Tutorial for TestConductor for Rhapsody in C

Rhapsody

Rhapsody in C
Tutorial

for

= IBM® Rational® Rhapsody”
—_ ® TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2016 BTC Embedded Systems AG.
All rights reserved.

TestConductor for Rhapsody for C

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, flow
charts and source code. During
execution TestConductor verifies the
results against the defined
requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example
C application for this tutorial, models a simple stopwatch.

Open the project ,CStopWatch® from the folder
~Samples/CSamples/TestConductor” in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Object: S kophas atch(0]

Event: evkey v

Arguments:

[

: To start the application, press “Go” in
By

Rhapsody’s animation toolbar.

i Object: S bopie atch[0]
1zhar
ol BVt [eukey 3 To start the stopwatch, generate event
Arguments: “evKey(1)” using the animation toolbar.
[oo KE: To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.
Hiztary:

5 topta atch[0]-

0. When running, the stopwatch outputs the

elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

(oo] ()

n n n n
PP R e Gl G0 Pl Dol bk =k (20 130 (2D

Make yourself familiar with the use cases of the application.

4

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stapwatch button that can be used to start and stop the stopwatch.
—— The second part is the timer that is used in order to count
pin | pEny : pButton the elapsed time. The third part is the display that displays
o T owor Joutton [teTmertimer %] | the elapsed time. Within the stopwatch the different
& evPresskey(Ke. . R minint t t d - r_t d I k
% B i components are connected via ports and links.
7 ! Ey—— Additionally, the stopwatch class itself relays both the
P)O_“t[poy| | BsDisplayDisplay B| L iDisplay | WlewReset(start/stop button and the display to its boundaries in order
IDisplay] [E%— to be able to connect an external start/stop button and an
& evShowimint,sin... external dlsplay .
The myStopWatch class represents a
my StopWatch = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
C My] that can be used as a start/stop button.
T@, Additionally, it connects the stopwatch to an
& presskey(Keyval int)void pin |1 HsStopwatch: StopWWatch external d|Sp|ay “myDispIay” that diSp|ayS the
IKe elapsed time.
Qu : St et
1 itshyDisplay:myDisplay & ﬁp‘q] = setime{mint <:inf void
pl Digplay
[—0—
IDigplay

System Under Test

| 1 Defining the System Under Test (SUT) is the first [g
T oo = 0y - step in the test workflow. This tutorial will focus on the

3 Compenents

C
Do
2

5 = s o StopWatch class. To define StopWatch to be the SUT, we
B 2 68 g TESnCOnfiguatios Defaultcenfl have to create a test architecture. The needed

S " tgEE%?&EEWMMMm administrative framework will be placed in the folder
njug s $§§§§E§T§ﬁmm . 1estPackages”.

TC_at_pOut_of_Stopkiatch

< @ o The System Under Test (SUT) is a part and

=i TCon_Stopiatch

H- (= ibutes H H
AT b C et is the component being tested. A SUT can
5 B9 TestConto #- (5 Links . . . c
“EE 5 D Sttt consist of several objects. The SUT is exercised
f?gﬁ}“ . dfzsg‘?ﬁi%“fﬁéigg%mgm . via its public interface operations and events by
‘4 tsStopWatch ucture_of_TCon_Stopiiat
T e = ‘Eﬁi??fi”j?f_”ﬁrtfgﬁfﬁwmh the test components.
2 itsTC_at_pin_of_Stopwatch itsTC_at_pOut_aof_Stoplatch
e a,,TE;EZSajjiﬁu“ﬁg”fjmpwm +- %y, TestConfigurations
- TCon_Stophiatch_TestControl +-{% TCon_Stop\Watch_TestControl
|
/ \ / aTestCantexts \

TCon_StopYvatch

= ?D StopWatchPkg

7+ Classes =5 TestContaxts
BB Button -4 TCon_StopWatch 1 WSUTn
%ﬁ +- Lirks itsStopYYatch: StopWWatch
) % Tiem. Create TestArchitecture B j‘,’iﬂi—tssﬁhjpwatth
=&l Test Context Diagrarns
s ¥8Structure of TCon Stoniat — —
+ TestCDmpDnentInstances
SeIeCt the class 1] “j, TestConfigurations pInT pOutT
~StopWatch® in the browser .
and choose from context Have a look on the newly created Test C.ontext Dlagrqm .
menu ,Create ,Structure_of_TCon_StopWatch “, and view the resulting parts in

TestArchitecture® the composite class , TCon_StopWatch® of our test context.

