Tutorial for TestConductor for RiJ

Rhapsody

RiJ Tutorial

for

IBM” Rational® Rhapsody®
TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2012 BTC Embedded Systems AG. All
rights reserved.

TestConductor for Rhapsody for Java

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

Java application for this tutorial, models a simple
stopwatch. Make yourself familiar with the use cases of the
application. Open the project ,JavaStopWatch” from the
folder ,Samples/JavaSamples/TestConductor® in your
Rhapsody installation, run the component
«StopWatchComp», and use the following input:

Object: S kophas atch(0]

Ewent: evkey .

Arguments:

[

: To start the application, press “Go” in
By

Rhapsody’s animation toolbar.

et Object: S bopie atch[0]

ni;; Event [eykey v To start the stopwatch, generate event
Arguments: “evKey(1)” using the animation toolbar.

M arne -Eu:lit
(g |Kewa To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.

Hiztary:
yStopi steh(0]-> 5 When running, the stopwatch outputs the

A -
elapsed time in minutes and seconds to the

console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

(oo] ()

n n n n
PP R e Gl G0 Pl Dol bk =k (20 130 (2D

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stopwateh ~ button that can be used to start and stop the stopwatch.
—_— The second part is the timer that is used in order to count
L LpButor the elapsed t!me. The Fhll’d part is the dlsplay that displays
] I o weveeneervas Tt B the elapsed time. Within the stopwatch the different
SKeySendiey P B e components are connected via ports and links.

|Buttan| = mincint

iDissey| Breceips Additionally, the stopwatch class itself relays both the
1 itsDisplay:Displa & 5 o - =
Display] ot - start/stop button and the display to its boundaries in order
opWatchOu Out ispla
[~ R i to be able to connect an external start/stop button and an
IDisplay| IDisplay @ShowTime(mein.. |Display externa| display -

The myStopWatch class represents a
oy StomWateh = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”

! Mellyieymykey that can be used as a start/stop button.
1 o 0
e Additionally, it connects the stopwatch to an
Bpresskey(key. | 7 external display “myDisplay” that displays the
nEtopWWatchin | 1 itsStopWWatch: StopWatch .
_@# elapsed time.
IKey
pStopWatchOut
1 jtshyDisplay: myDispla: IDisplay
pi
[

IDizplay

System Under Test

Defining the System Under Test (SUT) is the first
_step in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
have to create a test architecture. The needed
administrative framework will be placed in the folder

Entire Model Yiew ~ |
B8]) aStopia

Jawast teh
w1 =P BN
(1 Object Madel Diagrams EJJ TPkg = A
= O Parkages =-_1 Companents
£ InterfacePkg =
£ PredefinedTypes (REF) E TPkg_Sb:pWaltch_CDmp
i 5 PredefinedTypesJava (REF) =1 Configurations
=%, DefaultConfig

StopiAiatch
amponents

£ RequirementsPkg

® hPks
E % Sty =g TestComponents
=1 Profiles + :%TC at_pln_of_Stopwatch
& [JavaDocProfile (REF - . “
 fa s) 519, TC_At_pout_of Stopiwath ,1estPackages”.

=-Ld TestPackages
= &% TPkg_Stop\uatch

= (1 Compaonents

= &1 TPkg_StopWwatch_Comp
=3 Configurations
-, DefaultConfig

= (g TestCormponents

= TC_at_pIn_of_Stopitlatch

=49 TestContexts
=59 TCon_Stopiiatch
=4 Links
Y itsStop\Wwatch_itsTC_at_pln_nf_Stoptwatch
L itsStopWatch_itsTC_at_pOut_of_Stopiiatch
=g SUTs
i itsStopatch
=-&3 Test Context Diagrams
t, itsStopWatch_itsTC_ ¥ Structure_of_TCon_Stop\Watch
Y ;T'fgwwa‘xh—'mc— =i TestComponentinstances
@ itsStopwiatch itsTC_at_pln_of_StopWatch
=al S S z itsTC_at_pOut_of_Stopiatch
=@ TestComponentinstance = q)’ TestCDnﬁguratlons
%y DefaultiConfig
itsTC_at_pOut_of_St__.. __

3 it=TC_at_pIn_of_Stoy
="y TestConfigurations I
: & TestContexds

2y, DefaultConfig
TCon_StopWatch

The System Under Test (SUT) is a part and
is the component being tested. A SUT can
consist of several objects. The SUT is exercised
via its public interface operations and events by
the test components.

£ TC at pOut of Stopiatch
= B9 TestContexts
=3 TCon_StopWatch
=5 Links

=B StapiatchPlg
=B Classes

+ Button
+ Digpla

=9 TestContexts

=5 -89 T
+ ; Features... on_StopWatch 1 _ #SUTx
* D%jj;!:i‘:ﬂd + |?| Links itsStopbvatch: StopWatch
£ SystermPkg Dielete Fram Maodel =i SUTs

Create Testirchitecture

Select the class

i itsStophiatch
-3 Test Context Diagrams
+ ‘ TestComponentInstances
+- %y, TestConfigurations

1 1
pInT pOutT

,StopWatch® in the browser Have a look on the newly created Test Context Diagram
0 and choose from context e ,Structure_of TCon_StopWatch “, and view the resulting parts in
menu ,Create the composite class ,TCon_StopWatch® of our test context.

