G EHD1 5 Rhapsody

IBM® Rational® Rhapsody® Rhapsody TestConductor Add On

IBM Rational Rhapsody TestConductor Add On Reference
Workflow Guide

Version 1.11




License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of the copyright owner, BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems AG
assumes no responsibility for any errors which may appear herein. No warranties, either expressed or implied,
are made regarding IBM Rational Rhapsody software including documentation and its fitness for any particular
purpose.

Trademarks

IBM® Rational® IBM Rational Rhapsody®, IBM® Rational® IBM Rational Rhapsody® Automatic Test

Generation Add On, and IBM® Rational® IBM Rational Rhapsody® IBM Rational Rhapsody TestConductor
Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of their
respective owners.

© Copyright 2000-2017 BTC Embedded Systems AG. All rights reserved.

Page 2



Table of Contents

I U 1 0T 1 PRSP 4
2 INTFOAUCTION e 4
3 IBM Rational Rhapsody Reference Workflow Overview and Variations............ 4
G300 1Y Fo o [ I YT 111 o] o R 6
3.2 Testing CONSIAEIAtIONS .......ccceieeieeiiiee e e e e e e e e e e e e e eees 6
3.2.1 Model Verification by requirements based testing..........ccccvvvvvieiiiieeeeenennnns 7
3.2.2 BACK-t0-BACK TESHING .....uuuiiiiiiiiiiiiiiiiiiii e 7
3.2.3 Coverage MeasSUIEMENT.......ccuuiiiiiee e eeaas 8
3.2.4 UNIE TESHING ...t 8
3.3 Variation of Reference Workflow without Explicit Model Verification ................ 10
4 Guided Tour through the IBM Rational Rhapsody TestConductor Add On
ReferenCe WOTKFIOW .....ccooo i e e e e e eeeees 12
4.1 The Stopwatch Project ReqUIrEMENTS ..........uvuiiiiiieiiieeeicee e 12
4.2 The Stopwatch Project — Importing Requirements into the Model.................... 13
4.3 The Stopwatch Project — Design Model Development..............cccoevvvvviviineeeennn. 13

4.4 The Stopwatch Project — Design Model Simulation (Model in the loop, MiL)....15
4.5 The Stopwatch Project — Generation of Production Code for Execution on the Host

(Software in the 100P, SIL) .....uuiiiiiiiiiiiiiiii e 17
4.6 The Stopwatch Project — Generation of Production Code for the Target Environment
(Processor in the LOOP, PIL) .......uuuuiiiiiiiiiiiiiiiiiiiiiiiii e 19
4.7 The Stopwatch Project — Verification StePS.......cccoeeiviiviiiiiiiiii e 20
4.7.1 Verification Step 1 — Creation of Test Architectures............cccceeeeeeeeeeennnn, 22
4.7.2 Verification step 2 — Requirements Based Testing.........cooeeeveveieeeeeeeeeenn. 24
4.7.2.1Test Case Specification with Sequence Diagrams...........ccoviveeeeiiiieeeiniiee e 25
4.7.2.2Test Case Specification with Statecharts, Flowcharts, and Code............................ 30
4.7.3 Verification Step 3 — Coverage of the Requirements by Test Cases........ 34
4.7.4 Verification Step 4 — Coverage of the Model by Test Cases..................... 36
4.7.5 Verification Step 5 — Coverage of the Generated Code by Test Cases....39
4.7.6 Verification Step 6 — Back to Back Testing.........ccceeeveeeiiiiiiiiiiiiiieeeeeeeeeans 41

Page 3



1 Purpose

This document describes a reference workflow for testing activities in a model based
development process using IBM Rational Rhapsody and IBM Rational Rhapsody
TestConductor Add On. It complements the IBM Rational Rhapsody Reference Workflow
document [1] that focuses on the model based development with IBM Rational Rhapsody in
safety-related projects. The subsequent sections provide further information and describe
variations of the IBM Rational Rhapsody Reference Workflow when applied in practice,
focusing on testing methods as provided by IBM Rational Rhapsody TestConductor Add On
from BTC Embedded Systems.

2 Introduction

During translation of textual requirements to final object code, several verification steps need
to be done in order to ensure that the translation is performed correctly. In a development
process following the V-model, such verification steps are commonly done manually by
performing tedious, time-consuming, and error-prone static tests and reviews to compare the
input of a step with its respective output.

Model-based development and model-based testing enable the automation of many of these
manual tasks. Because formal models have clearly defined operational semantics, they can
be simulated and tested for functional correctness very early. Therefore it is possible to
perform a requirements-based functional test of the model that ensures the model correctly
implements the given requirements. Furthermore, code generators can be used to convert the
model to compilable source code such as C-code. Instead of manually reviewing the
translation step by comparing code behavior to model behavior, automated back-to-back
testing can be used to conduct the comparison. By using the same test cases and observing
test results, it is possible to establish an equivalence check of the behavior on the model and
code levels. To complement equivalence checking, appropriate model and code-coverage
metrics shall be used to demonstrate completeness.

3 IBM Rational Rhapsody Reference Workflow Overview and
Variations

The IBM Rational Rhapsody Reference Workflow [1] describes an approach for model-based
development including automatic code generation and model-based testing.

Figure 1 shows the major activities of this reference workflow. The upper part of the workflow
describes activities that are performed without IBM Rational Rhapsody TestConductor Add
On. The lower part of the workflow describes activities that are performed with IBM Rational
Rhapsody TestConductor Add On. The approach addresses design and implementation
together with appropriate test and verification:

Page 4



e Textual requirements guide the development of a formal UML/SysML model, which
then is translated to code using code generation. Both refinement steps are
accompanied with appropriate guidelines and checks.

e The refinement step from textual requirements to a model ready for code generation is
verified by performing systematic requirements based testing on the model level
leveraging from model simulation. The generated object code is verified by executing
the same set of test cases as for the verification of the model, and performing an
equivalence check of the test results (back-to-back testing).

e Test execution on model and code comes along with structural coverage measurement
to assess the completeness of the tests and to avoid unintended functionality, for
instance, to identify implementation details introduced by the code generator

e Requirements coverage is measured during execution of the test cases.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
i

Rational Rhapsody
¥

v Code Compile
Modeling generation Link i
Requirements > Model > SImTE > Object
code code
! s
i [}
! Requirements I‘. Back to back testing s
i . -
f based testingw. Tl
| . . v T o
i = T - .
R u.irementsr coverage Structural coverage - R E R Structural coverage
4 g measurement - measurement
measurement
(model) (Code)
Rhapsody TestConductor

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow

Requirements are translated into an executable model with appropriate modeling guidelines.
Model based tests are added in order to ensure that the model indeed correctly captures the
requirements. Coverage metrics (requirements coverage and model coverage) guarantees
the completeness of the model based test suite. Code generation, either automatic or manual
or a mixture of both, may be used to generate an implementation from the model. Back-to-
back testing between model and code constitute the key element for code verification. Code
coverage metrics are used in order to ensure completeness of the test suite with regard to the
predefined code coverage criteria.

The key element of this workflow is the verification of the translation steps from the
requirements into the model and from the model to the generated code. These verification
steps guarantee that the translation steps are performed correctly. In this document, we focus
on the verification activities depicted in the lower part of Figure 1, i.e., the verification activities
that can be performed with IBM Rational Rhapsody TestConductor Add On. The verification
activities depicted in the upper part of Figure 1 are described in detail in [1]. The coverage
measurement activities complement the verification steps in order to ensure completeness of
verification.

Page 5



3.1 Model Evolution

Figure 1 roughly sketches the main steps for translating requirements to code suitable for a
target-architecture.

In practice, the process is of a more incremental nature. With regard to modeling there is
usually an evolution of the model from an early specification model via a design model to an
implementation model containing all relevant information for the subsequent code generation.
These refinement steps are outlined in Figure 2. Note that such refinements can be
functionally motivated or implementation related.

Modeling using quidelines and
guideline checking

Early '

‘.-" - ‘-‘ -
Te:xtual »| specification Design ,| Implementation
requirements model model model

Figure 2: Evolution of textual requirements into an implementation model ready for production code
generation

Textual requirements are translated to an executable model that helps to verify the
correctness and completeness of later modeling stages with respect to the requirements, as
well as to improve understanding of the requirements. This first model is known as an early
specification model. Such an early specification model grants traceability between
requirements to derived model elements and vice versa, as required by the safety standards
ISO 26262, IEC 61508, IEC 62304, and EN 50128. A design model is obtained from that
specification model by adding software architectural details such as structural hierarchy of
components and their interactions. By enhancing the design model with implementation
elements such as data types or fixed-point approximations - in case a fixed-point target is
used - one finally obtains an implementation model containing all information necessary for
subsequent production code generation.

All modeling steps should be conducted in accordance to suitable modeling guidelines which
can be checked and established using appropriate tools.

3.2 Testing Considerations

The model-based testing process, i.e. the testing process that accompanies the model-based
development process, greatly benefits from the ability to execute the model at its different
evolutionary stages.

3.2.1 Model Verification by requirements based testing

Viewing the IBM Rational Rhapsody model based reference workflow from a test and
verification perspective, the first significant activity is the verification of the model by

Page 6



demonstrating that the model is correct, meets its requirements and does not contain
unintended functionality.

Model verification is mainly done by performing functional, requirement-based tests on the
executable model. Test cases that cover all functional requirements have to be derived and
executed. In order to ensure completeness of the model based test suite, requirements based
coverage metrics are used that show the coverage of the requirements by test cases.
Additionally, in order to ensure that the model does not contain any additional unintended
functionality, model coverage measurement is used to verify the completeness of the test
suite with regard to the model.

By all the above verification steps, one obtains a “Golden Model” which is used as a reference
in later testing steps.

3.2.2 Back-to-Back Testing

From early specification models or executable specifications, subsequent refinement steps
(see 3.1 Model Evolution) then shall preserve the semantics of the model. In practice, this can
be assured by re-executing the requirement based test cases on the evolving model. The
same approach can be used to automate the verification of the generated code, provided that
the model based test cases can be executed on the generated code. By comparing the test
execution results of the code with the test execution results of the model, one verifies if the
code behaves equivalent to the model. In practice, one typically distinguishes between 3
different execution levels of a model, called MIL (model in the loop), SIL (software in the
loop), and PIL (processor in the loop). The model based test suite shall reveal equivalent
results on all these levels (v. Figure 3).

Requiremerts »  Model Dource o  Object
code code

MIL vs. SIL SIL vs. PIL
Requirements

based lesting‘:"“ -

-
- bt
-

-

- -

" MIL vs. PIL

et &

Requirements coverage Sﬂ';lncchmlcml;age -_‘*"-u__\ % L3
measurement asure TVeasol “an .
(model) "~=-.._ Structural coverage
measurement
(Code)

Figure 3: Back-to-back testing on different execution levels (MIL to SIL, SIL to PIL and MIL to PIL)

The above mentioned test suite derived from the requirements can be executed on all levels
MIL, SIL and PIL, and the results can be compared. Even if all test results are successful, it is
important to note that the applied structural coverage metrics can reveal that the test suite is
not complete with regard to the measured coverage criteria. In this case it is needed to extend
the test suite with additional test cases in order to achieve the desired level of structural
coverage, or to remove unintended functionality.

