Tutorial for TestConductor for Rhapsody in C++

Rhapsody

Rhapsody in C++
Tutorial

for

= IBM® Rational® Rhapsody”
—_ ® TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2016 BTC Embedded Systems AG.
All rights reserved.

TestConductor for Rhapsody in C++

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, flow charts,
statecharts, and source code. During
execution TestConductor verifies the
results against the defined
requirements.

Rhapsody ATG is the Automatic

Test Generation engine in the
Rhapsody Testing Environment. In
order to thoroughly verify the
functionality of the System Under
Test (SUT), it uses the UML model
information as well as the generated
source code as basis for analysis,
and creates executable test cases
with high coverage rates.

See separate ATG tutorial how to use
ATG.

CashRegister Application

Object;

Ewent:

Argume

|.&pplicationFramework[D]->itsEashH eqizt Select

M ame

|ev5tart L} j
Object: |.t’-‘-.ppIicatiDnFramewolk[D]->itsEashHegist Select
Ewent: |evE nd % j
Argumegt

Mame| Dbject: |ApplicationFrarrework[D]-)itsCashFlegist Select

Ewent:

|evHemove % ﬂ

The CashRegister application, the example

C++ application for this tutorial, models a simple cash
register. Make yourself familiar with the use cases of the
application. Open the project ,CppCashRegister” from the
folder ,Samples/CppSamples/TestConductor® in your
Rhapsody installation, run the component
«CashRegisterNoGui», and use the following input:

To create a new shopping basket

Argun]

REL

Event: |ev3arcnde [}5

Arguments:

[

Objest: |apslicationFramework[0]-itsCashi egist Select Send the event eVStart to

ApplicationFramework[0]->itsCashRegister.

Lychees
Kiwis

Pears
Pomegranates
Watermelons

To add an product to the shopping basket send
the event evBarcode to ApplicationFramework[0]
->itsCashRegister. The event evBarcode needs
the product code as argument. The product
database knows codes between 12344 and
12349.

To remove the last added product from the
shopping basket send the event evRemove to
ApplicationFramework[0]->itsCashRegister.

To print the bill send the event evEnd to
ApplicationFramework[0]->itsCashRegister.

CashRegister Model

CashRegister & 1..| ProductDatabase

itsProductDatabase

«Crd

itsPro

Breds

*

harcode

gsimplifiedAccesss

Product

duct

M name: char®
M barcode:int
M unitPrice:int

itsProduct

i Product(aBarcode:int aName:ch. .

i, Product()
Product(aPraduct: Praduct)

ApplicationFramework

[Printer [Display

1

itsCashRegister CashRegister &

by

|BarcodeReader |lKeyboard
IBarcodeReader Keyboard

1

itsTerminal: Tetminal =

by

IPrinter IDisplay

The CashRegister model mainly contains the
CashRegister class, a list of selected products, and a
product database class with a list of all products ordered
by barcode numbers. The model delegates all input and
output messages to classes with interfaces of IDisplay,
IPrinter, IBarcode and IKeyboard. These classes are
connected by a port named ,hw* to the CashRegister-

class.

The ApplicationFramework class initialises
its parts itsCashRegister of type CashRegister
and itsTerminal of type Terminal. The link
between the parts ensures the bi-directional
communication over the port hw.

The CashRegister class is able to manage
the list of products the user wants to buy. View
the provided state chart to get familiar with event
processing and state changes.

The Terminal class provides the interfaces
IPrinter and IDisplay. Imagine the Terminal class
as an input/output terminal, which is able to
process keyboard inputs and displays the
progress and the bill.

System Under Test

Entire Model View ~ |

= &0 CppCashRegister I
®- 0 Components
#-12 Object Model Diagrams

=g TPkg_CashRegister_Cormp
=12 Configurations
1 «TestingConfiguration» Defau
¥ (2 Events

Toe
SHSTE at_hw_of_CashReqister
itsTC_for_itsCountedProduct_of_CashRegister
- %y, TestConfigurations
[TCon_CashRegister_TestControl

=g TestCormponents

TC_at_hw_of_CashRegister

(7 Packages + CountedProduct
- Profiles
=-Ch TestPackages +
=y TPkg_CashRegister =
by Tokg Conton 9 TestContexts

=9 TCon_CashRegister
#-(2 atributes
+-(24 Depandencies

@ it=TC_at_hw_of CashRegister

Defining the System Under Test (SUT) is the first
step in the test workflow. This tutorial will focus on the
CashRegister class. To define CashRegister to be the
SUT, we have to create a test architecture. The needed
administrative framework will be placed in the folder

The System Under Test (SUT) is a part and

is the component being tested. A SUT can

® (] Objects
=5 TestPack =25 Links “
R S stregen e st o » 1 €StPAcCkages”.,
#- (21 Dependencies - LT _
= g TestCormnonents L itsCashRegister _itsTC_for_itsCo
CountedProduct
& % TC_at_hw_of_CashRegister +-() Statechart
= TestContexts W
= ;STCEZ,éashReguster S %UTS
¥ Egmhugzs i tsCashReqister
S e =g Test Context Diagrams
Y itsCashReqgister_itsTC_ i
2 :‘SCZ;R:;;UETQ &y Structure_of_TCon_CashRegiste
% (2 Statechart =@ TestComponentinstances

consist of several objects. The SUT is exercised

via its public interface operations and events by
the test components.

-

[CashRegisterPkg
=
lg Classes
+ Q BuyOneGetOneFree

Bu ThreeGetDneFree

Create TestArchitecture

ProductDatabase
TenPercentOff
ThreeFor[lneEu ro

-l
3 2

DO

Select the class
,CashRegister” in the

0 browser and choose from
context menu ,Create

_ TestArchitecture®.

g SUTs

,,‘ itsCashReqgister

--id Test Conkexk D|agrams

‘ TestCnmpnnentInstances

4 itsTC_at_hw

«TestContexts
TCon_CashRegister

wSUTw CE.
itsCashRegister:CashRegister

/

Have a look on the newly created Test Context Diagram
.Structure_of TCon_CashRegister”, and view the resulting parts
in the composite class ,TCon_CashRegister of our test context.

/

9

Test Architecture

=

=
-

=My TPkg_CashReqister
=[] Components
=-§ | TPkg_CashReqgister_Comp
=I-[Configurations
+ -8 «TestingConfiguration: DefaultConfig
+ZF Everts
+-[13 Ohijects
=-L# TestPackages
=y TCon_CashReqgister _architecture
22 Dependencies
= TestComponents
+ :%CDuntedF'deuct
TC_at_hw_of_CashReqgister
=89 TestContexts
=49 TCon_CashReqgister
+-= Atributes
+ 22 Dependencies
+-[5 Links
+ (2] Statechart
=l SUTs
b itsCashRegister
=g Test Context Diagrams
b4 Structure_of_TCon_CashRegister
= ‘ TestComponentnstances
z itsTC_at_hw_of CashRegister
+ t=TC for itsCountedProduct of C

+.

+- %y TestConfigurations
+ [y TCon_CashRegister_TestControl

The automatically created test architecture is [/
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
»1 Pkg_CashRegister Comp® initializes the test
components and SUT objects and their
interconnections when a test case is started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

«TestContexts
TCon_CashRegister

1 wSLUT»
itsCashRegister:CashRegister

Fuii
Friy

1 «TestComporertinstance, TestCom,
itsTC_at_hw_of_CashRegister:

«TestComponentInstance:

itsTC_for_itsCountedProduct_of_CashRegister::

The automatically created test context represents e

the formal structure of the test system. TestConductor

_analyzed the model structure in consideration of the

selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

The composite class
,1Con_CashRegister” is the part container
for the SUT object and the created test
component objects.