_ TestArchitecture®. AN /

Test Architecture

= I8y TPk Stopiiatch

=1 Components
— =-&1 TPkg_Stop\atch_Comp
=1 Configurations
1%, DefaultConfig
q = jTestCDmpDnents
=g TC_at_pIn_of_Stopiwatch
+-=0 Ports
=g TC_at_pOut_of _Stopiatch
- Generalizations
+-=0 Ports
+ Statechart
— = 39 TestContexts
=-f9 TCon_StopiWatch
+-L4 Links
=gl SUTs
alb itsStopwatch
-l Test Context Diagrams
&1 Structure of TCon Stopbwatch

= ‘ TestComponentinstances
z itsTC_at_pIn_of _Stopwatch
itsTC_at_pCut_of Stop\watch
=%y, TestConfigurations
2oy DefaultCaonfig

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp* initializes the test
components and SUT objects and their
interconnections when a test case is started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

o TestContexds
TCan_StopWWatch

its=StopWatch: Stoptatch

wSUTw

pin

pln

pOut

pOut

1 ocTestEc-mpoln_elntlnstance.TestEc
itsTC_at_pln_of StopWWatch:

1 ocTestComponﬁtlnstance.TestE"E-,
itsTC_at_pOut_of StopWatch:

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test

" context. TestConductor generated corresponding test

components for ports and associations of the SUT.

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

The class ,TC_at_pln_of StopWatch"
realizes the interface ,|IKey" and thus can be
connected to the “pIn” port of the stopwatch
class that provides this interface.

The class ,TC_at_pOut_of StopWatch®
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Adjusting Test Architecture

= ﬁ InkerfacePky
= \ Events
\ evPresskey(int KeyWal)
\ evResek()
\ evShow(int m,int 5,boolea
\ evSkartShopl)
=B Interfaces

= j TestComponents

=1 TC_at_pIn_of_Stop'watch
="+ Dependencies
W8Y :Isages InterfaceFkg
=0 Ports

To use events which are defined in other

packages we have to set a usage
dependency. Otherwise the events will not be
found if referred to from another package.

B 1Eutton
B 1pisplay
B 1key

=1, TC_at_pOut_of_Stopiwatch

="+ Dependencies
W8Y L Usages InterfaceFkg
T Generalizations
=0 Ports
(&) Statechart
= 33 TestContexts

=1-¥§9 TCon_Stopwatch

="+ Dependencies

W8Y L Usages InterfaceFkg

-

\

= _j TesbZomponents

Select Add New->Relations-

> Dependency for

,1C_at pln_of StopWatch*
and set the dependency to

InterfacePkg.

=g TestComponents
= (gh TC_at_pIn_of_Stopwakch
=-*s} Dependencies
*s) InterfacePkg

Dependency : InterfacePkg in TC_at_pIn

General | Description | Tags | Properties

Name: InterfacePkg
Sterectype: Usage
Depends InterfacePkg

Double click InterfacePkg
and set the Stereotype of

N\

the dependency to Usage.

.

=L} TestPackages
=% TPkg_StopWatch
[Components
= j TestComponents
TC_at_pIn_of
TIZZ_at _pouk_of_
=-ff3 TestContexts
fja TCon_Stopii'atch

Repeat the same steps for
“TC_at_pOut_of StopWatch”
and “TCon_StopWatch”.

/

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

Is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

Is an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them

TCon_StopWy
atch.itsTC_at
_pln_of_Stop

‘with TestConductor will be discussed in the following sections. The

«SUTs
TCar StopW e sepw | different kinds of definitions have their own strengths:
Watch: StopW _pOut_of_§t0

| |
|ev8h0w(m=D, 5=10, b=false) |
| |
|

| |

fitsTCan.rte_init();

state 1

¥

festConductor ASSERT MAME(Initial" true);

final_state

Test Case : Check_SetTime in TCon_StopWatch

General | Description | Implementation | Argumerts | Relations | Tage | Properties

void Check_SetTime()

oo
o1
oz
o3
04

l// Check that initiglly the time is 0:0

int mins = its3topWatch.getMin();

int secs = its3topWatch.getSec():
TestConductor. ASSERT NAME ("Check initial time", (imins =

F nmow set btime to 03:21 and check that setting of time

A/ the correct time

itaStopWatch.setTime (3, 21) ;

mins = itsitopWatch.getMin();

secs = itsitopWatch.getlec():

TestConductor. ASSERT_NAME ("Check if time setting is corr
[(wins == 3) && [(secs == 2111

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

11

Test Case: Sequence Diagram |

B TestScenario: Checklnit in TPkg_Sto... [= |[B|X]