_ ' J /

Test Architecture

=

=
=

=-L3 TestPackages
=R 4 TPkg_Stop\watch
=~ Components
=g | TPkg_StopwWatch_Cormp
= Configurations
+ 83 «TestingConfiguration: DefaultConfig
+-2F Events
-5 Ohjects
=-C# TestPackages
=y TCon_StopWwatch_aArchitecture
+ 22 Dependencies
= TestComponents
+ TC_at_pln_of_Stopbiatch
+ TC_at_pOut_of Stopiwatch
=49 TestContexts
=89 TCon_StopWWatch
+ -2 Atributes
+- (2 Dependencies
5 Lirks
+-(2) Statechart
= ol SUTs
alb itsStopiiatch
&g Test Context Diagrams
4 Structure_of_TCon_StopWatch
= ‘ TestComponentnstances
z itsTC_at_pln_of_StopWWatch
itsTC_at_pOut_of_StopiWatch
#- %y TestZonfigurations
[y TCon_StopWwatch_TestControl

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test

- model besides the design model. After creation the

following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp*“ describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

« Tt onbed =
TCon_StopWatch

1 =T Ts

itsStopWatch:StopWatch

pln pCut
pIn pOut
1 «=TeComps 11:1-[::::
it=TC_at_pl s Te_at_p

The automatically created test context
represents the formal structure of the test system.
TestConductor analyzed the model structure in
consideration of the selected SUT and proposed a
test structure, which is visualized in the test
context diagram inside the test context.
TestConductor generated corresponding test
components for ports and associations of the SUT.

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

The class ,TC_at_pln_of StopWatch®
realizes the interface ,|IKey“ and thus can be
connected to the “plIn” port of the stopwatch
class that provides this interface.

The class ,TC_at_pOut_of StopWatch®
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

Is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

Is an operation of a test context that specifies how a

set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
flow charts and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them ||
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

TCon_stapyy
atch.itsTC_at
_pln_of Staop

«SUTs
TCon_stapyy TCon_Stophhy
atch.itsStop atch.itsTC_at
YWatch: StopWy _pDut_of Sto

evshow(m=0, =0, b=FALS EH

Test Case : check_set_time in TCon_StopWatch

General | Description | Implementation | Arguments | Felations | Tags

woid TCon_Stopiwatch_check_zet_time[)

Properties

I// Check tkat initially the time is 0:0
int mins = StopWatch getMin(&(we->its3topWatch)):
int secs = 3topWatch getdec (& (we->its3topWatch));
RTC_ASSERT_MAME ("Check initial time",

[fmins == 0) && [Zecs ==

[Imins == 3] L& [sews ==

o1y

SF mow set time to 03:21 and check that setting of
A4 time indeed sets the correct time

StopWatch setTime (& (me->its3topWatch), 3,
winz = StopWatch getMin(&(we->itsStopWatch)):
secs = StopWateh getlec (& (me->itsStopWatch)):
RTC_ASSERT MAME ("Check if time setting is correct”,

21):

21y

MCon_StopWWatch_rtc_init{me-=itsTCon);

JRTC_ASSERT_NAME(Initial" 1);

¥
final

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Flow chart test cases also benefit from their graphical
nature, but in contrast to sequence diagrams, the use of
complex data types (structs) and control structures (if-
then-else) is supported out-of-the-box.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

Test Case: Sequence Diagram |

E“ TestScenario: Check_Init in TPkg StopWaich_1

To manually create a sequence diagram
test case we have to define a test scenario

which is represented as a sequence diagram

TG af_pln_of | TCo. StopWatch| . TC at_pOut...
«5lUTs
TCon_Stoph?y TCon_StopWy TCon_StopWy
atch.itsTC_at atch.it=Stop atch.itsTC_at
_pln_of Stop Watch: StopW | | _pOut_of Sto

i‘i Test Context Diagrams
=% TestCases
=% to_check_init?)

L chInstances
[=l _Ei TestScenarios
E—'llp CheckInit

and link it to a test case. TestConductor
simplifies this process with a single command.

-

L Link

b SUTs

i Test Context Diagrams
‘ TestComponentinstances
%y TestConfigurations

Select the test context
,1Con_StopWatch® in the
Rhapsody-Browser ...

e context menu ,Create SD

Create SD TestiCase

Create Flowchart TestCasze
Create Code TestCase
Create Statechart TestCase

... and choose from the

TestCase“..

2N

=% TestCases
=

Rename the test case to
»{C_check init‘. Rename the
test scenario to ,,Checklnit*

and open it.

/

|

Test Case: Sequence Diagram li

=57 RequirementsPkg
=l (= Requirements
10| REQ_Init
|t J] REQ_Running_1
|t J] REQ_Running_2
|0)| REQ_SetTime
[REQ_Stmpping
£ stopiwatthPkg
57 SystemPlg
£ TutarialPkg
[Profiles
=53 TestPackages
=D TPkg_StopWatch
() Components
2 Events
[Ohjerts
=-E® TestPackages

Requirement : REQ_Init in RequirementsPkg

General | Description | Relstions | Tags | Properties

RED_Init
v %
Vv

M ame:
Stereotype:
Type: Fequirement
1D:

Defined in:

Specification:

After starting the stopwatch, the stopwatch
shall display 0 minutes and O seconds (0:0). b

Locate oK

E3]E5]

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

=g TCon_Stopwwatch_architecture
=4 Dependencies
% TestComponents
=59 TestContexts
=49 TCon_Stopwwiatch
(2 attributes
(22 Dependencies
(25 Links
(3 statechart
o SUTs
3 Test Context Diagrams
=% TestCases
=% SD_tc_00
EY sDinstances
=-b, TestObjectives
b REQUINI

-

= "L: TestCases
ERF - check init)
=l .

Features...

Add New |
OfflineTestResult
TestOhjective

TestingProfile

TestScenario

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

test case.