The class ,TC _at_hw" realizes the required
interfaces ,IDisplay“ and ,IPrinter” of port ,hw*.
Using ports as a high-grade encapsulation
mechanism will result in clean test architectures.

The class ,,CountedProduct” is a derivation
of the design class ,,CountedProduct®. It is
generated due to its association to the
CashRegister class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test S
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let's have a look at the test cases. A test case ...

Is a specification of one case to test the system including what
to test, with which inputs, and what the expected outcomes are.
It is defined in terms of stimuli injected to SUT objects and
observations coming from SUT objects.

Is an operation of a test context that specifies how a set of
cooperating test components interact with the SUT.

can be specified as sequence diagrams, flow charts,
statecharts, and source code.

can be generated automatically by using TestConductor’s test
case wizard.

can be generated automatically with the Rhapsody Automatic
Test Generation (ATG).

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

SDTestScenario 0 J

«SUTs

TCaon_CashRegis
ter.itsCashRegist
er:CashRegister

TCaon_0G
gister.it
hw T

\

show(ahsg = OK)

ewStart() |

roducts()

[else)f

RTC_ASSERT_NAME(
"check_2.1, Initialization failed", 0;
~®)

'Y

this_-=itsCashRegister addProduct{new
Product(1234 "apple",100)),

rgqumemts

=itsCashFegister. isNoMorel
[C_AISERT NAME ("check 1.17)
sCashRegister.addProduct |

new Product (1234, "apple’
=itsCashFegister. isNoMorel
[C_AISERT NAME ("check 1.27

|

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Flow chart test cases also benefit from their graphical
nature, but in contrast to sequence diagrams the use of
complex data types (structs) and control structures (if-
then-else) is supported out-of-the-box.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

Test Case: Sequence Diagram |

simle_start
«SlTs

TCon_CashRegist
er.itsCashRegister
{CashRegister

TCon_CashRegist
e itsTC_at_bw_o
f CashRegister:T
C_at_hw_of_Cas

«Test Scenarios

TCon_CashRegist
et itsTC_for_itsCo
untedProduct_of
_CashRegister:Co

+- i g Test Context Diagrams
—-#. TestCases
=-#. TestCase_simple_start()
+ Hj SDInstances
+ El TestObjectives

+- i TestResulks
= TestScenarios

Ep

simple_start

To manually create a sequence diagram

test case we have to define a test scenario
which is represented as a sequence diagram
and link it to a test case. TestConductor
simplifies this process with a single command.

/

= 5‘3 TestContexts \ / Assaciate Image \ / = 3'_-_: TestCases \
f’? LIII"'—IF"':';II"D:' Features Delete from Model = x:-" LESti_StE"'t':..:'
+ ;‘ SUT= Features in Mew Y] = p—y = 2 iecki
+ & Test Context Di Creakte S0 :tl._a::e k + HT Testobjectives
& @, TestCompanert Add Mew Create Activity TestCase + % TES'IRESU“E?
+ “«J, TestConfigurati cooch Create Flowchart TestCase = Testooenarios
Create Code TestCase I‘:%D simple_start
Rename the test case to
»1Con_CashRegister” in the context menu ~Create SD Rename the test scenario to
Rhapsody-Browser .. JAN TestCase”.. JAN ,simple_start“ and open it.)

|

Test Case: Sequence Diagram li

[+-4, | Predenined|ypesCpp (REF)
=57 RequirementsPkg
- Contralled Files
=- I_. Packages

=8 E:l Cash_Reqgister_Specs
=- [1@ Requwements
----- ORI ortords REC 0
----- | «fromWords REG1
----- L] «Fromwords REQZ
----- L] «Fromwords REQ3
----- [[]] «Fromwords REQ4
----- [[]] «FromiWords REQS
----- [L]] «FromiWords REQE
----- L] «fromiords REQT
----- I:.ﬂ afromWords RECS
----- ' "' sfromWards REQ9
-5 Stereotypes
[EI---E] Tukorial_Prerequisits

P = P o Y

2|

Requirement : REQO in Cash_F

General |Descriptiun| Flelatiu:unsl Tags | Prope

Mame: IFI EQO

Stereatype: I fromtafond j
Type: I Requirement j .
ID: [REQD

Defined in: Il:aah_H eqizter_Specs
Specification;

The Cash Register shall send a Ready
message after it is started.

Determine the test objective of the

test case: the SD test case should
check that requirement “REQO” is
indeed fulfilled by the CashRegister

class. To make explicit that the SD test

case shall verify this particular

requirement, a test objective is added

to the test case.

-

= x TestCases

TestObjective
TestScenario

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

\

Add Test Objective

Depends an: IAnaI_l,JsisF'kg

t—«'ﬁ._-SEIect Model Element

i -5 RequirementsPkg
- B3 Controlled Files
= [0 Packages
: =8 E':l Cash_Register_Specs
E| @ Requn’ements
: L, L <fr ol

Cancel |

Select requirement “REQOQ”

as target of the test
objective”

\

Ex
=

TestCases

v TestCase _simple_start)
H- E—'I SDInstances

El L:l TestObjectives

...... H RECIO
l E{'D TestScenarios

The test objective now
links the test case to the
requirement “REQOQ”.

/

|

Test Case: Sequence Diagram lil

simple_start “Testscenzrics Determine the involved
SUT> o objects for the desired test
TCon_CashRegister.itsCa TCon_CashRegister.itsTC_ .
shRegister:CashRegister at_hw_of CashRegister:T ?‘Cenano ?nd remove nOt_ ne?ded
C_at_hw_of_CashRegister instance lines from the view in
| order to establish action and
| reaction between remaining
| instances.
|
- N 4 I
TCon_CashRegister.itsTC_for «SUT»
p _ftsCountedProduct_of_Cash TCon_CashRegister.tsCa | | TCon_CashRegister.itsTC_
Register: CountedProduct shRegister:CashRegister at_hw_of_CashRegister:T
C_at_hw_of_CashRegister
Display Options ...
Remove from View |
Delete from Model |
Format... |
Right click the instance line Arrange the remaining instance lines
0 JtsTC for_itsCountedProduct* e JtSTC_at hw_of CashRegister” and
and remove it from view. JtsCashRegister".

. / . /

Test Case: Sequence Diagram IV

«SUT»

TCon_CashRegister.itsCa
shRegister:CashRegister

TCon_CashRegister.itsTC_
at_hw_of_CashRegister:T
C_at_hw_of_CashRegister

Define action and reaction of the system
under test. We will specify the ,simple_start"
scenario, where the user sends the event
evStart() to the SUT, and the SUT shall react

| evstart()

=

| show(aMsg = Ok)

with a status message show(aMsg).
TestConductor, the execution engine, shall act
as as driver for evStart(), and as observer for
show(aMsg). Driving means to simulate e.g. the
users activity during test execution by
automatically sending the message to the SUT
in order to provocate a reaction. The test will

" pass, if TestConductor observes the specified
! reaction from the SUT. Otherwise it will fail.
e — N N N
CashRegister::ewstark() : |
CashReqister: ievBarcode) TC_at_hwe::prinkichar®} | evStart()
identifyProduck(ing) TC_at_hw:ishowchar®)
addProduct{Product) IPrinker::prinkichar®) |
startSession() v 1Display: :showchar®)
CashReqgister: :evEndi) - = | show(aMsg = Ok) -
|

endSessiont)

Draw the driving message
LevStart()“ from

JtSTC_at_hw_of CashRegister”

to the SUT ,itsCashRegister”.