To manually create a sequence diagram

-

TCan_.Stop'Watch | . TC at pln_of Sto.| ..TC_at pOut . : .
e = —— — test case we have to define a test scenario
st which is represented as a sequence diagram
TCon_Stopw TCon_Stopw TCon_Stopw and link it to a test case. TestConductor
e Sty %a*pﬁ:”fgt—;; ‘% ot of Gio simplifies this process with a single command.
| | |
| | |
|
| | # 4 Test Context Diagrams
| | =%, TestCases
| | =% to_check_init)
: ! Bl Shlnstances
= _Ei TestScenarios
N E—'llp CheckInit
N N N
=59 TestContexts) 5%, TestCases
= TCon Stopiwatch Create SD TestCase 5 X, P—p——
; ;‘G[‘;_E; Create Flowchart TestCase . SDInstances
b4 Test Context Diagrams Create Code TestCase == Tllascenarins
‘ TestComponentinstances Create Statechart TestCase - E:S Checklnit
%y TestConfigurations
and choose from the Rename the test case to
Select the test con"[‘e.xt e context menu .Create SD ,tc_check_init*. Rename the
»1Con_StopWatch® in the TestCase" ” test scenario to ,Checklnit*
Rhapsody-Browser ...)L - PN and open it.)

12

Test Case: Sequence Diagram li

=3 RequirementsPkg
=1 E—'! Requirements
[EY REQ_nit
[E? REQ_Running_1
[E? REQ_Punning_2
[E REQ_SetTime
[E? RECQ_Stopping
£ stoptatchPkg
£ SstemPhg
E_‘| TutatialPka
(L3 Profiles
=-L3 TestPackages
=% TPka_Stopiwatch
D Components
} TestComponents
=-f4# TestContexts
(=¥ TCon_Stopiwatch
L Links

Requirement : REQ_Init in RequirementsPkg

General Description | Relations | Tags

Mame: REQ_Init
Sterentype:
Type:

1D:

Fiequirerment

Defined in:

Specification:

3]
A
Propertiez

v| B2

After starting the stopwatch, the st

<

i SUTs

Locate QK

shall display 0 minutes and 0 seconds (0:0).

opwatch

test case.

w
b3

&) Test Context Diagrams

=%, TestCases

=-# ko_check_init)
E—‘ﬂ, SDInstances
= El TestObjectives
W REC_Init

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

Init” is indeed fulfilled by

/

= ’5.: TestCases

ERPN - chieck init
E] .

TestObjective”

‘ TestScenario !

Select the test case and
select “Add New ->
TestingProfile ->

-

-

\

? x| 5
Depends on: - -
T Select Model Element §|
=B Requirements -
‘ b Tty
EY REQ_Running

EY REQ_Stopping
£ StoowatchPka -

[o |

Cancel |

Select requirement “REQ_Init”
as target of the test objective”

/

\

%, TestCases

=R to_check_init
E_';'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_Init”.

/

Test Case: Sequence Diagram lil

B" TestScenario: Checkinit in TPkg_StopWat... [|[O)X]

TCon_...StopWatch

LTC at_pln_of Stoph.

LTC at pOut.

Define action and reaction of the system
under test. We will specify the ,Checklnit®
scenario, where the SUT shall emit event

“‘evShow” with current time 0:0 after starting

«5UTs
TCaon_Stopwy TCan_Stopyy TCaon_Stopw
atch.itsStop atch.itsTC at atch.itsTC_at
Watch: Stopy _pln_of Stop _pOut_of Sto

| evshowim=0s=0,b= trueJ

|

the SUT. This output shall be generated
automatically by the SUT, since no further
input is needed for that.

W
< >
«5UTs]
TCon_Stopvy TCon_Stopvy TCon_Stopvy <SUTs
atch.itsStop atch.itsTC_at atch.itsTC_at
Watch: Stopyy _pln_of_Stop _pCut_of_Sto TCDn__StDpW TCU”__StUpW TCU”__StUpW
‘ ‘ ‘ atch.itsStop atch.itsTC_at atch.itsTC_at
‘ ‘ ‘ | E'I.I'SI"ID'I.I'I.I'l:rT'I =0 =0 h= trueJ Watch:|SleW _pln_of_Stop _pOut_|0f_St0
‘evShow(m=D,s=D,b=trueJ‘ ‘ | |
?-_ Features... L—_._,AL
‘ + | v evShaow(int, int boolean) l l | evShow(m =0, s =0, b= trug) I
I
|
Draw the message Specify argument values
EVShOW from the SUT to m=0,s =0, b = true for the That's it already. The test
0 ‘t‘_l%test é:om\p/)\;) neEt. TC e message. e case specification is
_ PRROLEORTEEN . AN J

