGPath> The absolute path to the generated code (location of the Makefile).
<Includes> The list of all include directives from the Makefile for the program.
<Defines> The list of all defined macros from the Makefile for the program.

This batch file is used to call the code annotation tool before compilation of the
implementation file.

2. Create a file copyfile.bat in the same folder with this content (in two lines):
if exist "%1.bak" copy "%1" "%1.annotated"
if exist "%1.bak" move "%1.bak" "%1"

This batch file is used after compilation of the annotated implementation file to
rename it and to move the backup of the original implementation to it's original name.

When performing “Update TestCase” (or “Update TestContext” or “Update TestPackage”),
TestConductor will modify the property “CPP_CG::INTEGRITY5::CPPCompileCommand”
(C_CG::INTEGRITY5::CPPCompileCommand when using C) of the code generation
configuration with the necessary calls of the two batch files. When generating code Rhapsody
generates the content of this property into the Makefile.

When modifying the CPPCompileCommand (for example if the batch files should be located
somewhere else in the file system), TestConductor will overwrite these modifications
automatically when performing “Update Test...”. To avoid this, uncheck tag
“PopulateCompileCommandForCodeCoverage” on the code generation configuration.

17

Building and executing tests with computation of code coverage

After building the application the tests can be executed on the target to compute code
coverage information. After the execution of the tests has finished, TestConductor
automatically adds a detailed code coverage report to the Rhapsody model.

18

	Contents
	Contacting IBM® Rational® Software Support

	Introduction
	Execution of TestCases on the Integrity Target (animation based testing mode)
	Preparing the Code Generation Configuration
	Settings of the Code Generation Component
	Settings of the Code Generation Configuration
	Properties of the Code Generation Configuration
	Preparing the Test Architecture

	Preparing the TestPackage
	Properties of the TestPackage

	Executing a TestCase

	Execution of TestCases on the Integrity Target (assertion based testing mode)
	File IO needed for assertion based testing
	Environment INTEGRITY5: Preparing the Code Generation Configuration
	Settings of the Code Generation Component
	Settings of the Code Generation Configuration
	Properties of the Code Generation Configuration
	Tags of the Code Generation Configuration:

	Environment INTEGRITY5: Executing a TestCase
	Computation of code coverage
	Target configuration
	Options file for computation of code coverage
	Batch files for annotating the source code file during build
	Building and executing tests with computation of code coverage