/

Draw the message ,.show()“ from
the SUT ,itsCashRegister* to
JtSTC_at hw_of CashRegister”
such that it can be observed.

/

o

Specify the
parameter aMsg by
editing the label of
show() to
,Show(aMsg = OK)".

/

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their

progress and status.

The status, the final result can be either
,PASSED" or ,FAILED*.

Mame

-1 ¥, TestCase_simple_start
By 5D tc 0
- D Detailed Aszertion Information

D ‘show': Check of in value of argu..,

The progress displays how many steps are
finished yet. In case of a passed test 100% have

to be achieved.

==l
DEOE 3 1
Status File/Tteration Line/Progress
£ FAILED
& FAILED 1 33%(1/3)
) FAILED TC_at hw_o.. 340

The buttons in the top right corner of the execution
dialog can be used to control actual test case
execution and will be explained later.

*.‘_.- TestCases
EAR P8 Tt ase simple skark()
‘ TestComponentInstances
2y TestConfigurations

\

Edit TestCase SDInstances

Build TeskCase

Update TeshZase Build TestiCase
Execute TestCase
Execute TestCase k

o

To execute the test case with TestConductor select the test
case ,TestCase_simple_start and choose from the context
menu the items ,Update TestCase®, ,Build TestCase®, and
.Execute TestCase“. The Rhapsody TestConductor
execution dialog will open.

/ B TestCases

TestCase _simple_start()
4:- E} Dependencies
~p SDInstances
+ El TestObjectives
TestResults
4 -Ey TestScenarios

r:ﬁ:b

~

=l

Mame Status File/Tteration
-1 ¥, TestCase_simple_start €3 FAILED
By 5D tc 0) FAILED 1
+/4+] Detailed Asserti...

The test case execution dialog is
a dockable dialog that can be
placed e.g. underneath the main
browser window.

_

Line/Progress

33% (1/3)

/

Test Case Execution I

simple_start_show
«SUT=

« TestSoenano, WitnessSomnano

TCon_CashRegister.itsCash
Reqister:CashRegister

TCon_CashRegister.itsTC_a
t_hw_of_CashReqister:TC_
at_hw_of_CashReqister

l&hu'.w[aM_sq = Ok): Check of in vﬂle of argument aMsg (Actual value: "Ready”) failed

evStart
|

Status:

Progress:

FAILED

33% (1/3)

The test case execution FAILED with
Rhapsody TestConductor. To analyze the
reason TestConductor offers two kind of
views. The HTML-report displays a textual
summary and can be found directly under
the test case in the Rhapsody-Browser.
TestConductor created a withess scenario

to display the error. The red arrow

visualizes the faulty step and the reason.

TestConductor expects the parameter value

,OK*, but observes the value ,Ready*”

Detailed Assertion Information

during test execution. The expected value
was not specified correctly... by accident.

'show': Check of in value of argument aMsg (Actual value: "Ready™) FAILED
Name Status Name Status =%, TestCase_simple_start()
| i = i
w TestCase_simple_start 3 FAILED - r‘r TestCase_simple_start e FAILED E_? gg?ﬁ:tgizgfﬁ
&

=18 5D tc 0 BRI ED
1 @ Detailed A Show as 5D

'show': Check of invalue ...) FAILED

To create and open the
witness scenario right
click the item SD_tc 0O in
the TestConductor
execution dialog...)

_

%WI
- @ Detailed Azze Show as 5D

'show': Check of in value... €3 FAILED

... and select “Show as SD”.
The witness scenario is
added to the model for later
inspection.

%

_

k_:l TestObjectives
= TestResults
L b TCon_CashReqgister TestCase

In the browser, below the
test cases, you can find

the generated html report.
Double click the report to

open it.)

Test Case Execution lll

The test execution PASSED with Rhapsody TestConductor after we
corrected the expected parameter value for argument “aMsg” from “OK” to
“‘Ready” in the test scenario ,simple_start®. After changing the scenario,
updating, building and re-executing the test case, the test case is passed.

-

o

AT
____ Coexbe Refer to the user guide
Mame Status File/Tteration Line/Progress to get familiar with the
-|¥, TestCase simple_start (&) PASSED tended f fi litv of
By SD_tc 0 © PASSED 1 100% (3/3) iz el LAree izl ©
- D Detailed Aszertion Information TeStCondUCtor.
D 'show': Check of in value of argument... (&) PASSED TC_at_hw_.. 340
N N [
i---*-',—-' TestCases i i
L---".*T; TestCase_simple_start() | ' b '-‘. iﬁ; h
+-[*1 Dependencies evStart() —
- 'y SDInstances | File/Tteration Line/Progress
+El TestObjectives
E:}Eﬁ Ei:‘:‘z;ﬁns | show(aMsg = Ready) | 1 100% (3/3)
----- Eﬁ «\WitnessScenarios simple_start_show |
+‘ TestComponentInstances
To correct the test case Respecify the ,show*- Re-execute the test case by
0 open the test scenario message parameter value pressing the “Start” button in
simple_start* from ,OK* to ,Ready” and the top right corner of the
" - ' close the test scenario. execution dialog.
AN AN 2

/

Test Case: Source Code |

Test Case : TestCase_code_assert in TCon_CashRegister TO manua”y Create a source COde teSt case
create a code test case and write the test code into
the edit field under the implementation tab of the

test case. The Rhapsody- [estConductor-macro

General] Dezcription | mplementation l.&rguments Helatiu:uns] Tags] F'ru:uperties]

|vu:uiu:| TestCaze code aszert()

I:i.1=itsCashRegister cisNoMoreProductsi() ; -
RTC_ASSERT_NAME ("check 1.17, i1==1); ,RTC_ASSERT_NAME" takes a name-parameter
itsCashRegister .addProduct | 0ng 0ng
new Product (1234, "apple”, 1007) : and a condition. If the condition
iZ=it=CashRegister. isNoMoreProductsi) ; (,,iSNOMorePrOdUCtS“) evaIS tO true the teSt case
ETC ASIERT WNAMNE ("check 1.2, iZ==0): .
- - - . will pass.
. ;H The package “Tutorial_Prerequisits” contains a

| comment “sourcecode_testcase” with the pre
defined code for the code test case.

Locate | 0K [\J

/ =-F3# TestContexts \ / \ /i EI TEutDriaI_Prerequisits \
- ® +-= Classes [—
+-1q Links Features o ;ES':CE'S —— _E Comments
+ \f‘ SUTs Features in My x-._-"' eshi_ase L.llj':i asserk | T |u_| FE——— lm
+- i Test +-® TestCase_simple_start(oo o — —
- ®, Test] Create 5D TesbZase + ‘ TestComponentinstances [Gie TestCase,_code, asser]
+-%: 1 Create Flowchart TestCase a E— _ _
- - - I11=1tsCashReg15t.er.1sI\
Create Code TestCase | DT WRSFRT MIMF i"eherk
o Select the test context e Rename the created test e R:.?'}flclz the dcor;;t]ent of the
,TCon_CashRegister“ and case to ,TestCase_ edl I e Ut”t_er t eb e tost
choose from the context code_assert” and open the 'mp em’?r?t?] lon at otf e (tatf
menu ,Create Code feature d|a|og_ case wi e content rrom the

description field of the

TestCase”. comment and press ,0K“
\ p ” . /

Source Code Test Case: Execution

Execute the test case with Rhapsody
TestConductor.