14

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either

|] ,PASSED" or ,FAILED".
YD f_@: {}
Narne Status File/lte... | Ling/Progress The progress displays how many steps are
- ¥, t_check_init €3 FAILED finished yet. In case of a passed test 100% have
Fp SD_tc 0 @ FalLED 1 0% (0/2) to be achieved.
The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.
/—w TCon_Stopiiatch \ / =% JestCases] \
+ I_‘ Links) ‘Testcamponenﬂnstances
¥ {‘ SUTs TestConductor #- %y, TestConfigurations
&g Test Context Diagrams = %;gsﬁcef;?“tﬂs
=%, TestCases — B TestCase must be built before execution. Build and Execute now? e
‘ TestCumpDnenﬂ Features... 2%
"""""""""" Edit TestCase SDInstances OK l [Abbrechen DJOR)
Update TestCase _Nimi: —_— gtih:?LED File/te... | Line/Progress
Build TestCazse L |:'.:| [FalED
Execute TestCase
To execute a test case, simply right-click the test case and select The test case execution
“Execute TestCase” from the context menu. In case the test model dialog is a dockable dialog
0 needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main

and/or build the executable.

\

/

browser window

15

Test Case Execution I

TCon_Stoph? TCon_Stoph/
atch.itsStop atch.itsTC_at
Watch: StopW _pln_of_Stop

TCon_Stoph
atch.itsTC_at
_pOut_of Sto

The test case execution FAILED with
Rhapsody TestConductor. To analyze the
reason TestConductor offers two kind of

views. The HTML-report displays a textual

| evShow(m=0,s=0 b=falze). Even

Sending -

evshow(m=0 s=0 h=true) |
T

Total number of SDs used:

Total number of SD instances in test:

Total number of executed S0 instances:

F'aramet\gL values do not match.
I

summary and can be found directly under the
test case in the Rhapsody-Browser.
TestConductor created a debug sequence
diagram to display the error. The red arrow
visualizes the faulty step and the reason.

) TestConductor expects the parameter value
! ,Lrue“ for argument “b”, but observes the value
0 Jfalse” during actual test execution. The

expected value was not specified correctly...

t.

l= 2 al
e e oyaccraeqt. ~ ~N
2= i =¥ TestCases)
SR ; ; DO % & . %2 to_check_init)
Marne Statug Fi.. | Line/Progress N‘:me Status Fi...| Line/Progress + E SDinstances
=%, to_check_init € FAILED =1%e tc_chedc_nit @ FALED -4 Testobiectives
28 =D tc 0 AILED = ==
Show as SO Show as S0
Add to model Add t model
To open the debug
sequence diagram right In the browser, underneath the
click the item SD_tc_0 in e - and select "Show as SD” test case, you can find the
the TestConductor generated html report. Double
i i click the report to open it.
_ execution dialog... _ AN Y,

Test Case Execution lll

The test execution PASSED with
Rhapsody TestConductor after we corrected

=l
IOE the expected parameter value for argument “b”
Sy— —— 2| Uneieaaress from true” to false” in the test scenario
S%, tr_check_int & PASSED ,Checklnit®. After changing the scenario and
Eyso o @ PASSED 1 100% (2/2) re-executing the test case, the test case is
passed.
Refer to the user guide to get
familiar with the extended functionality
of TestConductor.
a N 2 N
" TestScenario: Checkinit in TPkg_Stop... [= B
= “:"_ 13: h k . t TCon_....Stopatch LT at_pln_of St L TC at pOut.. R 3
- FJ_E eck_init{) o e
- SDinstances TCon_StopWy TCon_StopWy TCon_StopWy #61 b
+ E:l TEStDI‘:IjEEti'I.I'ES atch. itsStop atch.itsTC_at atch.itsTC_at MHarme Status =T YProgress
4 5¢ TestResults Wamh:|81°pw *pm‘fﬁmp *pomffﬁm -, tc_check_init @ PASSED
= % TestScenarios | ‘ | Bysomwo (@ Passep 1 100% (2/2)
- % I:I‘-Elj:ﬂﬂit evShowm 0,5s=0,b= false)‘ |
r\%
To correct the test case For argument “b”, change the Re-execute the test case by
open the test scenario exptected value from “true” to pressing the “Start” button in
Checklnit* “false”. the top right corner of the
" ' execution dialog.
\ NG O\ %

Test Case: Source Code |

General | Description | Implementation | Arguments | Fielations | Tags | Properties

void Check_SetTime[]

To manually create a source code test case

00 4/ Check that initially the time is 0:0

01 int wins = its3topWatch.getMin();

02z int secs = its3topWatch.getlec()

03 TestConductor.ASSERT NAME ("Check initial time'",

as

07 4/ the correct time

08 itsS3topWatch.setTime (3,21) ;
09 mwins = itsS3topWatch.getMin()
10 seps = itsStopWatch.getSec ()

o4 [(mins == 0) &£& (secs == 0))):

06 4/ now set time to 05:21 and check that setting of time indeed sets

11 TestConductor.A3ISERT NAME ("Check if time setting is correct',
1z [(mins == 3) &£& (secs == 21))1):

- functions like e.g.

create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of

»1estConductor ASSERT NAME" that can be used
to execute checks during test case execution. If the
function “setTime” (line 08) of the stopwatch works

as expected, the test case passes.