Page 7



3.2.3 Coverage Measurement

For measuring code coverage, IBM Rational Rhapsody TestConductor Add On instruments
the code of the SUT. After instrumentation, the test cases are executed on the instrumented
code in order to compute the code coverage achieved by the test cases. In order to make
sure that this instrumentation of the code does not affect the test results, the test cases can
be repeated without instrumentation. This approach is mentioned in Note 3 of ISO 26262-6
(9.4.5) [2].

3.2.4 Unit Testing

Like ordinary testing processes, model-based testing approaches can take advantage from
design hierarchy for performance and efficiency purposes. For this, IBM Rational Rhapsody
TestConductor Add On supports testing of isolated SW components, often called SW units. A
system under test (SUT) can be either a leaf SW component without further subcomponents,
or a hierarchical SW component that contains further subcomponents. Unit testing means to
test SW subcomponents isolated from their integration, allowing to

e stimulate the SUT interface and verify requirements directly on the components they
belong to, and

e perform back-to-back testing for this SUT with respect to different abstraction levels
(model, code, object-code), and

e Accomplish structural coverage goals for an entire system by hierarchical accumulation
of coverage achieved for its subcomponents.

Note that unit testing strategies are more powerful than monolithic ones, as units of a design
are tested independent from their integration context. For instance, certain portions of code
might be traversable only by stimulating a subsystem’s interface, while stimulating the top-
level interface cannot be sufficient to achieve this goal. Additionally, complexity of the SUT in
the unit testing approach is lower and hence makes it easier to verify correctness and to
debug errors. The basics of model and code verification described in the reference workflow
remain unchanged, i.e., the workflow can be applied on basic units as well as on more
complex units that have internal subunits. This is depicted in Figure 4.

Page 8



Modeling guidelines and
guidelines checking

Requiremerts

37
CHET
I

Coding guidelines and

Requirements

-
-
-

based testingw = "-

Requiremenis coverage

measurement

Model

L] [
1 [

guidelines checking
I
I
| Source code
¥
cote | [] []
generation

] [

Object code

1 [
1 [

L

- Sy

~——

—-—

">+ MIL vs. PIL
%o W

-~ ~
-~

- A
“~-.__" Structural coverage

~.

measurement

h 4

[]

Figure 4. Elements of the IBM Rational Rhapsody Reference Workflow considering hierarchical and

modular partitioning and modular development

For example, back-to-back tests between model and code using IBM Rational Rhapsody
TestConductor Add On can be performed to verify the correct implementation of software
units or modules, as well as part of the software integration testing for complete models and

the correspond

ing code.

Page 9



3.3 Variation of Reference Workflow without Explicit Model Verification

Beside the workflow depicted in Figure 1, in practice sometimes the variation of this workflow
depicted in Figure 5 is applied. The difference between the workflow depicted in Figure 1 and
Figure 5 is that in this variation, there is no explicit verification of the model regarding the
given requirements.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
Rational Rhapsody
v
A Code Compile
Modeling generation Link :
Requirements > Model > SIEE > Object
code code
\“.\ Requirements “\ Back to back testing

based testing
o -

==
Structural coverage
measurement

)

Rhapsody TestConductor <"

Figure 5: Variantion of the reference workflow without explicit model verification

Requirements coverage
measurement

Without explicit model verification, the workflow contains the following steps:

e Creation of a model based on the given requirements. The model is created with
respect to modeling guidelines. However, the model is not simulated or dynamically
tested. The reason for not performing simulation or dynamic testing of the model can
be that the model e.g. contain some target hardware specific parts (e.g.some libraries
only existing for the target hardware) that cannot be simulated at all on the model level.

e The model is translated into source code by applying an automatic code generator or
manual code development or a mixture of both.

e The source code is compiled for SIL and PIL.

e Test Cases are created on basis of the requirements with IBM Rational Rhapsody
TestConductor Add On. These test cases are executed by IBM Rational Rhapsody
TestConductor Add On for SIL and PIL. Back to back testing can be performed
regarding SIL and PIL.

¢ |IBM Rational Rhapsody TestConductor Add On measures the requirements coverage
and the code coverage.

Although this variation of the reference workflow does not contain an explicit verification of the
model, the correctness of the model is verified indirectly by verifying the output of the

Page 10



automatic code generator on the code level. The drawback of such an indirect verification on
the code level is the fact that in case of errors the error analysis must be performed on the
code level and cannot be done on the model level directly. After the source of the error is
identified on the code level, one needs to identify appropriate changes on the model level that
will correct the problem on the code level. Reverse-engineering such a problem resolution
from the code level to the model level is sometimes time consuming and far from trivial.
Nevertheless, by keeping the model in sync with the code, an indirect verification of the
model, is achieved by performing a complete requirements based test on the code. The code
coverage metrics provided by IBM Rational Rhapsody TestConductor Add On give evidence
that the generated code does not contain untested code.

Page 11



4 Guided Tour through the IBM Rational Rhapsody
TestConductor Add On Reference Workflow

In this section, we describe by means of a running sample how the workflow described in
Figure 1 can be instantiated. The purpose of this section is to provide additional practical
information that eases the adaption of the workflow described in Figure 1.

4.1 The Stopwatch Project Requirements

As a running sample we want to sketch the development and testing of a stopwatch model.
For the stopwatch there exist a couple of requirements. The requirements are kept in a word
document (cf. Figure 6).

i Stopwatch_Regs.doc - Microsoft Word

Datei Bearbeiten Ansicht Einfligen Format Extras Tabelle Eenster 2 Adobe PDF x|
DS eRY B v - | QBORES BT wx -3,
B Toi B TN ® | Reguirement_Text ~ Times New Roman v 12 v F XU ESE=E=EiS¢EEQO-2-A-
Moa FeacmEBeeiARQ R,
Stopwatch i||. TS SO O ---1---5--'3-|-4-|-5-|vsv|-7-l-s---e---w--'u-|-1z-|-13-|-14‘|-1s'|-a-|-17-|-‘1s- -
Specifications docur.
REQ_Init

REQ_Running_1
REQ_Running_2
etTime
)_Stopping

G ez

Stopwatch
Specifications document

REQ Init

After starting the stopwatch, the sopwatch shall display O minutes and 0 seconds

(0:0).. —
REQ Running 1

After starting the stopwaich, the stopwatch shall count minutes and seconds.
REQ Running 2

After starting the siopwaich, the stopwaich shall count minutes and seconds. The
colon between displayed minutes and seconds shall blink once in a 1 second time

12020 LT DII0SCICR CRRIIZRCIAR RGBS D (0200 I o

interval.
REQ SetTime
The stopwatch shall provide a function “SetTime" that sets the current time.
REQ Stopping A
When running, pressing the key of the stopwatch shall stop it. —;-
= g
‘ o | =lefa] =] 3
zeichnen~ [y & | autoFormen> N\ N OO E 48 d-ZL-A-==8 @ .
Seite 1 ab 1 11 Bei 14,1cm 2Ze 22 Sp 1 A Englisch (Gr | O3

Figure 6: Textual requirements for the stopwatch listed in a word document.

As an example, in this document requirement REQ _Init is listed that states:

-,REQ_Init: After starting the stopwatch, the stopwatch shall display 0 minutes and 0 seconds
(0:0)%.

Page 12



4.2 The Stopwatch Project — Importing Requirements into the Model

Based on the requirements described in the previous section, one can start creating an initial
IBM Rational Rhapsody model. At first, the initial model should contain just the requirements
specified in the word document. There are different ways in order to make the requirements
visible in the IBM Rational Rhapsody model. For instance, one can import requirements from
a requirements management system like DOORS by using the DOORS import feature of IBM
Rational Rhapsody. However, in this sample we simply manually create requirement elements
in the model. After adding these requirement elements, all requirements are now contained in
a separate Requirements package in the model (cf. Figure 7).

Entire Model Yiew ~
= 4 C_Stop\atch
-0 Carnponents

=0 Packages . s, 5 —
& b InterfacePky Requirement : REQ_Init in RequirementsPkg E
&5 PredefinedTypes (REF) s

General 'lDescription. Felationz | Tags || Properties

&5 PredefinedTypesC (REF)
=53 RequirementsPkg Marme: |REG_Irit |
== Feguirements —

REC Init Stereotype: . v. | ﬂil

Type: | I-:l.equiremenl. 2 ||
1D
REQ:Sb:npping Defined in:

+ % gmgewa;tkhpkg Specification:

& stem - A :

&£ Tit:rialF'k% After starting the stopwatch, the stopwatch shall display O minutes and 0 seconds (0:0).

[+ Profiles -

Locate [8]:4

Figure 7: All requirements from the word document are represented as requirements in the IBM Rational
Rhapsody model. The textual specification is stored for each requirement.

4.3 The Stopwatch Project — Design Model Development

Based on the initial model created in the previous section, the next step is to develop the
functional design model by means of UML diagrams provided by IBM Rational Rhapsody. At
this point, we do not go further into the details how to develop such models with IBM Rational
Rhapsody but shortly summarize the final model.

The developed IBM Rational Rhapsody model basically contains 4 different packages. The
package “RequirementsPkg” contains all requirements. Package “InterfacePkg” contains so-
called “Interfaces” and “events”. The interface package is depicted in Figure 8. An interface is
a collection of synchronous (operations) and asynchronous (events) messages that can be
used in order to exchange information between system components, e.g. between classes.
As an example, the interface “IDisplay” contains the events “evReset” and “evStartStop”.

Page 13



3 Components
[ Packages
=53 InterfacePkg
=% Events
7 evPressKey(int Keyval)
¥ evReset()
P evShow(int m,int s,RiCBoolean b)
¥ evStartStop()
= (2 Interfaces
=& Button
& LB Operations
&P evReset()
EP evStartStop()
= & IDisplay
= (8 Operations
£ evShow(int m,int s,RiCBoolean b)
=8 IKey
=B Operations
£ evPressKey(int Keyval)

= (2 C_StopWatch
=

Figure 8: Interfaces of the stopwatch model

In the package ,StopwatchPkg“ (cf. Figure 9) one can see the classes that implement the
functional behavior of the model. The class “Stopwatch” provides the functionality of a
stopwatch. The other classes “Button”, “Display” and “Timer” represent internal classes that
are used inside the class “StopWatch” (cf. Figure 9, right side).