] RO -3 -)
T — S p— nemrege BOth @ssertions evaluate to true and the
SEM 7ot Case_code_assert [@) PASSED test case passes. Double-clicking an
»| check_1.1 O PASSED TCon_CashRegister.cpp 68 3 A A
% check_1.2 Q PASSED TCon_CashReqgister.cpp 71 e_/aluated_ aS_Sertlon In the e)seCL!tlon
window highlights the assertion in the test
il=itsCashRegister.isNoMoreProducts () ; model.
RTC_ALISERT MAME("check 1.1", il==1);
itsCashPFegister.addProduct (new Product |
iZ=itsCashBegister.isMoMoreProducts () ;
RTC ASSERT NAME ("check 1.2", iZ==0):
4] N [N [N
—33 TCon_CashRegister Update TeskZase ‘ Name ShabLs File
—I-(= Attributes oy _
B current scheduler % w TestCase_code_assert O PASSED
- current tcase_nr [foid Testcase 4] check_1.1 © PAsSSED TCo
H i Execute TestCase D S SHED 1M
= p Show assertion |
0 Create in the test context e Select e In the execution yvmdow,
,1Con_CashRegister” the ,1estCase_code_assert* select thg as‘fsertlon and o
two integer attributes ,,i1“ and choose update, build .double-chck. Shpw Assertion
and ,i2“. and execute from the n ordgr tq highlight the
assertion in the model.

_ J U context menu. AN J

Test Case: Flow Charts |

) J

RTC_ASSERT NAME({"Initial" true):

L:_IM TestCases

To manually create a flow chart test case we
have to define a test scenario which is represented
as a flow chart and link it to a test case.

TestConductor simplifies this process with a single

command.

-

'"”f.-' TestCase_code_aszert()
=% TestCase Flow_Chart()

Elgé, diagram
----- B FlowchartDiagram
% default of initial
[E-ﬁ Actions
[E-l:' Comments

E;EI---"E_—-' TestCase_simple_start()

/

_

N N [
Elﬁ TectContexts +- W g Test Context Diagrams
=R J TCon_CashRegister| Create 5D TestCase %y ;Ethaiis o G|
— Attribut b Ele b o S +-e | Testiase_Flow_Lnar il
E Curt;r:e?ics Create Flowchark TestCase +-#. TestCase_Activity_Diagrami)
Bi-(% Dependencies Create Code TestCase +- %y TestCase_code_assert()
H-EL Links
[l Ml mrmkime
0 STecI:ect tge tehT‘\E co_n:[tex“t_ e atndtchoose from the Rename the created test case
:[’h g;]— as q eBgls erin contex Create Elowchart to ,TestCase_Flow_Chart”
e Rhapsody-Browser ... menu ,, r?a e Flowcha and open the flow chart.
TestCase”.
NG Z2RNG

Test Case: Flow Charts i

RNt

dizgram

k} i1=this-=its CashRegisterisMoMoreProducts();

[else]

[i1==1] RTC_ASSERT_MAME(check_

2.1, niti aliz atio n fail ed™, 0}

this-=its CashRegister addProdu ct(
newProduct(1234 apple”100%;

i2=this-=itsCashRegisterisMoMoreProducts (J;
RTC_ASSERT_MAMEcheck_2 2 Product
succesfully added”, i2==0]

Define the flow chart in order to execute it with

TestConductor. The Rhapsody-TestConductor-
macro ,RTC_ASSERT_NAME" takes a name-

parameter and a condition. If the conditions [i1==1]
and [i2==0] evaluate to true the test case will pass.

Obviously the flow chart test case is very similar to
the source code test case we discussed some
pages before. The difference in comparison with the
source code test case is the graphical nature of this

test case.

/ —&I Tutorial_Prerequisits
+|§ Classes
—E Comrments

wel) spurcecode_teste

B o char

+- [Sequence Diagrams

Prerequisits®.

i---’-‘,—-‘ TestCases
+x_ TestCaze_code_assert()
—x_ TestCase_Flow_Chart()

_...g%
&, FlowchartDiagram

%y default of initial
+l,_,l,-'=' Actions
: +-[2 Comments
:x_ TestCase_simple_start()

Replace the content of the flow chart of
the test case with the content from the
flow chart in Package , Tutorial_

~

Flow Charts Test Execution

-

_

-I= Execute the test case with
JBOR8 Rhapsody TestConductor. The
Mame Skatus File/Tteration Line/Progress RTC ASSERT NAME“-macro
- ¥, TestCase_Flow_Chart © PpasseD ” — —
Q check_z.2, Product succesfully added O PASSED TCon_CashRegister.cpp 112 evals to true and the test case
+ | passes.
I 2=this-=itsCashRegister isMoMoreFroductsi),
FTC _ASSERT MAME("check 2.2, Froduct
succesfully added”, i2==0),
N [N N
- !;_,- TestZases pdate TestZase
* xx"' TE-'St':ESE-‘_CDdE—'_ESSE—'I"tﬂ EUIGIE e s -Ni'r:eTestCase_Flow_Chart Stal:u:SSED F
+ B check_2.2, Produck succesfully adde A55
+-#. TestCase_simple_starti) RN
‘ TestZComponentInstances
In the execution window,
0 e ... and choose from e dou_blhet Clll.ci on ’Te adssell'tlo?
Select the test case context menu the items ?r right click on |”.an selec
,1estCase Flow Chart” “ Show Assertion” in order to
— — ,Build TestCase hiahliaht th tion in th
and ,Execute TestCase*. 'ghiig € assertion in the
model.
2N O\ %

Test Case: State

charts |

initial

i ewTCShart

state_1

=-igh TCSC_te_0

-5 Agsociation Ends
+ @ Operations

+-(Z) Statechart
-2 Tags
=59 TestCantexts

=8 TCon_CashRegister

l,."RTC_ASSERT_NAME["Ser H- (= Attributes

itsC ashR.eqister- =GEN(awSt
#-(E Links

state_2

+-(72) Statechart

il SUTS
g 10007/
RIC ASSERT MAME["Ch %
itsCashReqi: =% TestCases
state 3

+- (22 Dependencies

+ @ Operations

To manually create a statechart test case we

have to define a test scenario which is represented
as a statechart and link it to a test case.

Technically, the test case has a dependency to a

command.

+-&g Test Context Diagrams

% TestCase_code_assert()
+-%, TestCase_Flowchart()

+- %, TestCase_simple_start()
=%, TestCase_statechart()

= (2 Dep
fitsTCon-=finishTestC asel] o, B

endencies

W StatechartTestCases TCSC tc O

TestComponent that contains the statechart.
TestConductor simplifies this process with a single

£ B9 TestContexts

= % TI:I:IT'IEitl:l[:I'I_u"'u_I'Eltlj-l
+-5 Links
% S\ Create SD TestCasze
g Tt
o %, T, Creats Flowchart TestCasze
+-%, Create Code TestCase
+ ‘ b Create Statechart TestCase

Update TestContext

Select the test context
,1Con_CashRegister” and
select “Create Statechart
TestCase”.

=%, TestCases
*. TestCase_code_assert()
+-%, TestCazse Flowchart!
%, TestCase_simple_start()
DY TestCase_statechart()

Rename the test case to
“TestCase_statechart”

-

=-*, TestCases

+.

+.