Depends on:

T Select Model Element FZI

=B Requirements PS
o (e

E-! REQ_Running
[REQ_Stopping
£ StopwatchPka v

o]

Cancel |

Select requirement “REQ_Init”
as target of the test objective”

-

=% TestCases

/

-

=-#- to_check_init)
E’;'. ShInstances

=W TestOhjectives
d, EE

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_ Init”.

/

Test Case: Sequence Diagram lil

12" TestScenario: Check_Init in TPkg StopWatch_1 *

Define action and reaction of the system

under test. We will specify the ,Checklinit"
scenario, where the SUT shall emit event

.. TC_at_pln_of.. | TCo...Stop'atch . TC_at_pOut.. “‘evShow” with current time 0:0 after starting
the SUT. This output shall be generated
«SUTs automatically by the SUT, since no further
TCon_Stop | [TCon_StopW TCon_Stopiy input is needed for that.
atch.itsTC at atch.itsStop atch.itsTC_at
_pln_of Stop Watch: Stophh _pOut_of Sto
| evShow(m=0, =0, b=TRLIE) |
| | |
4 N N [N
=0
TCon__StopW TCon__StopW TCon_Stophh TCDT]SL;{D»F]W TCon_StopW
\.njgct:ﬁgtsomfw atghlttsgfcg?; EVShDW(FH:D, s=0, h:TRUE:I atch.itsTC at atch.itsStop atch.itsTC at
S St _pIn_Df_St_op Watch: Stopi _pOut_of_étu

evShow(m=0, =0, b=TRUE) l

| Features... |

evShaw(int,int, RiCEoolean)

Draw the message
“‘evShow” from the SUT to
the test component “TCon_
StopWatch.itsTC _at_pOut_

of StopWatch”.
_olop)

Specify argument values
m =0, s=0, b =TRUE for the
message.

/

That's it already. The test

| evzhow(m=0, =0, b=TRLUE) :
| S
e case specification is

complete.

- /

|

Test Case Execution

Execute the test case with Rhapsody TestConductor. ||
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either

¥ PASSED* or ,FAILED",

EEX

Mame
-1¥, tc_check_init
By, SD_tc 0
+ D Detailed Assertion Informaticon

Status

3 FAILED
€3 FAILED 1

File/Tteration

Line/Progress

The progress displays how many steps are
finished yet. In case of a passed test 100%
have to be achieved.

0% (0/2)

The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.

/— H3 TCon_Stopiwatch
- Links
gl SUTs
&g Test Context Diagrams
=%, TestCases

Features...
Edit TestCase SDInstances
Update TestCase

Build TestCase
Execute TestCase

[SRR S S

\

TestConductor

! E TestCase must be built before execution. Build and Execute now?

(| N

=B Testcases
o

=i TestCompDnentInstances
#- %y, TestConfigurations
= E’S Tes\Scenarle
By, chacknit

=k

oK l l Abbrachen DRORE <3

Mame Status File/te... | Line/Progress

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model
needs to be updated and/or the tested executable needs to be
compiled, a popup window appears in order to update the test case
and/or build the executable.

- ¥, tc_chedo_init) FAILED

B Bl [FalLED
The test case execution
dialog is a dockable dialog
e that can be placed e.g.
underneath the main

browser window

/

Test Case Execution I

The test case execution FAILED with Rhapsody |j

<SUT - TestConductor. To analyze the reason
TCon_Stop TCon_Stop TCon_Stop H H _
e ot odlriad TestConductor offers two kind of views. The HTML
DWatclh:Sto _at_pin_of_ _at_pout_of report displays a textual summary and can be found
| directly under the test case in the Rhapsody-
| ewShoweim =0, 5 = 0, b = TRUEY: Check of in value Di’ergument b failed BI’OWSGF_

| TestConductor created a witness sequence diagram

| to display the error. The red arrow visualizes the

- faulty step and the reason. TestConductor expects

SDInstance 'SD. tc. 0" the parameter value ,TRUE" for argument “b”, but

Statue: FAILED observes the value ,FALSE" during actual test
Progress: 0% (0/2) execution. The expected value was not specified
correctly... by accident.
é N [N W
Marne Status Name St =%, TestCases)
-1¥, tc_check_init 3 FAILED =¥, tc_check_init €3 FAILED =% tr_check_init)
By =y s By [oy Hlj sDInstances
—1{7] Detailed Asser SrmmesH 5] Detailed Ass| ShowasSD b TestObjectives
7] 'evShow': Check of invalue.. (&) PASSED 7] 'evShow': Check of invalue.. () PASSED =3 I‘?StRESUltS
£+) 'evShow': Check of invalue.. ([©) PASSED D ‘evShow': Check of in value.. (£) PASSED = T':':"-'—E;':' piiatch_ te_check_init_0.html
7] "evShow': Check of in value... € FAILED 17) 'evShow': Check of in value.. 3 FAILED _ [Ey Testscenarios

To open the witness ... and select “Show In ’;he brov:}s?]r,
0 sequence diagram right e as SD”. e underneath the test case,
click the item SD_tc_0in you can find the generated
the TestConductor html report. Double click
execution dialog... the report to open it.