Entire Model Yiew ~
= ) C_Stop\Watch
- Components
= Packages
#-f7 InterfacePkg
57 PredefinedTypes (REF) oy loButtan (‘pl_n[
#-§ PredefinedTypesC (REF) =] ¢ @]
£3 RequirementsPkg iButton
=-§7 StopwatchPkg
=2 Classes
#-EX Button IButton
£ Display pOut]
- = Stop\Watch b

s :- Object Model Diagram: Components in ... - [3/X| - object Model Diagram: StopWatch over...|— |0 X|

StopWatch
Button B SRR

1 itsButton:Button &

Timer B

¢ | Epevstanstopy
IGisplay | LirevReset)

=L
IDisplay

Timi
[Display

CJ comment_12 Display =]

=3 Object Model Diagrams
8- -
Se StopWatch overview ]
@ §7 SystemPkg
#-§7 TutorialPkg
@3 Profiles

pDisplay
=0
IDisplay

Figure 9: Classes Button, Timer, Display, and StopWatch

The behavior of a class can be defined by using operations and statecharts. As an example,
the class “Timer” contains a statechart that defines the behavior of the class (cf. Figure 10)

Page 14



F & -_statechart of : Timer
Entire Model View ~
= 4 C_Stopiiatch eviteset

-0 Companents T

Packages R/ / m/
w57 InterfacePky s ™)

#-57 PredefinedTypes (REF) Running
#-57 PredefinedTynesc (REF)

571 RequirementsPkg ‘
= [ StopwatchPkg resftme);

=B Clagses on
¥ B bt |
i g Diisplay /“>
t & ?T‘J:npe\;\"ath / Q\ colon @
+ (2 atributes / z & shaw(me, me-=min, me->zac, TRUE);
(= Generalizations - tstg‘
=B Operations YRR
- Forts tm{=00) /|
{2 Statechart ;
G corens Jo %SPLrtStDD Em{500) tTT#grDDt)uik(ma)-
-0 Object Model Diagrams aoff @') ,/ ! = .
&7 SystarmPkg i ‘f nocolan 2

&5 TutarialPlkg EEshow(me, m.. P
& 3 Profiles ‘\/t’/’

R

éshow(me, me-=min, me-=sec, FALSE]);

Figure 10: Statechart of class Timer

4.4 The Stopwatch Project — Design Model Simulation (Model in the loop,
MiL)

After the model has been completed, as a next step one can interactively simulate the model
(Model In the Loop simulation (MiL)) in order to verify that the functional behavior of the
design model is as specified in the requirements. In order to simulate a complete model or
parts of a model, one needs to define a so-called “component”. A component defines which
parts of the model should be considered during Design Model simulation. Within a
component, one can define different so-called configurations. A configuration provides several
options, e.g. if simulation code or production code shall be generated for the model elements
that are in scope of the component. The difference between production code and simulation
code is that the production code can later be used in the final production environment.
Contrary to that, simulation code contains many additional code parts that are only needed for
simulation, animation, visualization and debugging purposes. Additionally, a configuration
provides many simulation and code generation options that can be used in order to generate
specific source code for e.g. specific compilers. In the stopwatch model there is one
component with a simulation configuration defined (cf. Figure 11), where instrumentation
mode is set to animation.

Page 15



Omponents

Configuration : StopWatchDebug in StopWatchComp

] StopwWatchCom — #
ﬁtjl o g:lnﬁguratiunsp ! General | Description Initializatinnﬂ Settings :__I:hecks_ Fielationz | Tags | Properties T
- StopWatchDebug i -
= ackanes Dlirectons: | G5 Tes hapsody 7645 amplesiCEamplz] | .. [¥] Use Default
- FT Il o i :
&£ PredefinedTypes (REF) SHiaes L [I]
# 7 PredefinedTypesC (REF) Additional 5 ources: ™
#-§7 RequirermentsPkg T =
o E:l StopiatchPkg Standard Headers: I | ’I]
® [ SystemPkg Include Path: _ 'D
&£ TutorialPkg : L =:
®=-23 Profiles ’ rEtrumentation i _
Instrumentation Mode: rimation |
“webify
[]web Enabling
Time Model: (%) Real (2 Simulated
Statechart Implementation; Feyzahle (%) Flat P
Locate Ok

Figure 11: IBM Rational Rhapsody component with simulation configuration. By setting the
instrumentation mode to “Animation” the configurations becomes a simulation configuration. (MiL,
Model in the loop).

With this configuration one can now generate simulation code including model animation that
can be compiled and executed. Executing simulation code means that the model simulation is
started. During a model simulation, the model can be executed, controlled and observed. The
so-called animation toolbar (cf. Figure 12) allows a step-by-step simulation of the model,
where the steps can have different granularity. Alternatively, one can also simulate the model
in real time. Additionally, during simulation one can stimulate the model by providing inputs to
model objects. For instance, one can send events to specific model objects. The reactions of
the model to the provided inputs can be observed by means of so-called animated diagrams.
An animated diagram is a diagram that highlights the current state graphically (cf. Figure 12).
Moreover, the model browser supports to inspect the values of object attributes during a
simulation run (cf. Figure 12).

Page 16



IBM Rational Rhapsody Developer for C - C_StopWatch.rpy

File Edit View Code Layout Tools Whndow Hep

T & of =5 M L

& lal °f ki ¥9 45

S ST I ) TR

Entire Model View  ~

s R

A X

o B > |11 B StopwatchComp

Animation

= 4o C_Stopwatch
= L0 Components
= g StopwatchComp
= [0 Configurations
+ & StopwatchDebug
= Packages
+ [ IntarfacePkg
# [ PredefrnedTypes (REF)
# [ PredefnedTypesC (REF)
# [ RequirementsPkg
= [ StopWatchPkg
= (£ Classes
+ E3 Button
# E3 Display
% & Stopwatch
= E3 Timer
# (= Atributes
# (2 Generalizations

& L il 7 E3 X[100% || B

FhRUPFPOLFEESS
v | StopwatcrDetus

evReset

Running

pre_off

on

*-

colon ('%)

(=2 show(me, me->min, me->sec, TRUE), |
evStatStdp ¢ o T
tm{(S00) f T

|
tnj(500)/
T‘nnev_tick(m){ e

nocolon (;‘)}

(& show(me, me->min, me->sec, FALSE),

&St&mop tmi(500)

Instance Name: | myStopi/atchi0] keStopwatchitsTimer

Attribetes: off @’J
e
- | — ‘

g fiame
| min 1]
m\ '

Relations:

2 show(me, m...

Locate oK

Figure 12: A simulation of the model allows to execute the model step by step as well as to watch
attribute values and states of the model during execution.

The described model simulation can be used in order to analyze the model behavior
interactively and graphically. The concept of MiL simulation with animation is applied in order
to verify that the functional behavior of the design model is as specified in the requirements.

4.5 The Stopwatch Project — Generation of Production Code for Execution
on the Host (Software in the loop, SiL)

In addition to model simulation that we described in the previous section, the generation of
production code is an important step in the model based development process. Regarding
generation of production code one usually distinguishes between execution of the generated
production code on the host environment and on the final target environment. These two
different execution environments are usually called SiL (Software in the Loop) and PiL
(Processor in the Loop). In order to generate code for SiL, one needs to create another code
generation configuration in IBM Rational Rhapsody. Similar as for the MiL, by defining several
code generation options, SiL code can be generated. For SiL an important code generation
option is that “Instrumentation” option needs to be set to “None”, i.e., the generated code
does not contain any instrumentation code which is only needed for simulation. Additionally,
one needs to define the compile environment for SiL. For the stopwatch sample we use a
cygwin environment for SiL. The SiL configuration is depicted in Figure 13.

Page 17



& §J C_StopWatch

& (O Components Configuration ; StopWatchHost in StopWatchComp

= 1 StopwatchComp - 2
= [ Configurations | General | Description | Initialization | Settings | Checks | Relations | Tags | Properies |
Directory: [E77e sprody? 6/5amgies/CSamples/T exConductor || | [£]Use Defaid
20 Packages‘ Libearies: i {B
# b7 InterfacePkg . :
& [ PredefinedTypes (REF) Addiional Sources: 1[3
® £ PredefinedTypesC (REF) Standard Headers: | [@
# L7 RequirementsPkg Include Path | ’D
# £ StopwatchPkg T ——
o} tl SystemPkg </I-;s-lrunmlalion
@ £3 TutorialPkg Instumentation Mode: None | pe——
# [ Profiles B S — l - I —
Webify
["]web Enabling
Time Model: © PRedl O Simulated
Stat - ® Flat
( Environment Settings
Environment: (Cygwn / v [ Defar |
Buid Ser | Debug v 1
Compiler Switches: yslncludeDiredoties $DefinedSymbols ${INST_FLAGS) $INCLUDE_PATH)
[$INST_INCLUDES) $CompdesFlags $OMCPPCompdeCommandSet -¢
Link Switches: | $0MLinkCommandSet $LinkeiFlags
MmE
Locate QoK

Figure 13: Configuration for generating code for execution on the host system (SiL, Software in the
loop).

After defining a code generation configuration one can generate code for SiL with IBM
Rational Rhapsody’s production code generator (cf. Figure 14). Additionally, a makefile is
generated that is used in order to build the generated source code for the selected compile
environment. After all generated source files have been compiled the created application can
be executed on the host system.

Page 18



® IBM Rational Rhapsody Developer for C - C_StopWatch.rpy
File Edit View Code Layout Tools Window Help

(%08 | <& V| e W o=
‘Lt_‘fﬂlt'lﬂ‘%%_; —

Edit ?mﬂw

Roundtrip Bl F I vie
Force Roundtrip »  StopWatchHost With Dependencies

Entrre Madel Vier  pynamic Model Code Associativity b, EANG Froject
5 4o C_Stopwat
= (2 Comgpor Build 14
= @1 Sto}  Rebuild »
BUC  Clean
@ §
=¥ OpenlIDE ..

k
Target »
= [0 Package » 6
@ [ inter  Debug

] Pred IDE Options
BLIPred Sy
# [ Requ
@ Stop
@50 Sysh
& E : Eo;:;? Generate/Make/Run Ctrl+Shift+FS
% Cp Testpac  Clean Redundant Source Files

Build Framework

Code generated to direct
Generaring file Button.h
Generating file Display.h
Generating file IButton.h
Generating file IDisplay.h
Generating file IKey.h
| |Generating file
nerating file

: C:/Test i1t/Rhapsody?.6/5anples/CSanples/TestConductor/CStopWatch/StopWatchCong

Figure 14: Generation of production code

The concept of SiL simulation is applied in order to verify that the functional behavior of the
production code on the host system is as specified in the design model and requirements,
respectively. During SiL execution on the host system some abstractions are applied
regarding the final hardware and operating system.

4.6 The Stopwatch Project — Generation of Production Code for the Target
Environment (Processor in the Loop, PiL)

For PiL code generation again a separate code generation configuration is needed quite
similar to generating code for SiL. In the stopwatch sample we assume that the target
environment runs an Integrity operating system (OS). Thus, this OS is chosen as environment
in the code generation configuration for PiL (cf. Figure 15). As already described in the
previous section one can now generate code for the target environment. The generated code
can be compiled e.g. by using a cross compiler. By using a dedicated development

Page 19



environment for the target system one can download the created application to the target
system (either an evaluation board or the real target system) and execute it.

Entire Model View ~

= a C_StopWatch
= (2 Components Configuration : StopWatchTarget in StopWatchComp
= g StopwatchComp '
= (O Configurations Genesal | Description | Intialization  Settings | Checks | Relations Tags | Properties
# & StopwatchDebug
- ) StopWwatchHost Directory: 1 [7]Use Defaul
g DT TR
# %) stopwatchTarget Libraries: \ G
= Pameag S I
Additional Souces:
# [ InterfacePkg L | L
# {1 PredefinedTypes (REF) Standard Headers: | (]
# L7 PredefinedTypesC (REF) Include Pathe [ D
+ £ RequirementsPkg L :
+ ﬁ, StopWatchPkg Instrumentation
% £ SystemPkg Instumentation Mode: | None v
# £ TutorialPkg
#® [ Profiles
Wb
+ L3 TestPackages i
[T]'web Enabling
Time Model: ® Real O Simulated
ol Statechart Implementation: : ® Flat =
d Enviranment Settings
Enviranment: Miciosolt v
Buid Set: o
Compiler Switches: Tt e ~
inus o]
Microsoft M [:]
MicrosoftiDF >
Link Switches: MontaVista ‘
MSY(CY | [_] v
NucleusPLUS-FPC
Locate OK  [QNXNeutinoMomentics
Solaris2
Solaris2GNU
Vworks
Viwoek sEdiab
Viworksbdiab_RTP
VW ork sbgnu
ViwocksBgnu RTP
WorkbenchManaged
WorkbenchManaged RTP

Figure 15: IBM Rational Rhapsody configuration for generating code for the target environment.