% TestCase_code_assert()
% TestCase_Flowchart))
% TestCase_simple_startd
% TestCase_statechart?)
+-(*2 Dependencies

=k TestObijectives
4 =

Add a test objective (using
“Add New -> TestingProfile
->TestObjective”) to
requirement REQ_2

Test Case: Statecharts |l

JRTC_ASSERT_MAME("Sending event evStart” true);
itsCashR.egister- »GEM ey Start);

skate 2

tra 10007
RTC_ASSERT_MAME("Checking state of CashRegister”,
itsCashR.egister- = active_TM(;

state_3

fitsTCan-=firishTestCase();

= ?tl Tut.urial_F'rerequi_s.its
4.2
1= Classes
- E-EE TCSC te 0
e
41-(2 Comments TCSC_te_0
+1-Z3 flowchart I~ Association Erds
- Sequence Diagrams & Operations

o

(72 Statechart
3% StatechartDiagram

Replace the content of the test component
statechart associated with this test case
with the statechart of the Tutorial package.

/

Define the statechart in order to execute it with
TestConductor. The statechart test case first starts
the CashRegister by sending event evStart. After
sending this event, the test case waits 1 second.
After 1 second has elapsed, the test case checks if
the CashRegister has changed its state from idle to
active after receiving the event evStart. If both
checks are passed, the complete test case is
passed.

/ I Transition : 2 in statechart_0

. General | Description | Tags || Properties

initial
Name :
Stereotype: £

ey TCSkart Target

tate_1 Trigger : evTCStartin TPka_Stopiwatch
Guard
Locate Ok

e Add “evTCStart” as trigger of
the transition from state

“initial” to state “state_1”

- /

Statechart Test Case Execution

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
true and the test case passes.

x| DROE -3)
4
Marme Status File/Tter ation Line/Prog| el
-1 ¥, TestCase_statechart (@ PassED
Q Sending event evStart @ PassED TCSC_tc_O.cpp 186
{7 Checking state of CashRegister (@ PASSED TCSC_tc_Ocpp 215 T 10005
RTC ASSERT MAME("Checking state of CashRegister",
itsCashReqister-=active TN
stats 3
4 N Edit TestCase SDInstances | 4
Update TestCaze
=-# TestCases b - wEliLE SEs
%, TestCase code assert Build TestCase -1 ¥, TestCase_statechart © PaSSED
% TestCase Flowechart! Everute Edit TestCase SDInstances 2] Sending event evStart @ PassED
% TestCase_simple_start) Update TestCase B8] Checking state 0f C
L} TestiCase statechart)

0 Select the test case

»1estCase statechart” ...

-

Build TestCase

Execute TestiCase

... and choose from
context menu the items
,Update TestCase",
,Build TestCase*

and ,Execute TestCase®.

\

In the execution window,
double click on the assertion
or right click on it and select
“Show Assertion” in order to
highlight the assertion in the
model.

Create Test Cases Using Test Case Wizard - SDs

scenario_simple_start

:CashRegister Terminal

Create Test Case @

Map instance lines ta test architecture
evStart)

Flease select test architecture for test case:
(< new>>

show(aMsg = Ready)

Flease select test case kind

Cancel

To create a test case based on existing
sequence diagrams, operations or

requirements, you can use the
TestConductor test case wizard. For an
existing sequence diagram, the test case
wizard creates an analogue test case with
the same message structure as the original
sequence diagram.

For a requirement the test case wizard
creates a test case with the chosen
requirement as the test objective.

/EIEI Tutorial_Prerequisits \ / Create Test Case
L’E- Classes

bﬂ Comments
3% flowchart

Ell_l Sequence Diagrams

e ﬂ:l] scenaric_simple start
ﬂ:ﬂ - - £ FIE
: scenario_wizard ST

Con_CazhFegister

Creake TestCase, .,

Map instance lines to test architecture

Fleaze select test architecture for test case:

N ox , N

B #, TestCases
EI # SD_tc 00
: F*'“ SDInstances
EI E:l, TestObjectives
e El scenario_wizard
EI E"_Ip TestScenarios
o E"_”g scenario_wizard

Select the sequence

in the tutorial package and

diagram “scenario_wizard”

select “Create TestCase...”.

In the test case wizard
dialog, the test context
“TCon_CashRegister” is
already highlighted. Press

OK to proceed.
/

As a result, a new test case
e “SD_tc_0” has been created which is

based on a new test scenario
containing the same messages as

the original SD, but life lines adapted
to the test context structure.)

Create Test Cases Using Test Case Wizard -

Operations

=I5 CashRegisterPkg
=-(E Classes
=-H BLyOneGetOneFres
-5 BuyThreeGetOneFree
= B3 CashRegister
25 Association Ends
H (= Attributes
22 Dependencies
= Generalizations
= (B Operations
=l addProduct{Product® aProduct)
=l countProducts()
=l endSassion()
kP evBarcode(int 3Code)
kP evCode()
B evEnd()
EP evkey(int n)
EP evRemaove)

Test Case : Code_tc_0 in TCon_CashRegister

General | Description | Implementation | &guments | Relations | Tags | Properties

woid Code_te_0[)

00 //In Code TestCases vou can use ASSERT macro: ~
01 // RTC_AZZERT MWAME(n,e), e.g.

02 // FRTC_ASSERT MAME("Check 1", attribute_x =
03 // For the list of available macros see Test
04 // or the testconductor.h file in the instal
o5

06 itsCashRegister.countProducts();

07 RTC_ASSERT NAME ("Initial™, true); ~

< *

Locate OK

kv puStart™

The test case wizard can also be used to

test operations that are defined in the model.
The wizard allows to create four different kinds

of test cases: sequ

ence diagram test cases,

statechart test cases, flow chart test cases or
code test cases. Independent of the chosen
kind of test case, the created test case calls the

selected operation.

already contains a

Additionally, the test case
check that can be refined by

the user in order to check the out values of the

operation.

/

EI@ Operations

Select operation
“countProducts” of class
CashRegister in the
browser and select
“Create TestCase...”

i addProduct{Product® aPreduct)

Fleaze select test casze kind:

Code TestCase

5D TestCase

Code TestCaze

Statechart TestCasze

~

/

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

(= ®. TestCases i
®

~

S Code_fc 00

=-b TestObjectives

Test Case : Code_kc_0 in TCon_CashRegister *

General | Description | Implementation | Arquments | Relatior

void Code_te_0[)

itsCashRegister .. countProducta () !
RTC_ASSERT NAME ("Initial”, true):;

As a result, a new code test
case has been created that
contains a call to operation
“‘countProducts” and also a
dummy assertion that can be
refined.

/

)

Debugging Test Cases

i |
DREONE L
Mame Status FilefIteration Line/Progres:
- *._- SO_kc_0 EXEZUTIMNG
Bl sD_tc o ACTIVE 1 3% (143
Bl O B | go P += 5]

E_ln TestScenario: Animated scenario_wizard *

TCDn_C...:CaShF’xegister{ L TC_at_hw_of C|

Animated scenario_wizard #TmsiSomn:

TCon_CashRegis
ter.itsCashRegist
er:CashRegister

TCon_CashRegister.i

tsTC_at_hw_of Cash

Register:TC_at_hw_
of CashRegister

Debugging failed test cases can also be done
with TestConductor. When a test case fails, one
can turn on debug execution mode in
TestConductor’s execution window. After switching
on debug mode, when executing the test case one
can step through it by using the “Go Step”, “Go
Idle”, etc. buttons of Rhapsody’s animation toolbar.
Additionally, when stepping through the test case,
one can use Rhapsody’s animation features to
inspect animated statecharts, animated SDs, etc.

| et in order to find the reason why the test case fails.
,Li_tlso In this mode, the application is not terminated
hou(aveg ~Ready) automatically after the test case has ended.
=%, TestCases i _l\ @)
U r i DROIESL
L x.." deo : Marne Skakbus FilefIteration | LinefProgres:
* *-" ':'D—'-—”'--' . Stakus Filz/Tteration | Line/Progres =%, sotco EXECUTING
% ¥ TEfif TestCase SDInstances EXECUTING B 50_te 0 ACTIVE 1 3% (13)
Update TestCase ACTIVE 1 33 (13
Build TestCase I = = on oo B

Execute TestCase

Select test case
“SD_tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the

execution dialog.