. RN RN /

Test Case Execution lll

The test execution PASSED with Rhapsody TestConductor
after we corrected the expected parameter value for argument “b”
from “TRUE” to “FALSE” in the test scenario ,Checkinit®. After
changing the scenario and re-executing the test case, the test

case is passed.

D G f;-,éil Refer to the user guide to get

Marme Status File/Tteration Line/Progress famlllar W|th the eXtended funCtlonahty
~1%, tc_check_init © PASSED of TestConductor.
By SD_te 0 (@) PASSED 1 100% (2/2)
+ D Detailed Assertion Information
_x - TestC E.‘ TestScenario: Check Init in TPkg StopWatich
b Xest 35:5 ki 'tI:] TCon_StopWat... StopWatch LT at pStop..| TG at_pSto.. JJ i
=% to_check_ini - x
+-2a Dependencies Q i &
2 «SUTs
s SDIHSta_nce_s TCon_Stapi TCon_Stophy | | TCon_Stophy Marme Status Fi.? /Progress
"'E:l TE5tObJECtWES atch.itsStop atch.itsTC_at atch.itsTC_at -1¥, t_check_init (@ PASSED
Watch: Stopyy _pStopWatch _pStopWWatchl - -

_

+V' TestResults
=]~ B TestScenarios
----- Et «WitnessScenarios CheckInit_show

CheckInit

To correct the test case
open the test scenario
,Checklnit*“.

| | |

evShow(m=0, =0, b=FALSE)| |
| | |
| | |

For argument “b”, change the
expected value from “TRUE”
to “FALSE”.

- /

\

Bposotr o @ PaSSED 1 100% (2/2)

Re-execute the test case by
pressing the “Start” button in
the top right corner of the
execution dialog.

/

Test Case: Source Code |

Test Case : check_set_time in TCon_StopWatch

General | Description | Implermentation | arguments | Relations | Tags || Properties

void TCon_Stop'w atch_check_zet_time(]

I«"f Check that initizlly the time is 0:0
int mins = ScopWatch getMin(& (me->itadcopWatch)) ;
int secs = StopWatch getlec (& (me->its3topWatch)) ;
RTC ASSERT MAME ("Check initial time",

[lmins == 0) &£ (secs == 011);

A4 now set time to 03:21 and check that setting of
A4 time indeed sets the correct time

StopWatch setTime (£ (me->itsStopWatch), 3, 21);
wmins = StopWatch getMin(&(we->its3topWatch)):

|

To manually create a source code test case
create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of macros
like e.g. ,RTC_ASSERT_NAME" that can be used
to execute checks during test case execution. If the
function “StopWatch_setTime” works as expected,
the test case passes.

gl SUTs

+-hg Te Create SD TestCase

= x._.- Te Create Flowchart TestCase =
+ "-‘.- Create Code TestCase

+‘TE

Create Statechart TestCase
%y, Test_onngurations

Select the test context
,1Con_StopWatch” and
choose from the context
menu ,Create Code
TestCase®.

dialog.

% to_check_init()
%, 1 _chieck_time)

Rename the created test
case to ,tc_check_time*
and open the features

secs = StopWatch getSec(&(we->itsitopWatch)):
RTC_ASSERT MNAME ("Check if time setting is correct”,
[Imin=s == 3) £& ([(secs == 21)))1:;
& B9 TestContexts i N N)
= & TCon_Stopbvatch i b TLItEI rialPkg
+-L Links 2% TestCases = [E- Classes

=g Q CodeTestCase
= @ Operations

=1 c_check time0]

+ Q FlnwchartTestCase
£-E% TCSC tc 0

Replace the content of the
edit field under the
implementation tab of the test
case with the content from the

“tc_check_time” operation in

VAN the Tutorial package.)

Source Code Test Case Execution

=
DRORE <3 {3
Marme Status File/Tteration | Line
- ¥, tc_check_time () PASSED
1) Check initial time @ PassED TCon_Sto.. 141 | |
B Chedk if time setting is correct (&) PASSED TCon_Sto.., 148

[(mins == 3) &&

A4 now set time to 03:21 and check that setting of
S8 time dndeed sets the correct time

StopWatch setTime (& (me->its3topWateh), 3, 21):

mins = StopWatch geclin&(me->itsdtopWacch)):

secs = 3topllatch getlec (& (me->its3topWatch)) ;

BTC A3ZERT NAME ("Check if timwme sercting is correct™,

[secs == 21))111:

Execute the test case with Rhapsody
TestConductor.

Both assertions evaluate to true and the
test case passes. Double-clicking an
evaluated assertion in the execution
window highlights the assertion in the test
model.

4 N N N
=89 TCt Edit TestCase SDInstances =@ TCr Edit TestCase SDInstances
- Update TestCase #5 Update TestCase Name _ Status
2 ul : - S plild Testtase =% tc_check_time @ PasSSED
! BEuild TestCase +- Bl i) Check initial time ® PasseD
- ®, Execute TestCase - x| Bedliz Tesicass Y Check if tim correct [@) PASSED
+-# tr_check _initd
SRRt ek tirne ()

Select test case

Select test case

“tc_check_time” and then
select “Build TestCase”

from the context menu. the context menu.