The concept of PiL simulation is applied in order to verify that the functional behavior of the
production code on the target hardware is as specified in the design model and requirements,
respectively. During PiL execution on the target system the production code is running on a
processor close to the final hardware and operating system.

4.7 The Stopwatch Project — Verification Steps

In the previous sections we developed the stopwatch sample model, and we showed how

manual and interactive simulation can be used in order to analyze and verify the behavior of
the model. In this section we want to show how the developed model can be systematically
verified with IBM Rational Rhapsody TestConductor Add On by means of model based test

cases.

Before describing the individual verification steps in detail, we shortly sketch the general
working principle of IBM Rational Rhapsody TestConductor Add On that is depicted in Figure

16.

Page 20



Rational Rhapsody

p—
Code Generation B

DesignModel
—

' references
=

TestModel
TestContext

TestComponents l
- Test Code
TestCases Verified
. Result
[ ]
Model Population o I Result Verification o '

TestConductor

est - Unverified

Executable Result

i

|

Figure 16: Technical concepts of IBM Rational Rhapsody TestConductor Add On.

Starting point is always a IBM Rational Rhapsody model or a part of a IBM Rational
Rhapsody model. The part of the model that should be verified is called System Under Test
(SUT). The SUT is depicted in Figure 16 in the upper left part. Based on the selected SUT
and the test cases that are specified by the user, IBM Rational Rhapsody TestConductor Add
On creates a so-called test model that defines the test architecture as well as the test
behavior by means of UML diagrams and operations. For instance, one can choose a single
class as SUT. In a first step, IBM Rational Rhapsody TestConductor Add On creates a test
architecture for the selected class, i.e., IBM Rational Rhapsody TestConductor Add On
creates additional model classes and objects solely for the purpose of testing the SUT. All test
artifacts that are created by IBM Rational Rhapsody TestConductor Add On form the so-
called test model. The test model is always created separately from the design model in order
to make sure that the design model is not changed accidently. The test model just references
the model elements in the design model, but does not make any changes to the design
model. If a test case is specified by the user, IBM Rational Rhapsody TestConductor Add On
creates additional classes and staecharts that realize the specified behavior of the test case.
The creation of additional test artifacts based on specified test cases is called “model
population” (step 1 in Figure 16).

After model population, for the purpose of test execution, IBM Rational Rhapsody
TestConductor Add On uses IBM Rational Rhapsody‘s code generator in order to generate
code for the SUT as well as test code for the populated test model. The generated code, both
SUT code and test code, is compiled and linked into one test executable. By running the test
executable the specified test cases can be executed and test results are generated. The

Page 21



generated test results are considered to be intermediate results and are subject to cross
verification. This is because potential errors of IBM Rational Rhapsody’s code generator may
have influenced the test results. In order to detect such unwanted influences on the test
results, IBM Rational Rhapsody TestConductor Add On performs so-called result verification
on the generated test results. The process of result verification executes a consistency check
on the generated test results. The consistency check is based on the specified test cases in
the model and is totally independent from IBM Rational Rhapsody’s code generator. After
result verification has been performed, the final test verdicts and test reports for the executed
test cases are available.

Note: the granularity of the result verification check goes down to code blocks, but does not
completely verify the content of code blocks. Code blocks can be used in code test cases, in
flowchart and statechart test cases on e.g. transitions and in states, and in sequence diagram
test cases e.g. in test actions. Rhapsody code generation copies the code blocks from the
model elements into the generated source code, but does not modify the code blocks. The
result verification check does not verify that the Rhapsody code generator does a proper copy
action for the content of all code blocks.

Example code block:
il=itsCashRegister.isNoMoreProducts();
RTC_ASSERT_NAME("check_1.1", i1==1);
itsCashRegister.addProduct(new Product(1234,"apple",100));
i2=itsCashRegister.isNoMoreProducts();
RTC_ASSERT_NAME("check_1.2", i2==0);

This code block might be attached to an operation body in the model. It is assumed that the
Rhapsody code generator just copies the whole body into the source code. The result
verification verifies that the first assertion is indeed executed during test execution. But it is
not verified that the second assertion is also executed.

It is important to note that the principle testing activities (as described in Figure 16) are the
same for MiL, SiL and PiL. The only difference between these execution levels is that if test
cases are executed on MiL, IBM Rational Rhapsody TestConductor Add On uses IBM
Rational Rhapsody’s simulation information in order to compute which parts of the model are
executed during execution of a test case (model coverage, cf. section 4.7.4).

In the following, we describe all testing activities that are depicted in Figure 1. The first step of
all testing activities is the creation of suitable test architecture for the selected SUT.

4.7.1 Verification Step 1 — Creation of Test Architectures

The basis of all testing activities is a test architecture. A test architecture defines which parts
of the model are tested. The term “test architecture” is defined in the so-called “UML Testing
Profile”. The UML Testing Profile is a UML profile that contains several new elements for the
purpose of modeling test architectures, test cases and test data. For instance, the term “test
case” is defined in the UML Testing Profile as an operation. This means, that a test case has
the same properties as a UML operation. Furthermore, new elements can have additional
properties (compared to the original element). These additional properties can be defined as
so-called “tags” for the new term. Further information about UML, Profiles and the UML
Testing Profile can be found in [4] and [5].

Page 22



The UML Testing profile is installed together with IBM Rational Rhapsody TestConductor Add
On. All testing activities are based on the UML Testing Profile. Thus, the profile needs to be
added to the model before the testing activities can be started. Adding the profile can be done
either manually or automatically by IBM Rational Rhapsody TestConductor Add On. In the
following, we describe how IBM Rational Rhapsody TestConductor Add On adds the profile
automatically. For instance, when invoking a IBM Rational Rhapsody TestConductor Add On
function the first time, IBM Rational Rhapsody TestConductor Add On checks if the Testing
Profile is already part of the model. If not, then it is added to the model. Usually, the first IBM
Rational Rhapsody TestConductor Add On function that is invoked is the creation of a test
architecture.

For the stopwatch model, we decide that class “Stopwatch” that realizes the stopwatch
functionality shall be tested. Thus, we select class Stopwatch in the IBM Rational Rhapsody
model and invoke the IBM Rational Rhapsody TestConductor Add On function “Create
TestArchitecture” (cf. Figure 17).

TI')
5 *«Object Model Diagram: StopWatch overview in Stop... E

Entire Mode| View ~
2§ C_Stopdatch
#-(1 Components
-0 Packages
&£ InterfacePkg
#-£7 PredefinedTypes (REF)
#-£7 PredefinedTypesC (REF)
£ RequirementsPkg

—r
]
[=3
e
it
[x]
in g
——r

Features...

1Key Add Mew 3

=50 StopwatchPig cut Strg+x
-2 Classes Copy Cir+C
&% Button pOut ) i« Copy with Model
B g g;;pl;j’ i i Delete from Model
] piida isplay } ;
Displ
&) % Timer EfrevShow(mint st .. i Remave fram View Del
- Comments Set Stareatype r
-3 Object Maodel Diagrams = Change o 4
E-E 1 SysternPkg Refactor 4
#-50 TutarialPlg
-3 Profiles Mavigate 4
Create Lnit
Ports 4

Make an Chiject

Check

Generate
Edit Code
Roundirip

Format...

Digplay Options. ..

Associate Image...

Make Default...

Expand to fit text Strg+E

Create Testérchitechre

Rational Rhapsody Gateway 4

Figure 17: Automatic creation of a test architecture with IBM Rational Rhapsody TestConductor Add On
for class StopWatch.

When this function is invoked, IBM Rational Rhapsody TestConductor Add On creates a test
architecture for the selected class. The chosen class (more precisely, an instance of the
chosen class) is called “SUT” (System Under Test), another new term defined in the UML
Testing Profile. In addition to the SUT IBM Rational Rhapsody TestConductor Add On creates
so-called “TestComponents” that are connected to the interfaces of the SUT. A test
component is a class that is purely created for testing purposes. TestComponents are used in
order to stimulate the SUT with inputs and to evaluate the reactions of the SUT to the

Page 23



provided inputs. The test architecture that is created for the Stopwatch class can be seen in
Figure 18.

)

N &1 structure_of TCon... x | fs Stopwatch overvew n ...

Entire Model Yiew ~ «TestContants
TCon_StopWatch

itsStopWatch:StopWatch

[ Ohjects
=-Ld TestPackages
=% TCon_StopWatch_architecture T S
(2 Dependencies pIn pout -
gl TestComponents
=49 TestContexts
= TCon_StopWwatch
+- (2 attributes
-4 Dependencies
E- 5 Links
(2 Statechart
gl SUTs
= kg Test Context Diagrams
¥y Structure_of TCon StopWwatch
e ‘ TestComponentinstances RIf Al DOUt_ |
@ %y TestConfigurations e e M
#-y TCon_Stopwatch_TestContral itsTC_at_pIn_of itsTC_at_pOut_«

Figure 18: Test architecture for class StopWatch

The complete test system containing the SUT and test components is called ,TestContext” in
the UML Testing Profile. The structure of the test context can be seen in Figure 18 (right
side). An instance of class Stopwatch (the SUT) is connected to two test components. The
test components are created such that they can be connected to the ports of the SUT. With
one test component one can provide inputs to the input port of the SUT (all events of the port
“pIN”), and with the other test component one can evaluate the responses of the SUT to the
provided inputs (all events of the port “pOUT”). In Figure 18 (left side) one can see the
created test elements in the browser, e.g. the test context “TCon_Stopwtach”.

4.7.2 Verification step 2 — Requirements Based Testing

Page 24



Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
i

Rational Rhapsody
v

v Code Compile

I\-[odeling_; — generation N Source Link . Object

code code
L3

* \—/\//

1 ‘\

Regquirements - ' Back to back testing °
bhased testingw ]

,,,,,,,
- 1 \\
Structural coverage 00 TTTe-o Structural coverage
measurement : measurement

(model) (Code)

Rhapsody TestConductor

Figure 19: Requirements based testing

Requirements

mmmm -

Requirements coverage
measurement

After creating a suitable test architecture for class Stopwatch, in the next step one can
systematically verify if the SUT behaves as specified in the requirements. For each
requirement one or more test cases are defined that shall check the behavior of the SUT. IBM
Rational Rhapsody TestConductor Add On offers different ways to specify the behavior of test
cases:

e Sequence diagrams

e Statecharts

e Flowcharts

e Pure test code with assertions

4.7.2.1 Test Case Specification with Sequence Diagrams

Depending on the requirement that shall be checked, one of these formalisms is more
suitable than others. In the stopwatch sample we want to create a test case for the
requirement “REQ_INIT: After starting the stopwatch, the stopwatch shall display 0 minutes
and 0 seconds (0:0)”. In order to verify and test this requirement we will use a sequence
diagram. Thus, we choose the IBM Rational Rhapsody TestConductor Add On function
“Create SD TestCase”. As a result, we get an empty sequence diagram template that already
contains instance lines for the SUT and the test components, but no messages. Now we need
to add messages to the sequence diagram that specify the behavior of the test case. For the
mentioned requirement the completed sequence diagram can be seen in Figure 20.