4n _
< >
Locate Ok Appl
=59 TestContexts =89 TutorialPkg
=83 TCon_Stoptiatch - =B Classes
: ; I;BI_T_SS --*. TestCases =B TestCazeClass
i o . — i
+ & T¢ Create SD TestCase * ,'." b:_EhEEk_IIt = Opea C b
=%, Tt Create Flowchart TestCase :- i t':':hE”j:: tlmE”:] + E T Anens el - @ time 1
SR Crogte Code Testtase 01 int mins = its3topWatch.getMin();
v _redie LOde |est_dse 02 int secs = itsStopWatch.getSec ()
+ ‘ Te Create Statechart TestCase

%y TestLontiguratians

Select the test context
,1Con_StopWatch” and
choose from the context
menu ,Create Code
TestCase®.

Rename the created test
case to ,tc_check_time*
and open the features
dialog.

Replace the content of the
edit field under the

\

03 TestConductor.AISERT NAME ("Check i

implementation tab of the test
case with the content from the
“tc_check_time” operation in

the Tutorial package.)

Source Code Test Case: Execution

o ff Execute the test case with Rhapsody
T n r.
Marme Status File/Tteration | Line estCo dU('..:tO
“1%, tr_check_time © PASSED Both assertions evaluate to .tru.e and the
I3) check initial time @ PASSED TCon Sto.. 141 I test case Passes. unble-cllcklng an
I5) Check if time setting is correct @ PASSED Toon S, 142 ||| €valuated assertion in the execution
window highlights the assertion in the test
e e) — | model.
05 mwmins = itsStopWatch.gecMin)
09 secs = itsStopWatch.get3ec():
I Te=t Conductor, AS3ERT WNAME ("Check if time setting is correct™,
11 [{mins == 3] && (secs == 21))):
< >
Locate oK,
- N | N N
= LCE Edit TestCase SDInstances = LCE Ed:; TestCase SDinstances
+ + Update TestCase Marme Status
- Update TestCase - _
Y Build TestCase “ 4 pyild TestCase - % tr_check_time @ PASSED
+-hg st * ;’1 Exerute Teshtase 2] Check initial time @ PaSSED
o-%®, Execute TestCase - E HEBLLS lSsu-EiRs ol ——
+ % tC_check_init #-% to_check_init()
SRRt Check time() = &Rt check_time()

Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

/

Select test case

»IC_check _time“ and select
“Execute TestCase” from
the context menu.

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

/

Test Case: Statecharts |

B _ _ To manually create a statechart test case we
This is a statechan defining TestCase behavior X . . .
In Statechart TestCases you can use ASSERT macras like have to define a test scenario which is represented
TestConductor. ASSERT _MAME(n e, e.g. . .
TestConductor ASSEM™ & 4 T¢50 " 7 - -as a statechart and link it to a test case.
Far the list of available +-L Agsociation Ends H
or the TestConductor. s benoncios Technically, the test case has a dependency to a
£ 8 Operations TestComponent that contains the statechart.
6 Tags TestConductor simplifies this process with a single
initial =49 TestContexts
_ =9 TCon_Stopwatch command.
- Attributes
+ -y Links
+-[@ Operations
il SUTS
fitsTC + -k Test Context Diagrams
v =%, TestCases
+-# tr_check_init?)
state 1

=%, tr_check_progress()
=-*s) Dependencies

) i - %, TestCases i)
--%, TestCases +-E to_check_init{)
24 S Creats SD TestCase - % t0_check_init() =% tr_check_progress()

X % .
Hobg TE e -
= x-q' 1 Create Flowchart TestCase % » Dependencies

L tC_check time() =L TestObjectives
#-%, Create Code TestCase -) m
+ ‘ T4 ; h =

% to_check_time()

tc_check_progressi)

Update TestContext

0 Select the test context e Rename the test case to e o _

,TCon_StopWatch“ and “tc_check_progress” Add a test objective (using
select “Create Statechart Add New -> TestingProfile
TestCase”. ->TestObjective”) to

requirement REQ_Running_}

Test Case: Statecharts |l

initial

fitsTCon.rtc_init();

i Check that initially the time is 0:0

int mins = itsStopWWatch. gething;

int secs = itsStopWatch. getSec),

¥ TestConductor ASSERT _MAME"Check initial time",
state_T ((mins == 0) && (secs == O)));

state 4
i now start stopweatch
itsStopvWatch. getPlin). getinBound(). geninew evPresskey(17);

trm(3200)/

K now check if time has elapsed accordingly

int mins = itsStopWatch. getMing;

int secs = itsStopWatch.getSec();
TestCaonductar ASSERT _MAME("Check elapsed time",
(imins == 0 && (secs == 37
final_state

ftsTCon. tc_exit();

_Vitalize the statechart in order to execute it with

TestConductor. The statechart test case first
checks that initially the stopwatch’s time is indeed
0:0. After starting the stopwatch, the statechart test
case waits a bit more than 3 seconds, and then
checks that indeed 3 seconds should be counted
by the stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function

»1estConductor. ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

/

) =g TCSC_tc_D
) E—I %J%:;aslggsg +-4 Agsociation Ends
S B Tesc_teo F *y Dependencies

£, pssociy - Operations
+-"y Dependh = Statechart
- Operatic F=Sl} StatechartDiagram
= Statechiorn - e :

Replace the content of the test component
statechart associated with this test case with the
statechart of the Tutorial package.