Execute the test case again
by pressing the “Start” button
in the execution dialog. Now
you can step through the test
case by using Rhapsody’s

animation toolbar. J

)

Executing Multiple Test Cases

Executing multiple test cases can be

Build TestContext

Execute TestContext

Select the test context
“TCon_CashRegister” and
select “Update

TestContext”. After that,

_ select “Build TestContext”.)

e Select the test context

again and press “Execute
TestContext”. All test
cases will be executed one
after the other.

Zl=l .
e done by executing a complete test context or
. . _ a complete test package. When a test context
Mame Skakus File/Tteration | Ling/Progress)
- TCon_CashRegster €3 FAILED or a test package is executed, all test cases
-¥, Cade_tc D @ PasseD within the context or test package are
2] il) PASSED TCon Cas... 86 executed. After all test cases have been
-1 ¥, sD_tc_D 3 FALLED
B 5t 0 © FALED 1 ssv (2/3) executed, TestConductor computes an overall
- ¥, TestCase_rode_assert (0) PASSED test result for the test context or the test
Q check_1.1 O PASSED TCon_Cas... 135 L
Q check 1.2 O PASSED TCon Cas 138 Test Context: TCon_CashRegister
L T - - Code_tc_0 PASSED
 TestCase_Flow_Chart () PASSED
I7) check 2.2, Pr... (@ PASSED TCon_Cas.. 112 bt 0 FAILED
- w.f TestCase_simpIe_startO PASSED TestCase_coce_assert PASSED
p_.b S0 ke 1 O PASSED 1 100% (343) TestCase_Flow_Chart PASSED
- TestCase_simple_start PASSED
/Elﬁi TestContexts \ / Elﬁ TestContexts Mame Skatus
E‘"'@ E'"'@ TCon_CashRegister - TCon_CashReqgister €3 FAILED
.= [E = S I B . 1
Create Statechart TestCase “[;—,-Et.trll::lutes =%y Code_tc 0 © PASSED
Y — 1 Build TestContext 2] Iniial © PassED
Build TestContext i e Execute TestZonte:xt =% 3D ke O @ FALLED
Lpcam Test o Update Testarchitecture By 50_te 0 @ FaweD

The results are shown in the
e execution window. As always,

“Show as SD” resp. “Show

assertion” can be used to

show the reasons of failed
test cases.

/

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question
can be answered either by using a test
case requirements matrix or by generating

a requirements coverage test report. A —

test case requirements matrix shows the To: Reqtenent_ Scope: CopCashRegister

relationship between test cases and 7 REQ || Reaz|) reqa] ren| | REas | Rens|) Rea7 | REgs| () Reds | R0
requirements in a matrix view. A el 4 RED
requirements coverage test report shows E-,{:Testcase}bw_‘cha,t

the same information, but presented as a |{[% Cosk el 1 REOE

textual report. It can be generated by €% Skt

ReporterPlus using a predefined template.

a N 7 e N N

=L TestPackages

— EJ} TPkg_CashRegister Stereatype: D ReqCoverage X
+ D Components Layout: TestRequirementCoverage in TestingPral To: Requirement Scope: CpopCashRegizter
“From . a) REs | REaD]
TableMatr i 4 TestReguirementhiatrix Scope: EppCashR egister E % TestCase smole stat TR
Annotations 3 TestResultTable Include Descendants [From" Scope) = x‘-‘" Lanes : H 1]
TestingProfile * EEREEE=CRE SLDODE CppCashRegister o Code_tc 0 14 REQE

Include Descendants ['To" Scope)

0 Select the test package

“TPkg_CashRegister” and
select “Add New ->
TestingProfile ->

_ TestRequirementMatrix”.

/

Open the features dialog
of the matrix, rename it to
“ReqCoverage”, and set
the “from” scope and the
“to” scope to the complete

model “CppCashRegister”.

/

When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

%

Assessing Test Case Requirement Coverage I

All Requirements

Test Case Reports can be used as an alternative
in order to figure out coverage of requirements with
the test cases. With Rational Publishing Engine a
requirement coverage report can be generated in
different formats like Word, Html, etc. The
requirements coverage report shows the list of

requirements, their coverage by test cases and the
outcome of the test case execution. The report also

contains information about the specification of the

NameID Covered By Test Case
REQ1REQ1 e not covered
» TestCase statechart
REQ2 REQ2 in TPkg_CashRegister::TCon_CashRegister_Archit
PASSED for CG Configuration
TPkg_CashRegister::TCon_CashRegister_Architec
REQ3REQ3 s« not covered test cases.
e W ax D
ReportGenerator
Schemas
Rational Publishing Engine Templates ||| TestRequirementCoverage.dta
' ATG
] Generate report... | ProjectContentReport
SoftwareDesignDescription
TestConductar
UPDMReport
From Rhapsody’s tools Select th
0 menu, select “Rational e “Te ecR . c
Publishing Engine” dte”St iQUIr(elrr;er}t c;;]/erage_
-> “Generate Report...”. a as lemplate for the .
report to generate and click
Next in the following dialogs.
\ O\ /

-

Q IBM Rational Rhapsody Report Genelain)

Configure the Output

Select output types needed and optionally change
stylesheets and output paths

Output Type Cutput File
Word

| Html
PDF
KslFo

Select the desired output
format, html for example, and
click on Finish. After generating
the report, the report can be
viewed with any browser that
can display Html files.

\

/

Assessing Test Case Model Coverage

Detailed Coverage Summary of CashRegister (9/25)

Besides coverage of the requirements,

Operations))] .)
identifyroduct an important orthogonal information is which
addProduct parts of the model are executed by the test
sfartSagsion cases, i.e, what is the achieved Model
endSession .

. Coverage when executing the test cases.
generateTicket L .
< NoMorsProducts TestConductor can compute this information
removel astProduct during test case execution. When model
e countProducts coverage computation is turned on, after test
EventReceptions case execution TestConductor adds a model
: euStart N coverage report to the test cases, test contexts
d .
E“Ea;m . [Clck o highight slement in R etc. that shows the achieved model coverage.
EvEN
/ EI\{;; TestContests \ / Bfﬁ TestContexts \
: - =-f# TCon_CashRegister
General | Description | Iritislization | Settings | Checks | Relstions | Tags | Propertiss E& [g Attributes
b [;'7 Attributes - bc' Comments
- TestArchitecture [; Build TeshConte:xt % ElEiEﬂdencies
=l TestngCenfguration S — o) J;;EH:WWERESURS
Update Testirchitecture .Q TCon_CashRegister_mcov_0.html

@ Operations

After execution has finished,

On the tags tab of the
configuration, turn on e Execute the test context model coverage reports can
“ComputeModelCoverage”. “TCon_CashRegister”. be found both for individual

test cases as well as a
cumulative coverage report
for the test context.