Page 25



«SUT»

TCon_StopWatch TCon_StopWatch TCon_StopWatch
(itsTC_at_pIn_of .itsStopWatch:St JAESTC_at_pOut_
StopWatch TC_ opWatch of _StopWatch: T
at pIn of Stop C at pOut of 5 |

evPressKey(Key\-‘al =:1)

l
|
)
|t"3 Show(m 0,s=0,b=FALSE)
|
|
|
1

Figure 20: Defining the behavior of a test case with a sequence diagram.

First, an input ,evPressKey(KeyVal=1)" is sent to the SUT. This input means that the
stopwatch is started. As expected reaction the sequence diagram specifies that the SUT shall
emit event ,evShow(m=0,s=0,b=FALSE)“. This means that the stopwatch shall display time
“0:0".

After we have defined the behavior of the test case, we need to link the test case to the
requirement that shall be tested. This can be done by adding a so-called “TestObjective” to
the test case that points to the requirement. The test objective explicitly links the test case to
the requirement which can be seen in Figure 21. It enables traceability between the
requirement and the test case.

Page 26



«SUT»
. TCon_StopWatch TCon_StopWatch TCon_StopWatch
Requirement RsTC_at_pln_of sSRopWatch:St RSTC_ax_pOut_
_StopWatch:TC_ op'Watch of _StopWatch:T
& pln of Step C ot pO of 5

) .+ REQ_Stopp
* ,‘{_) StopWatchPkg
# {7 SystemPkg
% £ TutorialPkg
. Profiles
= 3 TestPackages
= P TPkg_StopWatch
+ L Components
¥ ¥ Events
# (= Objects
= L3 TestPackages
= [y TCon_StopWatch_Ar
+ (2x Dependencies
. g TestComponents
TestContexts
= 9 TCon_StopWatch

ej\f'lesch'y(Ke'{ld =1)

,ev_SMm-O,&-O,b-FNSE)

# (2« Dependencies
+ 3-. Links

|

|

l

I

l

|

l

l

l

tectre [

l

l

l

l

I

) I
Testcase in the browser |

_StopWatch

Graphical testcase
perepert: 5 specification
*

TestObjective € Y TestObjectives
(Link from test case

To requirement)

Figure 21: Linking a test case to a requirement with a test objective element.

After defining the test case and linking it to a requirement, in the next step the test case is
executed. In order to execute a test case we first need to define if the test case shall be
executed for MiL, SiL, or PiL. As described in section 4.4, we need to have an appropriate
IBM Rational Rhapsody component and configuration. When creating a test architecture, IBM
Rational Rhapsody TestConductor Add On automatically creates a component and
configuration suitable for MiL. This is depicted in Figure 22.
=-L3 TestPackages
= &% TPkg_Stopwatch
=) Components
= £ TPkg_StopWatch_Comp
= Configurations
Y i uration» ModelConfig
{2 Events
(! Objects
Cd TestPackages
=% TCon_StopWatch_architecture
-« Dependencies
@ TestComponents
39 TestContexts
=59 TCon_StopWatch

[ a B O W S| RSy S

&)

(IR AERc Y

Figure 22: Test configuration for MiL execution.

Page 27



In order to execute the test case for MiL, the behavior specified graphically must be
~populated” to the test model. This population step is necessary since IBM Rational Rhapsody
TestConductor Add On needs to generate test code that implements the specified test
behavior. In order to generate that testing code, IBM Rational Rhapsody TestConductor Add
On first adds additional testing artifacts to the test model (this process is called “model
population”) that realize the specified testing behavior. After that, IBM Rational Rhapsody
TestConductor Add On utilizes IBM Rational Rhapsody’s code generator to generate the
testing code from the testing model. As a concrete example, let’s have a look at the test case
from Figure 20. Before this test case can be executed, during model population IBM Rational
Rhapsody TestConductor Add On automatically adds so-called “DriverOperations” and
“StubOperations” to the testing model. Driver operations are dedicated operations that realize
generation of inputs to the SUT. Stub operations are dedicated operations that realize the
verification of the reactions of the SUT to the provided inputs. For the test case depicted in
Figure 20, a driver operation is populated for the input message and a stub operation is
populated for the output message. Within these operations, C test code is used in order to
generate the input to the SUT and to check the reaction of the SUT.

Driver Operation : SD_tc_0_evPressKey_1in IC_at_pln_of_StopWatch

EySDTestSeenario_0 in... X ¥4 Structure_of_TCon_Stop... | By, StopWatch overview in ¢

£l i y| Implemertation 4 erts s s &t ‘
Genetd | Desciiption Argumarts  Relations ' Tage | Propertie TC_at_pln_of_StopWa.. [TCon_StopW.. -Stop\Watch TC_at_pOust. |

ntre

void TC_at_pln_of_StopWatch_SD_tc_0_evPressKey_1()

21 1nt osc_arg 1 = 1: -~

5% - e =z o +SUTs

:: ‘ TCon_StopWatch | TCon_StopWatch
2 I | RsStopWakch:S MSTC &t _pOut_
24 - ‘ opWatch of _StopWatch: T
a5 L i C 2 pOut of 5
26 R1CGEN PORT (me->pIn,evPressKey(osc arg 1)): ™

< >

eviresskey(KeyVal = 1)

Locate K J
= i§ TestComporents | evehow(m =0, 5 = 0, b = FALSE)
8 In_of Stoo "
+ B SD_tc_0_evPresskey_10)
\ ¢

= Ports

C_arpeey

# (2 Attributes

# (s Depandengies
Y 12 AT

= Operatons

e wstubbed» processEvent( RICEvent* ev)

TC_at_pout_of_Stc teh ﬁﬁﬁ]

3

B — e =.
- ;
> 8’; Genesal | Descrpbon | Impkmantaton | Asguments | Relatons | Tags | Propetties
+- RICT aksE veniStatue TC_at_pOut_ol_Stopwaich_processE vent| RICEvent® ev|
+
L

+ L 00 /+ BEGIN TESTCASE 1 * -~

3 01 if (1taTCon_StopWatch.current_tcase nr == 1) |

5 C 02 RiCBoolean argumentCheck = RiCTRUE:

e 03

3§ 04 me->ric_reactive.current_event = ev:
0s

3 06 1f (ev->1Id == evShow_InterracePkg_id] |
07
03 RICSETPARANS (me, evShow) ;
09
10 switch(me- C}{T_cvshou‘; {
11

+ 12 case 1:
3 13
e ‘T- 14 int currentParamCheck = (params->w~~0):
e~ “»‘Tg is argumentCheck =« argumentCheck <& tParam(
5 s TCon_Stoph 15 RTC_ASSERT_SD_NAME("SD_tc_ 0", "me "Chec g
i 1€ 2 .
[HTATH TV R toa & check |

Figure 23: Model population adds test elements to the model that realize the behavior of the test case.

In addition to driver operations and stub operations, for sequence diagram test cases IBM
Rational Rhapsody TestConductor Add On populates a so-called ,Arbiter”. An arbiter is a test
component that contains a statechart controlling the arbitration of the different test

Page 28



components that interact during execution of a sequence diagram test case. In addition to
that, the arbiter also checks and verifies that the reactions of the SUT are indeed observed as
specified in the scenario specification. This is realized by means of control events that are
sent from the test components to the arbiter. The arbiter uses these control events in order to
detect if reactions of the SUT are performed in the specified order. The arbiter communicates
with the test components in order to fully control the test execution. If the SUT does not
produce outputs in the order as specified in the test case, the statechart of the arbiter
changes into a dedicated “fail” state, and the test case is evaluated as failed. The arbiter for
the test case depicted in Figure 20 can be seen in Figure 24.

r |

lestdcenario: SD1estScenario_0 in | Pke pW.
Entre Model View  ~ - . sl a S, - -
5 b C SwpWatth TC_ot_pln_of_StopWa..[TCon_StopW. -StopWatch | TC_at_pOut |
+ L Components &
C Packages
% (1 Profiles . «SUT» - ;
= E TCon_StopW st TCon_StopWatc TCon_Stop\Watc
L:‘ E\esfpzc kaﬁs stch RSTC. ot pin_of XsStopWakch:St RSTC ot 0wt
» g _Stopw StopWarch:TC_ op'Wakch of _StopWatch:T
# ) Components at pln of Stop C & pOut of 5
F (= Events
& (& Cbjects
= ¥ TestPackages evPresskey(Keyval = 1)
i= % TCon_Stopwatch_Architecture 3 - .
# 2x Deperdencies
4 1@ TestComponents
= 9 TestContexts
= B9 TCon_StopWatch
# (= Attributes
# (s Dependencies
¥ (5 Links
-
+

evShow{m =0, $ =0, b = FALSE)

;-6 Onacations "= Statechart of : CSC_SD_tc_0 *
(3 Statechart
# 4 SUTs
+ 4 Test Context Diagrams *
= %, TestCases
= % SD_tc_00
* (7a Delendercies
+ N; stances s evTCStart/RTC_ASSERT_SD_NAME("SD_tc_0°,"™,"SD_tc_0 started - progress
* 4T tobjectives “me-2itsTCon->ksTC_at_pOut_of_StopWatch.CNT_evshow = 1}
= g;T tScanarios
SDTestScenario_0
= @ TestCorrfonantinstances
¥ Yy TestConfurations e .
= By TCon_StopiWatch yistControl regqular_1
= @ TestComponen
= 1§ «Arbiter» CSC_SD_tc_0
# (b Association Ends
3 (= Operaticns
+ (3 Statechart \
# 1 «Scheduler» TCon_Stopwatch_Scheduler regder 2

<qum

fRTC_ASSERT_SD_NAME(*SD_tc_0,"message_0","message_0 driv
TC_at_plin_of_StopWatch_SD_tc_0_evPressKey_l(&me->4sTCon

ev_rtcchedk_OK[params- >instancelineNo == 2 & paral

wo\;id.S

Figure 24: Arbiter statechart to control the behavior of the test components that realize the test case.

After model population has populated all needed test artifacts to the testing model, IBM
Rational Rhapsody TestConductor Add On utilizes IBM Rational Rhapsody’s code generator
in order to generate test code for the SUT and the testing model. After code generation, the
code is compiled and linked to a test executable. This test executable can now be executed
by invoking the “Execute TestCase” function of IBM Rational Rhapsody TestConductor Add
On. If the test executable is invoked, it starts the IBM Rational Rhapsody simulation. After the
simulation has started, the test executable executes the test case. After test case execution
has finished, the test results are shown in the so-called “Test Execution Window” within the
IBM Rational Rhapsody environment (cf. Figure 25 bottom left). Besides the test results
shown in the test execution window, also a test result report is generated and stored
underneath the test case in the IBM Rational Rhapsody model. The test execution report

Page 29



contains additional information about the test execution, e.g. the test execution time, as well
as the test result.