»{c_check_time" and select
“Execute TestCase” from

In the execution window,
select the assertion and click
“Show Assertion” in order to
highlight the assertion in the
model.

/

Test Case: Flow Charts |

In Flowchart TestCases you can use ASSERT macros like
RTC_ASSERT_MAMEI(n,2), e.q.

RTC_ASSERT MAME{'Check 1", me->istClass_1.attribute_x == 42);

For the list of available macros see TestConductor UserGuide
or the testconductor_Coh file in the installation directory

’ '
RTC_ASSERT_NAME{"Initial" 1);

To manually create a flow chart test case we
have to define a test scenario which is represented
as a flow chart and link it to a test case.

TestConductor simplifies this process with a single

command.

;---x-‘,-' TestCases

+x to_check_init()

+x tc_check_time()

;---x-‘,-' tc_check_time_FC()

—S@ diagram

= %o FlowchartDiagram
- default of initial
+[,_—,-'E' Actions
+-(22 Comments

= ﬁi Testntets - Create SO TaskC =l by Test Cantext Diagrams
=B 3 TCon_Stophiatch reate esllase & Structure_of _TiCon_SkopWwatch
+- L Links Features.. = #. TestCases
- SUTs Add New Create Code TeskCase #- % te_check init()

= by Test Context
&y Structure] Cut
® . TestCases Copy

Select the test context
,1Con_StopWatch® in the
Rhapsody-Browser ...

Zreake Statechark TestCase

e ... and choose from the
context

\

menu ,Create Flowchart
TestCase“.

\

~

+- % bo_check_timef)
R PR check time FOO)

Rename the created test case
to ,tc_check time FC" and
open the flow chart.

|

Test Case: Flow Charts i

Define the flow chart in order to execute it with
TestConductor. The Rhapsody-TestConductor-
macro ,RTC_ASSERT_NAME" takes a name-

¢ l parameter and a condition. If the conditions
int mins = Stop¥Watch_gethMin(&(rme-=itsStopWyatch)); [m|n ==3] and [SeCS==21] evaluate tO true the teSt
int secs = StopWWatch_getSec(&(me-=itsStopWatch)); .
RTC_ASSERT MAME{"Check initial time", ((mins == 0) && (secs == O)); case will pass.
StopWWatch_setTime(&(me->tsStopWatch), 3, 21); Obviously the flow chart test case is very similar to
mins = StopWWatch_gethin{&ime-=its StopWatch)); .
secs = StopWatch_getSecla(me->itsStopWatch); the source code test case we discussed some
i pages before. The difference in comparison with

the source code test case is the graphical nature of

[rnins == 3] [el=e] .
this test case.

RTC_ASSERT_MAME("Check if time setting is correct”, / \

((ming == 3) && (secs == 2100}, Do s "
=-E7 TutorialPkg
g

—I-[= Classes
+Q CodeTestCase
-.;@ —Q FlowchartTestCase
—.E Operations

—1-fgl, te_check_time_FC()

+

- TCSC_te 0

Replace the content of the
o flow chart of the test case with

the content from the flow

chart in the Tutorial Package.

. /

Flow Chart Test Case Execution

-1 Execute the test case with Rhapsody
v = % & TestConductor.

Marme Status File/Tkeration Line/Progress
=¥, tc_check_time_FC () PASSED The ,RTC_ASSERT_ NAME®“ macro
Q Check. inikial kimne O PASSED TCon_StopiWatch.c 161

Q Check.if time sekting is u:u:urreu:to PASSED TCon_Stopvatch.c 172 evaluates to true and the test case paSSGS.

[mins == 3] [elze]

¥
O O
(RTC_ASSERT MNAME("Check if time setting is correct”, }

(fmins == 3) && (secs == 21)));
] |} m]

————@H
4 N [N [~ N
kg Test Context Diagrams Updets Tedicase
= “;.-' TestZases Marne Status File/Tte
H;.‘_. tE_EhE-'Ek_il'litl::l Ewerute Techase -1¥, te_check_time_FC @ PasseD
“;." tE_El'IE.'Ek_tiI'I'IE-‘l::l Build TestCase inetiru:l iz carrect o E T_
SRt check_time _FCO) Execute TestCase) Show Assertion
0 Select the test case e ... and choose from e n |the er):ecutlon yvmdow,
tc check time FC“ .. context menu the items select t e.as“sertlon and -
i — — Build TestCase" .double—cllck. Sh_ow Assertion
and ,Execute TestCase”. in order to highlight the

\ AN AN assertion in the model.)