Add a <<Usage>> dependency from TSC_tc_0
to InterfacePkg, because this test case is using
events defined in InterfacePkg.

Statechart Test Execution

2=l
DROE - N -1
FET =] Status File/Tteration | Line
-1 ¥, tc_check_progress) PASSED
£ check initial tirme @ PASSED TOSC_to_... 408
Q Check elapzed time () PASSED TCSC_t- ... 709

#f Check that initially the time is 0:0

int mins = itsStopbWatch. gethding;

int secs = itsStopWWatch. getSec();

TestConductor ASSERT_MNAME(" Check initial tirme",

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to

~ true and the test case passes.

((mins == 0) && (secs == 0)));

T nowe start stopwatch
itsStopWatch. getPIn{). getinBound(). genlnew evPresskey(1);

L® - check progress()
#o tc_check_time()

0 Select the test case

,{C_check_progress” ...

_

N Edit TestCase SDinstances 4 N
Update TestCase |
- —— Mame Status
=&, TestCases) Build TestCase -1¥ t_chedk_progress © PASSED
%0 to_check_init() Ex Edit TestCase SDInstances {2] Check initial time © PassED

Update TestCasea
Build TestCasze

Execute TestCase

e ... and choose from
context menu the items

,Build TestCase"

AN

and ,Execute TestCase”.

'8 check & time

e In the execution window,

select the assertion and
double-click “Show Assertion”
in order to highlight the

_ assertion in the model.)

22

Create Test Cases Using Test Case Wizard - SDs

evPresskey

StopWatch myDisplay

(Keyval = 1) I

Create Test Case

Map ingtance lines ta test architecture

Flease select test architecture for test case:
{E B> >

LCon Stophdatch

Flease select test case kind

L. 23
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

/EI 3 TutorialPkg I Create)IEcHE 3ee N (&= B ;I’estCases N
B Classes -
. i i il =y SDInstances
=] D Sequence Diaarams M instance lines to test architecture ¥ I_.P =SLArELarEEs
EJ StopWatchRunning TCon_Stopw TCon_Stopw TCon_Stopw
atch.itsTC_at atch.itsStap atch.itsTC_at
Fleaze select test architecture for test caze: _pln_of_Stop Watch: StopW _pQut_of_Sto
Rational Rhapsody Gateway new | Shontn =0, =0, b=) :
Con Sto

As a result, a new testcase

Select the sequence
diagram
“StopWatchRunning” in the
tutorial package and select

“Create TestCase...”.

o /

e In the test case wizard
dialog, the test context
“TCon_StopWatch” is

already highlighted. Press
OK to proceed.

\

“SD_tc_0” has been created
which is based on a new test
scenario containing the same
messages as the original SD,
but life lines adapted to the test
context structure. -/

Create Test Cases Using Test Case Wizard -

Operations

#-59 PredefinedTypeslava (REF)
+-£ RequirementsPkg
=59 StopwatchPkg

Test Case : Code_tc_0 in TCon_StopWatch

--B classes General | Description | Implementation | Arguments | Fielations | Tags | Properties
i % gﬁ‘:ﬁ; void Code_te_01]
=B Stopiwatch 00 //In Code TestCases you can use ASSERT macros 1. A
#-*y Dependencies 01 // TestConductor.ASSERT NAME (n,e), &.q.
#-L Links oz S/ 'I‘estC‘onductor.ﬂSSERT:NAME{"C‘heck_l", gttrik
=@ Operations 03 // For the list of available macros see Testlo
& getving 04 // or the TestConductor.java file in the insta
& getsect os
& setTime(int m,int 5) 06 int osc arg 1 = 0
! ﬁ Parts 07 int Dsc:arg:2 = 0;
#--0 Ports 08 itsStopWatch.setTime (osc_arg 1, osc_arg 2):
4 %Timer 09 TestConductor.ASSERT MNAME ("Initial™,true);
+- (1 Object Madel Diagrams 10 - bt
=-£1 SystemPkg < >
+-55 TutorialPkg
(22 Profiles Locate oK

Cd TestPackages

. 24
The test case wizard can also be used to

~ test operations that are defined in the model.

The wizard allows to create three different
kinds of test cases: sequence diagram test
cases, statechart test cases or code test cases.
Independent of the chosen kind of test case,
the created test case calls the selected
operation. Additionally, the test case already
contains a check that can be refined by the
user in order to check the out values of the
operation.

/

) Dependencies

=R=} SbﬁpWab:h
e
r |_| Li._l._
=

O Rational Rhapsody Gateway

Flease select test case kind:

Code TestCaze

5D TestCase

Code TestCase

TestCase...”