= " Result of TestCase - Mozilla Firefox EHEE]
Entire Model View ~ | & © File Edit View History Bookmarks Tools Help
= §0 C_Stapwatch ~ = = -  —
-0 Cormponents =] = far | file: /4 /Test it/Rhapsody?.6/Sampl 17 - | ___v Winload Cue S
&[0 Packages =
®-3 Profiles 8] Most Visited # Erste Schritte |50 Aktuelle Machrichten - ...
=5} TestPackages e
=P TPkg_Stopwatch w QuickStores ~ | V| l,) Search @ all O OneBay O On Amazon
-3 Components B
G Events | ] Result of TestCase | * i
-2 Objects A
=5 TestPackages =
=% TCon_Stopwatch_architecture Testcase RESI.I It
-2« Dependencies
gl TestComponents TestCase: SD tc O
=59 TestContexts
= 100N StpWatly Thursday, July 21, 2011 10:08:02
- 2 attributes
- [ cEnvronmentimformation |
-5 Links Environment Information
+I @ COperations Test executed on machine: TEY
() Statechart
® gl SUTs Test executed by user: User
- ﬂ Test Context Diagrams Used operating system version: Windows 2000 / Windows 3P
2% ;I'estCases Used Rhapsody version: 7.6, build 2071527
=% SD_tc_0¢)
E’ Dependencies Used TestConductor version: 2.4.4, build 2508
SDInstances
s § Tebiecives [ estedproject ]
Tested P it
=3 TestResults | EsSteC Frojec |
[#--5f TCon_StopWatch__SD_tc_0_0. Project: C_Stopiiatch
=-Hp TestScenarios Active Code Generation Component: TPkg_StopWatch_Comp
5 E’S SDTestScenario_0
- TestComponentinstances Active Code Generation Configuration: MadelCanfig
[+ TestConfigurations
= EJ') TCon_Stopwatch_TestCortral SequenceDiagram used in TestCase ]
=i TestCompanents F |
= [ BRTR IS i o i = — TPkg_StDpWatch::TCDn_StDpWatch_Architecture::TCUn_StDpWatch.SD_tc_D::SDTeSiScenariD_Di
F B R E———
24
I Name Status File/Tteration Line/Progres: |SDInstance 'SD_tc_0'
[=% 5Dt D PASSED Status: PASSED
By sp_tc_o PASSED 1 100% (3/3) Progress: 100% (3/3)
| Result Yerification |
| Result verification successful

Figure 25: Test execution window (bottom left) and test report (right).

4.7.2.2 Test Case Specification with Statecharts, Flowcharts, and Code

As an alternative to defining the behavior of a test case with a sequence diagram, IBM
Rational Rhapsody TestConductor Add On provides the possibility to describe the behavior of
test cases with statecharts, flowcharts, or pure test code. As an example, we study
requirement “REQ_SetTime: The stopwatch shall provide a function SetTime that sets the
current time”. This requirement can be tested e.g. by a statechart test case as depicted in
Figure 26. In a statechart test case, similar as in sequence diagram test cases inputs can be
provided for the SUT. In order to check outputs of the SUT as e.g. return values, IBM Rational
Rhapsody TestConductor Add On provides several predefined check functions like e.g.
“‘RTC_ASSERT_NAME”. This function takes two arguments, a reference string and a boolean
expression. The Boolean expression realizes the check that is evaluated by IBM Rational
Rhapsody TestConductor Add On during test case execution. If the test case is executed, all
executed assertions are logged by IBM Rational Rhapsody TestConductor Add On and
shown in the test execution window. Similar to sequence diagram test cases, also a test

Page 30



report is generated that contains all executed assertions as well as further details about the
test execution like e.g. execution time.

o)
This is a statechart defining TestCase behavior
In Statechart TestCases you can use ASSERT macros like
RTC_ASSERT_NAME(n.e), e.g.
RTC_ASSERT_NAME("Check_1", me-=itsClass_0.attribute_x == 42);
Far the list of available macros see TestConductor UserGuide
or the testconductor_C.h file in the installation directory

initial | evTCstaft ateod
!‘ JStopWatch_setTime(me- >itsStopWatch, 2,30);
) J[ ] RTC_ASSERT_NAME("Calling setTime",1);
stafe_3
| JRTC_ASSERT_NAME("Checking current time",
| {StopWatch_getMin{me- >itsStopWatch) == 2) && (StopWatch_getSec{me- >itsStopWatch) == 30));
e state_4
final

«|s JTCon_StopWatch_finishTestCase(me-»itsTCon);

Figure 26: Test case definition by means of a statechart.

The test execution window that contains the executed assertions as well as the generated
execution report is depicted in Figure 27.

Page 31



1 1 ) Result of TestCase - Mozilla Firefox

i (i 4 ¢
Entire Model View ~ | = = | Eile Edit Yiew History Bookmarks Tools Help
® (2 Parts ~ : —
& (= Parts - C X Gy ([ filesficTest itRhapsody7.6/Sam; 1y - | |[&- i
E& Timer — =———-—
#- (X2 Comments 8] Most Visited #® Erste Schritte 5] Aktuelle Nachrichten - ...
# [ Object Model Diagrams
& [ SystemPkg . QuickStores ~ v | J S search @ all O Onebay O On Amazon
£ TutorialPkg ‘ i =
&G Profiles | ] Result of TestCase I + | [e=
=-E} TestPackages v
=7 TPkg_StopWatch =
(2 Components Testcase ReSl.llt
# (% Events
#- (£ Objects :
B8 TestPackages TestCase: SC_tc_0
=M% TCon_StopWatch_architecture ——
&G Dependencies Thursday, July 21, 2011 11:42:49
=] TestComponents
=9 TestContexts Environment Information
=9 TCon_Stopwatch Test executed on machine: TSV
#-(2 attributes :
(4 Dependencies Test executed by user: User
@ %‘ Links Used operating system version: Windows 2000 / Windows XP
& Operations 4 PP 0
& @ Statechart = Used Rhapsody version: 7.6, build 2071527
- SUTs Used TestConductor version: 2.4.4, build 2508
#- &g Test Context Diagrams
=% TestCases :
=% sC_tc_00 Tested Project
® ﬁ, Dependencies Project: C_StopWatch
# TestObjectives ; - '
= S TesResults Active Code Generation Component: TPkg_StopWwatch_Comp
¢ TCon_StopWatch_ SC_te_ Active Code Generation Configuration: ModelConfig
%, SD_tc_00) W
# TestComponentInstances
= % Toctoniis et & L Resus Summary: PASSED
< ! | > Calling setTime PASSED
gl Checking current time PASSED
‘4
d»| Name Status File/Tteration
Calling setTime © PaSSED TCSC_tc_0.c Result verification successful L
Checking current time (@ PASSED TCSC_tc_0.c
v
Done

Figure 27: Test execution of a statechart test case.

As an alternative to statecharts, the behavior of test cases can also be defined by specifying a
so-called flowchart. A flowchart specification for the requirement “REQ_SetTime” is depicted
in Figure 28.

Page 32



98]

In Flowchart TestCases you can use ASSERT macros like :
RTC_ASSERT_MNAME(n.e), e.g.

RTC_ASSERT_NAME("Check_1", me-=istClass_1.attribute_x == 42);
For the list of available macros see TestConductor UserGuide

or the testconductor_C.h file in the installation directory

L

(_RTC_ASSERT_NAME("Initial" 1);

StopWatch_setTime(&me->itsStop¥Watch,2 30);
RTC_ASSERT_NAME("Calling setTime" 1);

me->checkl = (StopWatch_getMin{&me->itsStop\Watch) == 2) &&
{StopWatch_getSec{&me-=itsStopWatch) == 30);

[me-=check1] [else]

[ RTC_ASSERT_NAME('Test passed" 1); ’ RTC_ASSERT_NAME("Test passed" 1),

:::@:‘:

Figure 28: Test Case definition by means of a flowchart.

As a last alternative, the behavior of a test case can also be specified by providing C or C++
test code containing assertion functions to check the correctness of the reactions of the SUT
regarding provided inputs. Such a code test case can be seen in Figure 29.

vaid TCor_Stophw/atch_Code_tc_(]) |
00 StopWatch setTime (&we->itsStopWatch,2,30); A~
01 RTC ASSERT NAME ("Calling setTime",1]: B
02 me-rcheckl = (StopWatch getMin(eme->its3copWacch) == Z) &
o3 IStopWatch getiec (sme->its3copWatch) == 30);
04 if | me-rcheckl
a5 §
u]) RTC ASSERT WNAME ("Test passed",l): E
o7 o
05 else
W=
i0 RTC AS3ERT WAME ("Test passed",1):
i e
1z
b

Figure 29: Test case definition by means of C code.

Page 33



Both flowcharts and code test cases can be executed in the same way as other test cases.

4.7.3 Verification Step 3 — Coverage of the Requirements by Test Cases

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
i
| Rational Rhapsody
i v
v Code Compile
Modeling generation Link :
Requirements > Model > Source » Object
code code
i ’
] ]
i Requirements i ' Back to back testing b
I based testingw_ _'"""".u-____ﬂ
E4 o R T .
I -

BT Bl D . kN
. Structural coverage = 0000 - ———— Structural coverage
Requirements coverage T
measurement measurement
measurement
(model) (Code)

Rhapsody TestConductor

Figure 30: Requirements coverage

In the previous section we showed how to create test cases for requirements by means of
different UML diagrams, and how such test cases can be linked to requirements. An imported
guestion is which requirements are tested by which test cases, and even more important,
which requirements have not been tested by a test case. IBM Rational Rhapsody
TestConductor Add On provides two mechanisms in order to answer these questions. Firstly,
a so-called “TestRequirementsMatrix” can be used in order to automatically visualize the
relationship between requirements and test cases. This matrix is pre-defined in the testing
profile and can be added to the test model in order to get an overview about the relationship
between requirements and test cases. After adding the matrix to the testing model, the user
needs to specify the scope of the matrix, i.e., which parts of the model should be shown in the
matrix. After defining the scope of the matrix, the matrix shows the current coverage of
requirements by test cases as it is depicted in Figure 31.

Page 34



= L3 TestPackages
= s TPkg_StopWatch
+ Components

& testrequirementmatrix_1

s 5 Events To: Regurement  Scope: C_StopWalch
D t | 1 9] | T Rl
S 6T J'? 8 REU_In i REQ_Running_1 | REQ_Running_2 JI§ REQ_SetTme j EQ_Stopping |

= Py TCon_StopWatch_Architecture W REQInk

s (s Dependencies
+ 1 TestComponents
= B9 TestContexts
= §9 TCon_Stopwatch
& ™ Atributes

14 RED_SetTime

|2« Dependencies
&5 Links

2

- -
# (= Operations Requirements
L2

2

2+

—

Yiepadors 0 edods  esenss | awolq

¢ (2 Statachart
| 4 SUTS

h 4

covered requirements

#d Test Context Diagrams
# % TestCases
+ @ TestComponentinstances
# %y, TestConfiqurations
# o TestResults
# [y TCon_StopWatch_TestControl
= (7 TestRequirementMatrics v
t+ testrequirementmatrix_1

Test Cases

Figure 31: Requirements coverage visualized by a test requirements matrix.

The requirements are shown on the horizontal axis, the test cases are shown on the vertical
axis. If a test case is linked to a requirement by a test objective a yellow test objective symbol
is shown at the intersection point within the matrix. By looking at the test requirements matrix
one can visually see which requirements are covered by which test cases and which
requirements are not covered by a test case.

As an alternative to the test requirements matrix one can also generate a dedicated test
requirements report that provides similar information. The test requirements report can be
generated with the ReporterPlus AddOn of IBM Rational Rhapsody. IBM Rational Rhapsody
TestConductor Add On provides a so-called ReporterPlus template that can be used in order
to generate such a report. Such a report is depicted in Figure 32.