_ /)

_ AN %

Assessing Test Case Code Coverage |

Coverage Report

Source Code

Environment Info Table Of Contents

Coverage Statistics

Goals Covered

Statement Coverage 70 43| 61.4%
Decision Coverage B 1| 16.79%
Condition Coverage 0 0 n.a.
Condition/Decision Coverage 20 7| 35%
Modified Condition/Decision Coverage 20 7| 35%

-

=% TPkg_CashRegister
= Components
=-g* TPkg_CashRegister_Comp
= Configurations
-8 «TestingConfiguration» DefaultConfig
ingConfiguration» Release

Create a copy of the

Rhapsody code generation
configuration

“‘DefaultConfig”, rename it to
‘Release” and make it the
active configuration.

Besides coverage of the requirements

and model elements, an important additional
information is to what extend the code of the
SUT generated by Rhapsody’s code generator
is executed, i.e, which Code Coverage is
achieved when executing the test cases.
TestConductor can compute this information
during test case execution. When code
coverage computation is turned on, after test
case execution TestConductor adds a code
coverage report to the test cases, test contexts
etc. that shows the achieved code coverage.

Configuration : Release in TPkg_CashRegister_Comp

General | Description || Initialization | Settings | Checks | Relations| 7208 | Propesties

=l TestArchitecture
=l TestingConfiguration
CodeCaoverageOptionsFileNarme
ComputeCodeCoverage
ComputeModelCoverage O
Coveragekind SUT _hierarchical

\

On the tags tab of the configuration,
turn off “ComputeModelCoverage”
and turn on
“ComputeCodeCoverage”.

Assessing Test Case Code Coverage li

Global Statistics

Coverage Report

Tahle Of Cantents

Source Code

0] 330 {
34 cleanUpRelations();
b vent, const IOXEEventGenerationFarawss paraws)

1 «

1

2 T

1

1

T

B «
Envil ¢+ F a if (event->isType0f(24601)) Source Code

o] 4zb

0] 43 res = itsIBarcodeReader->send(event, params);

[o] a1 22
Cove s)

46 }

1 T ar if {itsIKeyboard !'= (0)})

1 47h {

1 2 F 48 if {event-»isTypeOf(24602))

" . 7 Covered

[o] a3 res = itsIKeyboard->send{event, parans);
Statem g = —— | 43| 61.4%

H 51 1
M 1 2 F 52 if {event-»isTypeOf(24604)) 1 16l?%
Conditic @] (! 0 n.a
— 53 res = itsIKeyboard->send(event, params);

Conditic @ 54 uen res; | 7 35%
T 55)
Modified Condition/Decision Coverage | 20 7l 35%

The Code Coverage report contains .
detailed information to what extend the code of
the SUT has been executed by the test cases.
The report contains both a summary about the
achieved coverage (e.g. statement coverage)
as well as detailed information about each
single line of code. The source code view
contains color coded presentations about the
coverage status of statements, decisions and
conditions of the tested code.

/

| natrumentation

| nztrumentation b ode:; Mone

On the settings tab of the
configuration, set
Instrumentation Mode to
“None”.

-

=59 TestContexts
= {',?J TCon_CashRegister
-2 atributes

L

Execute TestContext

Update Testirchitecture

Build TestContext

/B % TCon_CashRegister _Architecture N
22 Dependencies
+ TestComponents
- =89 TestContexts
=89 TCon_CashRegister
H-= atributes
=-Ip, CodeCoverageResults

e Select the test context

again and do “Update

TestContext”, “Build

TestContext” and then

“Execute TestContext”.

-

After test case execution has
finished, by double clicking

the code coverage element in
the browser you can open the

code coverage report.

2N /

Conclusion

The high-grade automation in the Rhapsody Testing Environment
with TestConductor

4

4

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save test
development time compared to traditional approaches.

Appendix |

Testing a Rhapsody Component!

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

Rhapsody® Testing Environment

Generate Test Architecture

—--B CppCashRegister
+-[J Components
- Object Model Diagrams
[Packages
+- [Profiles
--L% TestPackages
=% TPkg_ComponentTest
-5 TestContexts

2, “1 TCon_ComponentTest

~

+-1 Components Features...

211 Object Mode

To manually create a test architecture

for the component test, insert a new test package and a
new test context. It is not necessary to define a SUT and
test components. We will use the pre-defined component
«CashRegisterNoGui» and its configuration «Debugy;
activate this configuration before you proceed. This test
validates the complete model running in a production
configuration against its requirements. Here, the SUT is the

complete component.

Important is, this is possible only for animation based

testing mode (see below).

=0 Packages Add New / \ / \
5.3 TestPackages —-C3 TestPackages
TestingProfile 3 ExecutedElement el jm =I-[pl TPka_CompanentTest| 7]
TestPackage Features... +-F39 TestContexts
Add New -
=1L TRkg_ComponentTest
Select the root package TestingProfile > ~ 59 TestContexts
,CppCashRegister* and choose — #o{1Con_ComponentTesy |
from the context menu ,Add New
-> TestingProfile->TestPackage®. Rename the created test
Then open the Features dialog of e Select the created test e package to
the TestPackage and set the package and choose from ,TPkg_ComponentTest"
property the context menu ,Add and the created test
»1estConductor::Settings:: Testing New -> TestingProfile -> context to
Mode* to ,,AnimationBased“. TestContext®. ”TCon_ComponentTest“_
AN /L /

Link SD to Test Case

(requirement) diagram to a test case
create a test case and open the dialog

Mame of TestCase:

TestCase_Purchase_with_remove

T _“—EEE-a To link an existing sequence
o<]

e . E— ,Define Test".
SDInstances in TestCase Execute TestCase

In the dialog ,Define Test" the user

can specify properties concerning
E— the execution of sequence diagram
Shinstance Neme: test cases. Refer the user guide to get
PE— - familar with the properties and their effect
— during test case execution.
/ \ / \ / %, TestCases \
SUT —I-#3# TCon_CompanentTest LB TestCase_Purchase_with_remover)

TestComponent ";,-| TestCase_Purchase_with_removeh | Delete from Model
T

TestComponentInstance
TestZonfigurakion
TestConkext Diagram

Build TestCase

Edit TestZase 3DInstances
Update TeskCase k

0 e Select the test case

Select the test context Rename the created test ,TestCase

,1Con_ComponentTest“ and case to Purchase with remove®
choose from the context ,1estCase Purchase and choose from context menu
menu ,Add New -> with_remove®. the item ,Edit TestCase

TestingProfile -> TestCase®“.

_ SDInstances”.)

Test Case Property Definition

SDPurchase_with remowve

EMV :CashRegister :ProductDatabas

e

evstart()

startSession()

show(aMsg = Ready)

:CountedProduct

Define the properties of a test case

Terminal

in order to use an existing sequence

diagram. In the dialog ,Define Test"
specify the sequence diagram, switch to
linear driving and apply the changes. We

evBarcode(aCode = 12345)

identifyProduct(aCode = 12345)

¥

use the sequence diagram

~SDPurchase with_remove“ from the
specification phase of the CashRegister

getProduct{aCode =

addProduct{aProduct
1

- “.'_,- TestCases

=R ToctCase Purchase with removel)
I~

p SDInstances
E_Iu Purchase_with_remove

Add SDInstance [:
SDInstance Mame:
|F'ulchase_witl'_remove
Sequence Diagram:
Press ,Add SDInstance” and
write in the field ,SDInstance
Name*“ the text
,Purchase_with_remove®.