0 Select operation

“setTime” of class
StopWatch in the browser
and select “Create

Statechart TestCase

N (= %, TestCases i) N
%

dCode_tc_ 00

[T N

General | Description | Implementation

Arguments | Relations | Tags | Propertie

Test Case : Code_tc_0in TCon_StopWatch
void Code_te_(0]

06 int osc_arg 1 = O;
07 int osc_arg 2 = O
08 itsStopWatch.setTime (osc_arg 1, osc_arg 2):
09 TestConductor.ASSERT NAME ("Initial",true);

AN

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

o

As a result, a new code test
case has been created that
contains a call to operation
“setTime” and also a dummy

assertion that can be refined.

2N /

Debugging Test Cases

Mame
-1¥, 5D tc O

By sD_tc_o

L
—

HEw !

Status
EXECUTIMG
ACTIVE

TCon_Stopyy
atch.itsTC at
_pln_of_Stop

|
| .
M £ I
|
|
|
|
|

Fil...

1

TCon_Stopy
atch.itsStap
Watch: Stopyy

reset()

]

Line/Progress

29%

=[x
olkal

(2/3)

atch.itsTC at
_pOut_of Sto

TCon_Stopyy

show(min =0, sec =0, b = false) |
evShow(m =0, 5 =0, b = false) |
éhowTime(m =0,5=0,b=false)|

evShow(m =0, s =10, b = false)

—

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

3 : N [~ N (2
=% TestCases] éﬁ
% Code_tc_O /= ORClES
- %, EnICay, ¥ = Narne Stats Fil.. Line/Progress
= i ot e Marne Status Fil... | Line/Progress -1%, SD_tc_0 EXECUTING
¥ Edit TestCase SDInstances =% S0_te 0 FAILED BySDt 0 ACTIVE 1 % (/)
Update TestCase By SD_tr 0 FAILLED 1 S0% (4/8) .
Build TestCase M B b 5= O£ 1
Execute TestCase
0 Select test case After the test case has e Execute 'thettﬁst‘gtasretz”abgat’lnn
“SD _tc_0” and select failed, turn on debug : ytEreSSIng) e S e? ; on
“Execute TestCase”. execution mode by clicking I;ou gaixz’:;euplft)r?roz ﬁ%}e ?evét
the debug button in the :
executior?dialog. case by using Rhapsody’s
_ O\l AN animation toolbar. Y.

25

Executing Multiple Test Cases

Executing multiple test cases can be

= |
DROE < -
MNarme Status File/Tteration Line/Progress
-1 & TCon_StopWatch 3 FALLED
-¥, Code_tc D @) PASSED
£ mitial @ PassED TCorn_Stop... 132
-¥. SD_tc 0 3 FallED
By oo tco B FaIlLED 1 S0% (4/8)
- ¥, tr_check_init @) PASSED
By oo tco @ PassED 1 100% (2/2)
-1¥, tc_rheck_progress @) PASSED package
£ check initial time @ Pass= === == 1
B) Chock elapsed tme. @ PASS Test Context: TCon_StopWatch
—¥%, tr_check_time @ Pasg| Code_tt D PASSED
2] Check initial time @ pPass| S0 0 FAILED
£ Chedk if time setti.. (@ PASS| to_check_init PASSED
tc_check_progress PASSED
tc_check_time PASSED
/EI 9 TestContexts N\ (F® TESUE Py)
o =83 TCon_Stopiiatch
Ly Finbe H ;ilﬂks , .
i ‘;‘Ji 1. Build TestContext
ERNMIL Exccute TestContext

‘ TestCor,
%y TestCon

Build TestContext
Execute TestContext

Select the test context
“TCon_StopWatch” and
select “Update
TestContext”. After that,

select “Build TestContext”.)

X

w

= T

Update TestArchitecture

2y TEST_OrmIgUr oS

e Select the test context

again and press “Execute
TestContext”. All test
cases will be executed one

after the other.

/

done by executing a complete test context or
a complete test package. When a test context
or a test package is executed, all test cases
within the context or test package are
executed. After all test cases have been
executed, TestConductor computes an overall
test result for the test context or the test

" A
Mame Status Fi
- P TCon_StopWatch € FalLED
-¥, Code_tc_D @ PassED
& mitial © PassED Tq
-1¥, 5D_tc. 0 £ FalLED
By sh_tr o @ FAILED 1