Table of Contents
(_] Requirement Coverage Report of Model G_Stopivatch A” Req u | rements
=] Requirements
(L1 Al Test Cases
= : Covered by Test
Name Specification
Case
After starting the stopwatch, the stopwatch shall display 0 minutes and 0 seconds SD_tc 0
REQ_Init (0:0) 9 P ‘ v piay (Il Passed)
REQ_Running_1 | After starting the stopwatch, the stopwatch shall count minutes and seconds. not covered
After starting the stopwatch, the stopwatch shall count minutes and seconds. The
REQ_Running_2 | colon between not covered
displayed minutes and seconds shall blink once in a 1 second time interval.
SC tc ©
REQ_SetTime | The stopwatch shall provide a function "SetTime" that sets the current time. (Il Passed)
REQ Stopping | When running, pressing the key of the stopwatch shall stop it. not covered

Figure 32: Requirements coverage information shown in a test requirements coverage report.

The TestRequirementsCoverage report can be generated in different formats, e.g. html or
word format. The report basically provides two orthogonal views. The first view shows a list of
all requirements together with linked test cases and test results (if available). The second
view shows a list of all test cases together with linked requirements. Both the test
requirements matrix as well as the TestRequirementsCoverage report provide information
about which requirements are covered by which test cases and which requirements are not
covered by test cases. In order to achieve full requirements coverage in the stopwatch
sample, we would need to add more test cases that cover all requirements. After adding
these test cases, the requirement coverage would look like the one depicted in Figure 33.

Page 35




- .tesfreqﬁirement.mat.... i

To: Fequiremert  Scope: C_Stopatch

ay (L1l REQ_Init |EE| REQ_Running_1 |E1| REQ_Running_2 |E._I| REQ_SetTime |E1| REQ_Stopping
S %50 tc D L] REQ_Init

%8501 0 1l REQ_SetTime

2 %, FC_te 0 L] RED_SetTime

7 [%, Code_tc 0 Ll REQ_SetTime

® (%, 50_tc_1 1] REQ_Rurining_1

w :L,- S0 _tc 3 . . El REQ_Stopping
S % 5Dt 2 Ll REQ_Running_2

1)

©

%E' Test Execution

=

=

o | hame Status File,/Tteration Line/Progress

|- & TCon_StopWatch PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

PASSED

@]
@
@
(@]

Figure 33: Full requirements coverage by test cases, and all test cases are passed.

4.7.4 Verification Step 4 — Coverage of the Model by Test Cases

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
| Rational Rhapsody
| v
v Code Compile
. Modeling generation Link :
Requirements »  Model g »  Object
code code
i + *
Requirements ' Back to back testing .

= based testingw._ < 7---__

ST T e 5

R 'rements‘;mera e T REC TSN Structural coverage
equ g measurement : measurement
measurement
(model) (Code)

Rhapsody TestConductor

Figure 34: Model coverage

Page 36



In the previous section we have shown how to verify that all requirements are covered by test
cases. An important orthogonal information is the information which parts of the model are
covered when executing all the test cases that are needed for full requirements coverage. To
retrieve this information, IBM Rational Rhapsody TestConductor Add On provides the option
to compute the achieved model coverage during test case execution of MiL configurations. If
this option is enabled, after test case execution IBM Rational Rhapsody TestConductor Add
On generates a so-called model coverage report that shows which parts of the model have
been covered by the executed test cases and which parts have not been executed by the test
cases. For the test cases developed in the previous section, a model coverage report as
shown in Figure 35 is generated. The model coverage report shows all states, transitions,
events and operations of the SUT (and all inner components of the SUT). For all listed model
elements it is specified if the model element has been executed or not, i.e. covered or nor.
Model coverage reports can be generated for individual test cases as well as for complete
test suites.

TestContext Coverage Result
TestContext: TCon_StopWatch

Monday, July 25, 2011 13:42:21

| Environment Information [

Detailed Coverage Summary of StopWatch (3/3)

| Test executed on machine: TSV

i Yesk executed by usert i covered setTime
| Used operating system version: Windows 2000 | \Windows XP CE
| Used Rhapsody version: 7.6, build 2071527 24 getSec

| Used TestConductor version; 2.4.4, buld 2508 getMin
ey
| Project: C_StopWatch Operations

| Active Code Generation Component: TPky_StopWatch_Comp showy

. Active Code Generation Configurabion: ModeiConfig tick

T Coverage sumenary | =
i TestPackage: TCon_StopWatch_Architecture

| TestContext: TCon_StopWatch

| TestCase:

ROOT.Rusning State
Operations ROOT,Running.off State
KeySend ROOT.Running.on State
EventReceptions ROOT.Running.on.colon State
euPresskey : ROOT.Running.on,nocolon State
StateChart: statechart_3 3 Transition
covered ROOT.Runnng State e
0 Transkion COverse 5 Transition
: i 4 Transition
= ROOT.Running.pre off state
[ betaied Coverage Summary of Display (5/5) | o P Trenstion
| Operations 8 Transition
; showTime L Transition
} EventReceptions 0 Transition
| s 6 Teanstion
| StateChart: statechart_2 7 Transition
i State
‘ Transition
1 Transition

Figure 35: Model coverage achieved by requirements based test cases.

Page 37



As can be seen in Figure 35, all elements except event “evReset” and transition 6 of class
“Timer” (an inner part of the SUT) are executed by the test cases. The model elements in the
model coverage report are linked to the model elements in the IBM Rational Rhapsody model,
i.e., when clicking on a model element in the report the corresponding model element in the
IBM Rational Rhapsody model is highlighted. When clicking on transition 6 in the report, the
not covered transition gets highlighted in the IBM Rational Rhapsody model (cf. Figure 36).
This transition is not covered by the test cases since the modeled reset functionality of the
stopwatch is not specified in any of the requirements of the stopwatch In such a case one
needs to decide if the reset functionality is wanted or unwanted functionality. In our example,
we assume that it is wanted behavior, and we add new requirement “REQ_Reset” that
specifies this functionality. Additionally, we add a new test case that tests this functionality.
The updated model coverage report is depicted in Figure 37.

evReset

\l})’ T LT
Running
__,l'res el
\\I/ "'jm Dn
‘ fre off |
-
{;’ a—\ colon (&
‘ Jf'f ;// 2 EEshow(me, me-=min, me->sec, TRUEY,
. svstartstgp |
|
J Em(500) / ] ] j\
\I ?,I}StlértStup Ern{S00) tmy(S00)/
= @ 7, / il Tifner_tick(me]l;
— nocolon =
& show(me, m... / Z
,/’ & show(me, me-=min, me-»sec, FALSE);

Figure 36: Not covered transition of class StopWatch.

Page 38



TestContext Coverage Result
TestContext: TCon_StopWatch
Monday, July 25, 2011 13:42:21

‘: Environment Information
TSV

1 Detailed Coverage Summary of StopWatch (3/3) 1

N,
= based testingw__

Requirements coverage
Mmeasurement

Test executed on machine: Operations ‘
Test executed by user: User <atTime |
Used operating system version: Windows 2000 | Windows %P UL
Used Rhapsody version: 7.6, build 2071527 dele
| Used TestConductor version: 2.4.4, buld 2508 etilin
[ estedProjea | Dataled avicage SImEniy o X unani L8 28y 1
| Project: C_StopWatch ‘
Active Code Generation Component: TPk_StopWateh_Comp
Active Code Generation Configurabion: ModeiConfig
e Coversge summary | |
1[ TestPackage: TCon_StopWatch_Architecture
| TestContext: TCon_StopWatch
| TestCase: ‘
| Detailed Coverage Summary of Button (5/5) State ‘
Operations State |
o o |
EventReceptions ROOT.Running.on.colon |State |
ePtezshey ROOT.Running.on.nocolon |State |
StateChart: statechart_3 ‘ 3 | Transkion |
RCOT.Running State s | Transiion
0 Transition 3
1 Transition 4 RS
= ROOT.Running.ore off |State |
| Detailed Coverage Summary of Display (5/5) 2 | Transiion |
Operations 8 | Transkion ‘
I e ; S|
EventReceptions 0 Transkion |
et : Tenstien.
StateChart: statechart_2 ‘ 7 | Transkion |
coverad ROOT.running State ]
0 Transition
1 | Transition
Figure 37: Full model coverage by adding additional test case.
4.7.5 Verification Step 5 — Coverage of the Generated Code by Test Cases
Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
1
; v
A Code Compile
Modeling generation Es Link -
Requirements > Model > e 2gEE
code code
T \_// »
i
i Requirements
I
i
i
]
|

Rhapsody TestConductor

Figure 38: Code coverage

Page 39




In the previous section we showed how IBM Rational Rhapsody TestConductor Add On can
be used in order to assess the achieved model coverage by test cases. In this section we
want to complement this by computing the achieved code coverage of the test cases. In order
to compute code coverage it is important to define a SiL configuration for the SUT since we
are only interested in the coverage of the pure SUT code. For MiL configurations,
instrumented code is generated by IBM Rational Rhapsody, and the instrumented code
contains a lot of additional code fragments that are only generated for simulation purposes
and which are not relevant regarding code coverage. Thus, we define a new code generation
configuration “HostConfig”. We define the configurations options such that SiL code is
generated. Additionally, we specify that for this configuration, IBM Rational Rhapsody
TestConductor Add On shall compute code coverage when test cases are executed (cf.
Figure 39).

= L TestPackages
= [Py TPkg_StopWatch

5 Componen Configuration : HostConfig in TPkg_StopWatch_Comp

_StopWatch_Comp : e T
™ Configurations General | Description | Intialization | Settings | Checks | Relations | 128  Properties

| ) «TestingConfiguration» HostConfig SOX
| 1 «TestngConfiguration» ModelConfig g
= TestArchitecture A

@

Coverageind SUT _hierarchical

+ (= Objects
= L TestPackages
= [’y TCon_StopWatch_architecture
#- (s Dependencies
+ %Tesu:omponents
= 9 TestContexts

Figure 39: Host configuration without animation code (SiL) for computing code coverage.

After these changes are made one can compile the test cases for the configuration
“‘HostConfig”. The computation of code coverage information is based on an source code
instrumentation of the source code of the SUT, i.e., before compiling the source code of the
SUT IBM Rational Rhapsody TestConductor Add On instruments the code with code
fragments that performs the coverage measurement. After compilation, the test cases can be
executed, and after execution a code coverage report is generated that shows the code
coverage of the executed test cases (cf. Figure 40).

Coverage Report
== Coverage Report

Environment Info Table Of Contents Global Statistics Source Code

Enviranmant Info Table Of Contants Joba Statihe Source Code

Global Statistics ' o

QlliCk Lil]ks (RiCOBYectOle

pBethod) StopWatch Cleaswup,

(Ri0CkjectFre thod| Freelnstamce

oo oo

3l Of , B 10 StopVatch _Clessup (Stoplatch® const me)
ovarage Entity Statistics

o]

5l ceive)
Coverage Statistics -

Goals Covered
Statement Coverage 387| 264|6B.2% g ol t
on Coverage 74 26(35.1% atic AL () *

Condition Coverage [i] 0 n.a, 3 Tev »e->1teTiner. xin;
Condition/Dacision Coverage 160 70/43.8%
Medified Condition/Decision Coverage 160 70]43.8%

Figure 40: The code coverage report shows the coverage achieved by the test cases.

Page 40



The code coverage report provides different views on the computed coverage information.
One view focuses on statistical information like the overall statement, decision, condition,
condition/decision as well as modified condition/decision coverage. Another view provides
detailed coverage information for each line of the source code of the SUT. For that purpose,
the source code of the SUT is highlighted with different colors that indicate to what extend a
certain statement, condition or decision is executed. Additionally, for each statement or
decision one can get information about which test case has participated in the coverage of the
statement or decision, In order to get the needed degree of code coverage it might be needed
to add more test cases that cover the parts of the code that has not been executed enough so
far. The thresholds for the code coverage that needs to be achieved may differ from project to
project.