Test Case: Statecharts |

(b «SCArbiters TCSC_tc_0

e g;s;g;g;g Ends To manually create a
This is a statechart defining TestCase behavior _'@ statechart StateChart teSt case we

In Statechart TestCases you can use ASSERT macros like :

TestConductor ASSERT_NAME(n &), & 9. _ have to define a test scenario
TestConductor ASSERT_MAME("Check_1", attribute_x == true)

Far the list of available macros see TestConductar UserGuide i1 TC at_pln_of StopWatch Wh|Ch |S represented as a

or the TestCanductor java file in the installation directory +-(g} TC at_pOut_of StopWatch

- 8 TetConecs statechart and link it to a test
= 33 TCon_StopWatch .
-5 Attributes case. Technically, the test
£ Dependencies case has a dependency to a
2B Opastons TestComponent that contains
steon s j‘? Statechar the statechart. TestConductor
¥ o i {:;f;gf"””ag“ms simplifies this process with a
%‘ - B tc check init) single command.
; W tc_check_progress()
P {Zs Dependencies
SRR :techart T estCase» TCSC tc O}
e NG N :)
= 3_.1 —--u-—r.—r- i) =%, TestCases
oL Links — =%, TestCases %, to_check_init()
4 5 Croate SD Testtase T - M b:_check init() =%, tr_check_progress()
E ., i a=t=r=t i *u i
* ERETEE o it
% Create Code TestCasze - H
: %$ Creats Statechart TestCase #o to_check tlme{}
Update TestContext
0 Select the test context e Rename the test case to e Add a test objective (using
,TCon_StopWatch* and “tc_check_progress” “Add New -> TestingProfile
select “Create Statechart ->TestObjective”) to
TestCase”. requirement REQ_Running_1

. 2N RN %

Test Case: Statecharts |l

,

initial

ruTcstart

state_1
L Check that initially the time is 020
ink mins = Stopiitatch getMindme- =itsStopit'atch;
irtgecs = Stophiratch getSeclre-=itsStopiniabeh]y
RTC BSSERT MAMEr"Check initial time"

({mins == 07 && (secs == 01]);

state_3

il B00T 4 mow start stopwatch
RICGEM_PORT(me- =its TCon-=its TC_at_pIn_of_Stapiiratch.pln, evPresskey(1))

state_d4

Define the statechart in order to execute it with
TestConductor. The statechart test case first
checks that initially the stopwatch’s time is indeed
0:0. After starting the stopwatch, the statechart test
case waits a bit more than 3 seconds, and then
checks that indeed 3 seconds should be counted
by the stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor macro ,RTC_ASSERT_NAME®
again. If both checks are passed, the complete test
case is passed.

/ : . \ / Transition : 3 in statechart_0
=57 TutorialPkg I =
_'EE‘ Classes . General | Desciiption | Tage | Properties
B : " M. :
i = CodeTestCase —-igh «SCArbiters TCSC_tc_0
- FlowchartTestCase . - Association Ends . =
H i K ewTCSkart Tanget
-3 TCSC 4c 0 . B-(2 Operations -
. . =B tate 1 Trigger : evTCStar in TPka_Stopwatch +
e : + state_
= ;':'-.SSI:ICIE.tII:Iﬂ Ends - {;@ Everdls
(= Operations i B2 Tags
: @ : - Locate Ok
-

statechart of the Tutorial package.

0 Replace the content of the test component
statechart associated with this test case with the

e Add “evTCStart” as trigger of
the transition from state

“initial” to state “state_1”

/ o /

Statechart Test Case Execution

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
true and the test case passes.

state_4 /

tm(3200)/

ff mow chedk if time has elapsed accardingly

int mins = StopWatch_getMin{me-=itsStop\Watch);
int secs = StopWatch_getSec{me-=itsStopWatch);

RTC_ASSERT MAME("Check elapsed time”,
2= ((rins == 0) & (secs ==)
DROR 7 E],
Mame Status File/Tteration | Line final_state
- ¥, t_check_progress () PASSED
Q Check initial time O PASSED TCSC_fo_... 403 /TCon,_StopWatch_ finishTestCase{me-itsTCon);
Q Check elapsed tirme () PASSED TCSC tc_... 709
N a Edit TestCase SDinstances | N [N
Update TestCase |
- —— Marme Status
=%, TestCases Build TestCase 1%, to_check_progress © PASSED
%0 to_check_init() Ex Edit TestCase SDInstances | {2] Check initial time © PassED
L® - check progress() 3| C PASSED

% to_check_time()

0 Select the test case

_

»iC_check progress” ...

Update TestCasea
Build TestCasze

Execute TestCase

AN

... and choose from
context menu the items
,Build TestCase*

and ,Execute TestCase®.

/

In the execution window,
double click on the assertion
or right click on it and select
“Show Assertion” in order to
highlight the assertion in the
model.)

Create Test Cases Using Test Case Wizard - SDs

To create a test case based on

e ~ . . .
Cesetetcoe == existing sequence diagrams,
mykey :StopWatch M:JinstanceIinestotestarchitecture Operations Or reqUirementS, yOU
can use the TestConductor test case
Please select test architecture fortest case: o o o
<nen>> wizard. For an existing sequence
evshow(m=0, s=0, b; . .
diagram, the test case wizard creates
evPressey(KeyVal=1) an analogue test case with the same
message structure as the original
i Please select test case kind: Sequence diagram.
e For a requirement the test case wizard
creates a test case with the chosen
requirement as the test objective.
/ EI&I TutorialPkg Create Test Case \ / =% IESEESES) \
- Classes _ . _ Ea4
E‘D Sequence Diaararme Map instance lines to test architecture £ SDII"IS'EEIII"IEE.S
: =k TestObjectives
) - D:l] StupwEtchRunn|nq TCon_Stopi TCUn__Slup\N TCon_StopWy
] Flease select test architectune for best caze: f‘pﬁ';_“ni}ﬁ} V\a};ﬁﬂﬁtéﬁﬁﬁv f;%huf_s;fgf;
Rational Rhapsody Gateway __ | | avShow(m=0, =0, b=FALSE) }

Select the sequence
diagram
“StopWatchRunning” in the
tutorial package and select
“Create TestCase...”.