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

/

26

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a

S asenisal muolq

To: Requirement Scope: JavaStopWiatch

EY REQ_Init |E"! REQ_Running_2 |E"! REQ_Stopping |E"! REQ_Rurning_1 |E"! REQ_SetTime |
#_ to_check_init 14 REG_Irit
#_ to_check_time
"’r_,- tc_check_progress H REQ_Running_1
%, 50 16 0
."r_,- Code_tc 0

requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but

presented as a textual report. It can be
generated by ReporterPlus using a predefined

template.
/— E], TES‘tF'EIEkEIES / Name: FeqCaoverage \ / \
= EJJ: 'F:'h Stereotype: . . - E . :ﬁ:j::::::ﬂ Scope.é;v;it;i\;::tchﬁ e |E|
- .:i TEStCDmI:IEIr'IEFItS Layout: TestRequirementCoverage in T w i" tc:check:time Ll REC_Init
TableMatrix Al TestRequirementiatrix S';'Slgﬂe JavaStopwatch v % : tsc[_)cr:cnk_mogress
Annotations » TestResultTable Include Descendants ["From Scope] & %, Code_tc_0
TestingProfile d TestScenario gt JavaStopwiatch = i
Scope:; o
0 e Open the features dialog When double clicking the
Select the test package of the matrix, rename it to matrix in the browser, the
“TPkg_StopWatch” and “ReqCoverage”, and set matrix view shows the
select “Add New -> the “from” scope and the relationship between the test
TestingProfile -> “to” scope to the complete cases and the requirements.
TestRequirementMatrix”. _ model “JavaStopWatch”.) U)

27

Assessing Test Case Requirement Coverage I

= C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... Q@@
2~

@ oy v | ciTest itRhapsodyT.S. 2yeporterplusiUserFiles\Cover ageReport. htm ||| 41| X
Datei Bearbeiten Ansicht Faworten Extras 7
[~ I v |0 Suchen = (BRI _iLive ~All=] v Free s [10] ~ | B Freeware [10] ¢ | | |+
= - E — N »
W | € C:\Test itRhapsody?.5.2YreporerplusiUserF... | | E - B o ~ |k Seite v O Extras v
Table of Contents L
(] Requirement Coverage Report of Mot A” Requirements
[=EE] -l Requirements
B Requirement REQ_Init
B Requirement REQ_Running_1 Name Specification E:\;‘:red by Test
E Requirement REQ_Running_2 —
E : tc_check_init
B Requirement REQ_SetTime REQ_Init After starting the stopwatch, the stopwatch (M passed)
B! Requirement REQ_Stopping shall display 0 minutes and 0 seconds (0:0)
[Al Test Cases e chack
REQ_Running_1 After starting the stopwatch, the stopwatch (icp:scsgdgmgress
9-+ | shall count minutes and seconds.
After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon
REQ_Running_2 | between not covered
displayed minutes and seconds shall blink once in
a 1 second time interval.
. The stopwatch shall provide a function "SetTime"
REQ_SetTime |y ot sets the current time. not covered
4 ﬂ REQ_Stopping ﬂﬁﬁm.tgljming' pressing the key of the stopwatch not cavered 3
Applet com/synergex/modeleyeq TOC,/DirectNavigator started ' Eigener Cornputer T 100% -

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
ReporterPlus a requirement coverage report
can be generated in different formats like Word,
Html, etc. The requirements coverage test
report shows the same information as the
requirements coverage matrix, but presented
as a textual report. Besides the requirements
coverage report, another predefined template
(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

/

Check Model r
ReporterPLUS

Report on all model elements. ..
Report on selected package. ..

From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

fre

porterPLUS Wizard : Selec

‘What would pou ke to do?

Generate HTML Page
Generate Microsoft PowerPaoint Presentation

Suchenim | () Templates

2] TestReport.tpl
@ TestRequirermentCoverage. ipl
|#] UseCaseDiagramsDetailedRenort. ol

As format, select Html.
After that, select
“TestRequirementCoverag
e.tpl” as template for the
report to generate.

~

~

e Wiow -

After generating the report,
the report can be viewed with
any browser that can display
Html files.

/

28

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5)

Operations

29
Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test
stats cases, i.e, what is the achieved Model

bl Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts

Transition

State .
S etc. that shows the achieved model coverage.
Transition
\ KEI 39 TestContexts) \ ﬁ g;’sﬁmm;té ot ; \
=G T':I:IrlEitl:l[:I'I.l"'-.l'Eltlj'I B At b e Detaile Coverage sun}
HE Ij Links _ =-d CoverageResults s
e R JTCon_Stopatzh keytend
General | Description | Relations | Tags | Properties iﬁ TE E-L,II|I:| TEStCDI"ItE}{t :Ec:nléiatmng EventReceptions
Vowa) - ERWML Execute TestContesxt + 4 SU7o aftssor
ATGTestCase O = ® [,E:J. Test Context Diagrar | Statechart: StatechartOfButton
CaIIOperatlonsOn\ywhencallstackEmphf = ‘ Te Update Testarchitecture = é Ieséi:lseeic 00
= Z 2y TEST_ONTIgUr ations =& Coeragehesults
ekl SUTla R 7 TCon_Stopstch Codef
Open the features dialog e After execution has finished,
of the test package ercute the test ccintext coverage reports can be
“TPkg_StopWatch” and TCon_StopWatch”. found both for individual test
turn on property cases as well as a cumulative
“TestConductor.TestCase. coverage report for the test

ComputeCoverage”. o

AN context. Y.

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save test
development time compared to traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

L information portal or contact one of our
= =—==T= worldwide sale agencies.
N T ¥ E— %

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

31

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