4.7.6 Verification Step 6 — Back to Back Testing

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
Rational Rhapsody
| v
A Code Compile
Modeling generation Link i
Requirements » Model > SIITEE » Object
code code

B e =
>

Requirements « 3 Back to back testing
. ST 1
= based testingw. T t---____

- 1 \‘
Structural coverage Structural coverage
measurement " measurement

(model) (Code)

Rhapsody TestConductor

Figure 41: Back-to-back testing

Requirements coverage
measurement

In the previous section we showed how to get information about the code coverage that is
achieved by the test cases. In this section we describe how we can make sure that the test
cases evaluate to the same test result on all different execution levels MiL, SiL, and PiL. The
execution of test cases on different execution levels and the comparison of the test results are
called “back to back testing”. In the following, we describe how back to back testing can be
performed with IBM Rational Rhapsody TestConductor Add On.

As described in sections 4.4, 4.5, and 4.6, for the different execution levels MiL, SiL, and PiL
dedicated code generation configurations are created. Besides the MiL configuration
“‘ModelConfig” and the SiL configuration “HostConfig”, we add a PiL configuration
“TargetConfig” to our test model (cf. Figure 42).

Page 41



= I TPkg_StopWatch
= .0 Components SIL
= 1 TPkg_StopWatch_Comp
= Configurations
-8 «TestingConfiguration» HostConfig
+ 18 «TestingConfiguration» ModelConf

= & «TestingConfiguration» TargetConfig
& (>s Dependencies
+ %7 Hyperlinks PIL

# (= Tags

MIL

Figure 42: Configurations for MiL (ModelConfig), SiL (HostConfig”, and PiL (TargetConfig) execution.

In order to perform back to back testing, the user needs to do the following steps: first, the
MiL configuration ,ModelConfig” becomes the active configuration, and all test cases are
executed for this configuration. The computed test report must be manually moved to a
different location in the IBM Rational Rhapsody model in order to prevent that the test report
is overridden by subsequent test executions with for instance SiL or PiL configurations. After
that, the SiL configuration “HostConfig” shall become the active configuration, and all test
cases are executed. Again, the generated test report is moved to a different location in the
IBM Rational Rhapsody model for to prevent that it is overridden. Finally, the PiL configuration
“TargetConfig” becomes the active configuration, and all test cases are executed again. After
execution has finished, now three different test reports are stored in the model (cf. Figure 43).

=% TestPackages
= I’y TPkg_StopwWatch
= [ Components
= ¥ TPkg_StopWatch_Comp
= [ Configurations
@ & «TestingConfiguration» HostCanfig
#- 8 «TestingConfiguration» MpdelConfig
# ¥ «TestingConfigurationg> ThrgetConfig
® &F Events
#- (= Objects
= 5} TestPackages
= £y TCon_StopWatch_Architectu
# (2« Dependencies
* TestComponents
= 59 TestContexts
= 9 TCon_StopWatch
# (= Atfributes
# I, CodeCovera
=) Controlled File
+ (&) TCon_StopW htmi
+ a TCon_StopWatch Jhtml
+ @ TCon_StopWatch_2.htmi

Figure 43: Test results for MiL, SiL, and PiL execution.

Since all test results are stored in the model, one can now compare the test results for the
different execution levels. This can be done either manually by reviewing the report data, or
automatically by applying a diff tool (cf. Figure 44).

Page 42



TestContext Result

TestContext: TCon_StopWatch
Tuesday, July 26, 2011 10:18:31

Test executed on maching! TSV

Test executed by usar: User

Usad oper atng systam version Windows 2000 / Windows XP
Usad Rhapsody verson: 7.5, buid 2071527

Usad TestConducior varsion: 24.4, tuid 2508

Fropct C_Stopwatch

Active Code Genaration Companent: m

Active Code Genaration Configuration:
TestContext: TCon_StopWatch m
VLo

PASSED
=0 1§ PASSED
EC KD PASSED
Code £ 0 PASSED
D]l PASSED
LI PASSED
W2 PASSED
DEe PASSED

TestContext Result
TestContext: TCon_StopWatch
Tuesday, July 26, 2011 13:00:38

Ervironment Information

Test axacuted on machine TSV

Test exnacuted by user: User

Used cperating system version: Windaws 2000 / Windows XP
Used Rhapsody version: 7.6, buid 2073527

Used TestConductor version: 2,44, buidd 2508

Project: C_StopiNatch

Active Code Gareration Component: ay Vel

Active Codz Ganerstion Configuraton:

TestContext: TCon_StopWatch Summary: PASS!

=] PASSED
Ll PASSED
B PASSED
Cojetc 0 PASSED
Dl PASSED
O3 PASSED
D2 PASSED
LD PASSED

TestContext Result
TestContext: TCon_StopWatch
Tuesday, July 26, 2011 13:03:38

Test exacuted on machire

v

Test exacuted by user: User

Lsed cperating system version: Windows 2000 / Windows XP
Used Rhapsody version: 7.6, build 2071527

Used TestConductor version 2.4.4, bulld 2508

Projact: C_StopWatch

Active Coda Generation Camponent:

Active Coda Ganeration Configuration

TestContext: TCon_StopWatch

Figure 44: Comparing test results for MiL, SiL, and PiL.

"

[

Summary: PAY
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

As one can see in Figure 44, in the stopwatch example the back to back test is successful,
because all test results on all three execution levels MiL, SiL, PiL are the same. If one of the
test results, for instance on PiL level, would differ from the test results on the other levels, one
needs to analyze why the test result is different, e.g., by using a debugger for the target

environment.

Page 43



Appendix A: List of Figures

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow
Figure 2: Evolution of textual requirements into an implementation model ready for production
code generation
Figure 3: Back-to-back testing on different execution levels (MIL to SIL, SIL to PIL and MIL to

| 7
Figure 4: Elements of the IBM Rational Rhapsody Reference Workflow considering
hierarchical and modular partitioning and modular development ..............cccoovvveiiiiiiiiieeeeeeeenn, 9
Figure 5: Variantion of the reference workflow without explicit model verification................... 10
Figure 6: Textual requirements for the stopwatch listed in a word document......................... 12
Figure 7: All requirements from the word document are represented as requirements in the
IBM Rational Rhapsody model. The textual specification is stored for each requirement. ..... 13
Figure 8: Interfaces of the stopwatch model.................uuuiiiiiiiiiiiiie 14
Figure 9: Classes Button, Timer, Display, and StopWatcCh.............cccceevviiiiiiiiciieeeeccee e 14
Figure 10: Statechart Of ClaSS TIMEN .........uuuuiiiiiiiiiiiiiiiii e 15
Figure 11: IBM Rational Rhapsody component with simulation configuration. By setting the
instrumentation mode to “Animation” the configurations becomes a simulation configuration.
(YT, o To 1= T I 1 = (o o o ) R SPPPPPPIN 16
Figure 12: A simulation of the model allows to execute the model step by step as well as to
watch attribute values and states of the model during execution. ...........ccccooeeeiiiiiiiiiiiieeeeeennn, 17
Figure 13: Configuration for generating code for execution on the host system (SiL, Software
11 TS (oo o ) A EPPPPPN 18
Figure 14: Generation Of ProduCtion COOE ............uuuuuuuiuiiiiiiiiiiiiiiiiiiii e 19
Figure 15: IBM Rational Rhapsody configuration for generating code for the target

(=T 0171 (0] o 0 1= o | P 20
Figure 16: Technical concepts of IBM Rational Rhapsody TestConductor Add On................ 21
Figure 17: Automatic creation of a test architecture with IBM Rational Rhapsody
TestConductor Add On for class StoOPWatCh. ............ccoiiiiiiiiiiiic e, 23
Figure 18: Test architecture for class StOPWatCh..............uuuuiiiiiiiiiiiiiiiiiis 24
Figure 19: Requirements based tESHING..........ouuuiiiiii i 25
Figure 20: Defining the behavior of a test case with a sequence diagram. ............ccccccuvvvnnnnee 26
Figure 21: Linking a test case to a requirement with a test objective element....................... 27
Figure 22: Test configuration for MiL @XECULION............uuuuiriiiiiiiiiiiiiiiiiiiiiieeeees 27
Figure 23: Model population adds test elements to the model that realize the behavior of the
(ST A or= <P SPPPTT 28
Figure 24: Arbiter statechart to control the behavior of the test components that realize the
(ST o= <O SPPPPT 29
Figure 25: Test execution window (bottom left) and test report (right)............cccccceiiiiiiiinnnnnns 30
Figure 26: Test case definition by means of a statechart. .............cccccviiiiiii e, 31
Figure 27: Test execution of a statechart teSt CaSe. ...........uuuuiiiiiiiiiiiiiiiis 32
Figure 28: Test Case definition by means of a flowchart...............cccooiii i 33
Figure 29: Test case definition by means of C COUE..........cccuvviiiiiiiiiiiii e 33
Figure 30: REqUIrEMENTS COVEIAGE .....cuvuuiiiiiieeeeeeiie e e et e e e et e e e e et e e e e ea e e e e e aa e e e e eaaaeeaeen 34
Figure 31: Requirements coverage visualized by a test requirements matrix. ....................... 35
Figure 32: Requirements coverage information shown in a test requirements coverage report.35
Figure 33: Full requirements coverage by test cases, and all test cases are passed............. 36
FIQUre 34: MOAEI COVEIAQE......cciiiiii ettt e e e e et e e e e e e e e eaa e eaaees 36
Figure 35: Model coverage achieved by requirements based test cases. ...........cccccvvvvvnnnnnnns 37
Figure 36: Not covered transition of class StopWatch. ...........ccccooooiiiiiii 38
Figure 37: Full model coverage by adding additional teSt Case. ...............uuuveeiiiiiiiiiiiniiiiiiiinnns 39
(o [V (e RC ] T e Lo [l o0 1YY = Vo [ PPN 39

Page 44



Figure 39: Host configuration without animation code (SiL) for computing code coverage. ... 40

Figure 40: The code coverage report shows the coverage achieved by the test cases. ........ 40
Figure 41: Back-t0-Dack tESTING........uuuuuiiiiiiiiiiiiiiiii i 41
Figure 42: Configurations for MiL (ModelConfig), SiL (HostConfig”, and PiL (TargetConfig)

(23 (T U110 o TP 42
Figure 43: Test results for MiL, SiL, and PiL eXeCULION. ........ccooiiieiiiiiiiiiiiei e 42
Figure 44: Comparing test results for MiL, SiL, and PiL. .............cccooiiiiiiiiiiiiiiiiiiiies 43

Page 45



Appendix B: List of References

IBM Rational Rhapsody Reference Workflow Guide.

Road Vehicles — Functional Safety, International Organization for Standardization, ISO
26262. 2011.

IBM Rational Rhapsody TestConductor Add On, [Online]
http://www-01.ibm.com/software/awdtools/IBM Rational Rhapsody/

UML Testing Profile, OMG, June 2011. [Online]
http://www.omg.org/spec/UTP/1.1/PDF/.

Model Driven Testing: Using the UML Testing Profile: Springer, 2006.

a &~ w NE

Page 46


http://www-01.ibm.com/software/awdtools/rhapsody/