N\

e In the test case wizard
dialog, the test context
“TCon_StopWatch” is

already highlighted. Press
OK to proceed.

context structure.

As a result, a new testcase
“SD_tc_0” has been created
which is based on a new test
scenario containing the same
messages as the original SD,
but life lines adapted to the test

%

Create Test Cases Using Test Case Wizard -
Operations

-5 PredefinedTypes (REF)
[-f 1 PredefinedTypesC (REF)
D RequirementsPkg
£l StopWatchPkg
L—_Jbav Classes
% Button
3 Dy
B = StopWatch
. B Links

@ Operations
~ = getMin()
= getSec()
-l setTime(int m,int s
bﬂ Parts
#-= Ports
% Timer
(2 Comments
- Object Model Diagrams
[]---&I SystemPlkg
-5 TutorialPkg
- Profiles
[-ff5] TestingProfile (REF)

Test Case: Code_tc_0 in TCon_StopWatch

General I Description | Implementation |.Hrg|.|merds I Relations I Tags | Properties

woid TCon_StopWatch_Code_te_ O

In Code TestCases you can use ASSERT macros like :

* RTC ASSERT NAME (n,e), e.g.

int osc arg 1;
int osc arg 2;

RTC ASSERT_NAME ("Initial"™,1):

4 mn

Locate oK

* RTC_ASSERT NRME ("Check 1", me->it=Class O.attribute x =
* For the 1list of available macros see TestConductor User
'* or the testconductor_C.h file in the installation direc

StopWatch_setTime (sme->itsStopWatch,osc_arg 1,o0sc_arg 2);

EIQ StopWatch

- B Links
EI[E- Operations
i u getMinl:l

H etSec()

Create TestCase. ..

The test case wizard can also I’

be used to test operations that
are defined in the model. The wizard
allows to create three different kinds
of test cases: sequence diagram
test cases, statechart test cases or
code test cases. Independent of the
chosen kind of test case, the
created test case calls the selected
operation. Additionally, the test case
already contains a check that can be
refined by the user in order to check
the out values of the operation.

Pleaze select test caze kind:

Code TestCase A4
5D TestCase

Code TestCaze
Statechart TestCaze

0 Select operation

“setTime” of class
StopWatch in the browser
and select “Create

TestCase...”

/

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

\ /EI %, TestCases i) \

M Code_tc 00

= TestObjectives

est Case : Code_tc_0 in TCon_StopWatch

General | Description | Implementation | Arquments | Relations | Tags | Properties

void TCon_StopWatch_Code_tc_0[)

int osc_arg 1;

int osc_arg 2;

StopWateh setTime (awe-ritsStopWatch,osc_arg 1,08c_arg 2):
RTC_ASSERT WAME("Initial",1);

e As a result, a new code test
case has been created that
contains a call to operation

“setTime” and also a dummy
assertion that can be refined.

AN %

Debugging Test Cases

B ||
b (= :ﬁ: h
Mame Skatus FilefIteration LinefProgres:
-1¥, SD_tc_n EXECUTIMG
By so_tc_o ACTIVE 1 33% (1)3)
Bl 0 B e L m on T oe E]

TCon_Sop\iat
ch.isTC_at_plin
of SeopWatch:
TC =t pln of S

TCon_Stop\Wat
ch.ibRopWaih
:StopWa th

TCon_SopWat
chisTC_at_pCu
t of [opWaich
TC & pOut of

reset{}

il 900} =t ROOT . Running.pre_off

showdm =0, s = 0, b = FALSE)}

i

evShowdm =0, s = 0, b = FALSE)

ShowTime(m = 0, s = 0, b = FALSE)

Tt

evShowdm =0, s = 0, b = FALSE)

Debugging failed test cases can also be done §
with TestConductor. When a test case fails, one can
turn on debug execution mode in TestConductor’s
execution window. After switching on debug mode,
when executing the test case one can step through
it by using the “Go Step”, “Go Idle”, etc. buttons of
Rhapsody’s animation toolbar. Additionally, when
stepping through the test case, one can use
Rhapsody’s animation features to inspect animated
statecharts, animated SDs, etc. in order to find the
reason why the test case fails.

In this mode, the application is not terminated

Execute TestCaze

Select test case

Ix automatically after the test case has ended.
=%, TestCases i i =l
+- Sk DRONE-A Y
3.5 =8 : @r Mame Status Fil... | Line/Frogress
= x'_ r - Marme Status Fil... | Line/fProgress - ¥ SD D EXECUTING
g =% SDte 0 FALLED By sD o0 ACTIVE 1 25% (2/8)
Update TestCase By sDtr 0 @ FALED 1 50% (48)
Build TestZase B OB e | m &P s E

Execute the test case again by

“SD _tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the
execution dialog.

pressing the “Start” button in the
execution dialog. Now you can
step through the test case by
using Rhapsody’s animation
toolbar.