Sequence Diagram:

| SDPurchasze_with remove in Tutorial_Prereguisitz

Scenarin canceling products in CashReaqisterPkg
Behavior in CazhRegizsterPlg

Animated Scenario zelecting products in CazhB egizterPl
Scenario manually entering a barcode in CashR egisterPl
Scenario generating a ticket in CazhRegizterFlg

Recorded_simple_startup in Tutanial_Prerequisits
SDPurchaze_with remove in T utarial_Prerequizits

Select the item
~SDPurchase_with_remov
e“ from the drop-down
combobox in the field
,oequence Diagram®.

/

project, which specifies a complete
purchase process.

-

&+ Driver and Morﬁté:-r
f* Linear

Cancel
|

Select the ,Driver and
Monitor® option and apply all
changes by pressing ,OK".
The dialog closes.

/

Passed Test Execution

ame Status
- V.{ TestCase_Purchase_with_remove O PASSED
EHy 5Dt o () PassED

The test execution PASSED with
Rhapsody TestConductor.

/

= g‘; CppCashRegister
=-[J Components

=¥ CashRegisterNoGui
=-[J Configurations
cI:5Y Debug

— - ~

=439 TCon_ComponentTest
--#, TestCases
R P8 TeochCase Purchase with remover)

Set as active component
“CashRegisterNoGui’.
Select the test case
“TestCase_Purchase_with
__remove”.

_

=l

DEOK < 3 E}
File/Tteration Line/Progress
1 100%. {30)50)

-

Edit TestCase SDInstances
Build TestCase

Update TestCase ‘

Ry oo

Execuly
Build TestZase

Execute TestZase

... and choose from
context menu the items
,Update TestCase", ,Build
TestCase“ and ,Execute

TestCase®“.

%

Marme Skatus
-1 ¥, TestCase_Purch... [(Z) PASSED
Hy =D _tc o () PasSSED

The test case runs and
passes as expected.

-

Appendix Il

Generating test reports with Rhapsody ReporterPLUS!

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

Rhapsody® Testing Environment

Test Report Generation |

ReporterPLUS Wizard : Select Task

Wwhat would you like bo do’Y

Generate Microzoft PowerPoint Prezsentation
Genearate Microzoft word Document
Generate RTF File

Generate Text File

| Wwieiter > 'E! Abbrechen

To generate a test report with Rhapsody

ReporterPLUS select a test package in the Rhapsody
browser and start the ReporterPLUS wizard. After all
needed options are selected ReporterPLUS will start to
collect information and displays it in a well arranged style
in different formats as listed in the figure.

In opposite to the Rhapsody TestConductor
HTML Test Result Report every ReporterPLUS
template can be customized to fit the users

needs.

-

e \ /
ia
=[5 TPkg_CashRegister
- Components
#-{=F Events
-5} Objects
=-Ld TestPackages
EIEJ;. TCon_CashRegi

e BT

Select the test package
»1 Pkg_CashRegister” in the

Rhapsody browser ...

BN Window Help
Check Model
ReparterPLUS
Repart on model

Report on all model elements. ..

Report on selected package...

Import ML into Rhapsody

Create/Edit template with ReporterPLUJS, ..

... and choose from the ,Tools“ menu ,ReporterPLUS -> Report on
selected package...” to create a report for the selected test

package. In case a report for all test packages in the model shall

be created, choose the menu item ,Report on all model

elements...” Y,

Test Report Generation I

ReporterPLUS Wizard : Confirmation Se|eCt the eXpOI't fOI’mat and Choose the
test report template, which has been
Egttﬁmm installed with Rhapsody TestConductor in
C.\Progranme! TelloicFhapsardy .1\ eportiphisTemplatesTestepot the ReporterPLUS template directory. This
E\}:}Ergggzrgmewe|e|ogic\ﬂhapsody 7. 145 amplestCppS ampleshT estConductor temp|ate uses the TestingProf"e to provide
URbL Beesli o el the underlying stereotypes to generate a
document.
- - TestConductor provides also a template to
generate a test requirement report,
s HJ\E Abkrechen TestRequirementCoverage.tpl.
/ \ / \ 'Opzn Template \
S
EEEEEEE E:TEEHFE PowsrPaint Preseriaion psody 7.1 \ieporterplush T emplates'\Diagrams. tpl % S Torpioes =]
Generate Test File .| I—— W
nenksTable, kol EHilseasel

iagramsDd
iy HTML Exporter.tpl =] UseCaseR{ Typ: TP

0 Select the export e Click on the Button ,,...“ to e STeIetCIt?the :te’:nlelgteth .
document format browse the test report » | €StReport.ipi-in the folder

.Generate HTML Page* template. ,,reporterplus\Te_mpIates_“ in
and choose ,Next>“. your Rhapsody installation

_ J L) U and choose ,Next>*.)

Test Report Generation lli

Table of Contents

([System Under Test (SUT)
(] Test Component Instances
(L] TestContext Diagrams

Test Report of Model CppCashRegister

(Report created at 7/17/2007 at 16:41:04)

CppCashRegister.rpy

C:\ProgrammeiTelelogichRhapsody 7.1
“SampleshCppSamplesyTestConductoryCpplashRegister

B (] Testcases Project
& TestcaseaD_te_0 -
& Testcase Code_tc D Directory
E & TestCaseSD_tc 0 Language |cee

*y) Scenatio SD_tc_0
& Testcase ato_tc_oo2
& Testcase atg_te_003
& Testcase atg_te_004
& Testcase atg_te_00B
& TestCase atg_te_007
& TestCase atg_te_008
& TestcCase ato_te_009
B Testcasaatg_te_n1n
& TestCaseato te 013
& Testcaseato_tc_014
& Testcaseato_tc_015
& Testcase atg_te_016
& Testcase atg_te_017

FHHEHEHHEAHEEEBEBE

Description

This is the CashRegister erercise model for the
Rhapsody TestConductor and ATG tutorial, It is
based on the model from M.% Richardson and shows
the main aspects of the Testing Profile
implementation firstly delivered with

Rhapsody TestConductor 2.0,

This document contains the test contexts

TCon_CashRegister |in TPkg_CashRegister:: TCon_CashRegister

Specify the report file name and execute
Rhapsody ReporterPLUS to display
information about the defined parts of your

model.

The HTML export format we use for
this example needs Microsoft Internet
Explorer (or Netscape Navigator) with
installed Java virtual machine. In case
the virtual machine is not installed, the

browser will ask to install it automatically

from the internet.

P
Generate Document.

Speichen [Aeparts | & (&1 £ BB

N

ReporterPLUS

|TF'kg_EashF|egistelI s

|HTML Page [* htrl:* htm]

B Generate |

\

Loading Use-Cazes of Package ATG_TestCaze 14

Cancel

_

Finish the ReporterPLUS
wizard, name the export
file in the ,Generate
Document® dialog and
select ,Generate”.

ReporterPLUS will collect
information from you
model and start the
corresponding application
for the selected export file
format to display.

-

\

Table of Contants
=[] TestReport of Model CppCashRegister

T !
(] Test Context D agrams
= 3 TestCases

& TestCasesD_tc_0

Discover the browseable
information in the report.
Select a linked item in the
left section to display the
corresponding
information.

More Information ...

For further information, especially
technical news, visit our internet

L information portal or contact one of our
= =—==T= worldwide sale agencies.
N T ¥ E— %

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45