/

Executing Multiple Test Cases

Executing multiple test cases can be

-l .
e done by executing a complete test context or
Name Status File/lteration Line/Progress a complete test package. When a test context
- TCon_Stoptwatch 3 FalLED .
L%, Corote 0 © PesseD or a test package is executed, all test cases
£) mitial © PASSED TCon Stop.. 132 within the context or test package are
-¥ 8D_tc 0 @ FAILED
g O rao 1 % 415 executed. After all test cases have been
=% ij_check_imt © PassED executed, TestConductor computes an overall
SD_tc_0 © PassED 1 100% (2/2)
L%, & ook progress @ PASSED test result for the test context or the test
5 check initial time @ P&SS m=slv y
B) Chock clapeod fme @ PASS Test Context: TCon_StopWatch
—¥, tr_check_time © pagg Codetr O PaSSED
2] Chedk initial time @ pasg SDED FAILED
£ Check if tirme setti,,. @ PaSS tt_check_init P4SSED
te_check_progress PASSED
tc_check_time PASSED
/EI % TestContexts \ KE‘ g r:""'qf'h /N Staty F'\
= Co : _Stopiiatc arme |5 [
L, | inbe o Lirks -1 @ TCon_StopWwatch © FALED
o 5 id -¥, Code_tc_O © PassED
1 Te Build TestContext ¥ e
Rl Evecute TestContext . %Dlrlc't'ac: 8 EiiSEED 9
v N d _TC_|
@ Teotch @ T Update TestArchitecture B 50 te 0 € FALED 1
E= estCorm, - L. —_
" Teston RIS TR The results are shown in the
Execute TestContext
0 Select the test text execution window. As always,
Select the test context electthe tes cc‘>‘n ex “Show as SD” resp. “Show
“TCon_StopWatch” and again and press Execute assertion” can be used to
select “Update TestCoq’ltle ét - All teft g show the reasons of failed
select “Build TestContext”. after the other.

/

)

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a
requirements coverage test report. A test case

requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but
presented as a textual report. It can be

To: Reguiremert Scope: JavaStopWistch

generated by Rational Publishing Engine or by
ReporterPlus using a predefined template.

(&G TestPackages
=0 ¥ TPk0_Stop\watch
+-_] Components
- TestCormponents
TableMatrix 4
Annotations 4
TestingFrofile 4

TestResultTahle
TestScenario

TestRequirementiatrix

\

0 Select the test package

“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->
TestRequirementMatrix”.

- B REQ_Int |E REQ_Running 2 | REO_Stopping | REQ Running 1 |} RED_SetTime
S |®. to_check init El REG_Irit
: _5‘:_,- tc_check_time
a #_ be_check_progress Hy REG_Running_1
&%, 8Dtc 0
& :’r_,- Code_tc 0
(¥]
/ Marng: ReqCoverage \ / \
] To: Requirement Scope: JavaStopiVatch
SlCel b JE - B REQ_nt | REQ_Ruring.2 |B} |
Lawaut: TestRequirementCoverage in T s % : :C—C:ect—i:it L, REQ_Ini
"From" T % e check_progress
SC‘;;"B: C_Stopwatch v % : ;5_:‘0_0"—" g
Include Descendants [“From'' Scope) @ xW
"To" C_Shopiaatch w -
Scope:
Include Descendants ['To" Scope]
Open the features dialog When double clicking the
of the matrix, rename it to matrix in the browser, the
“‘ReqgCoverage”, and set matrix view shows the
the “from” scope and the relationship between the test
“to” scope to the complete cases and the requirements.
_ model “C_StopWatch”. AN Y.

Assessing Test Case Requirement Coverage I

All Requirements

Name ID
REQ Init no id

REQ Running 1 no id

REQ Running 2 no id

Covered By Test Case

tc_check init
in TPkg_StopWatch:: TCon_StopW

PASSED for CG Configuration
TPkg_StopWatch:: TCon_StopWat

tc_check progress
in TPkg_StopWatch:: TCon_StopW

not executed

not covered

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
Rational Publishing Engine a requirement
coverage report can be generated in different
formats like Word, Html, etc. The
requirements coverage report shows the list
of requirements, their coverage by test cases
and the outcome of the test case execution.
The report also contains information about
the specification of the test cases.

) (T N
ReportGenerator
Schemas
Rational Publishing Engine Templates ||| TestRequirementCoverage.dta
v ATG
] Generate report... | ProjectContentReport
SoftwareDesignDescription
TestConductor
UPDMReport
From Rhapsody’s tools Sel h
0 menu, select “Rational e “Te eclt?t . c e
Publishing Engine* dte”St iQUIrtalrrler}t c;;]/erage_
-> “Generate Report...”. a astempiate forthe
report to generate and click
Next in the following dialogs.
/ARG /L

Q IBM Rational Rhapsody Report GEI‘bEI‘c!tD)

Configure the Output

Select output types needed and optionally change
stylesheets and output paths

Output Type Output File
Word

V| Html
PDF
HslFo

Select the desired output
format, html for example, and
click on Finish. After generating
the report, the report can be
viewed with any browser that
can display Html files.

\

/

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (2/5)

Operations

not covered EERS=)
EventReceptions

not covered WENEN===A=0d
StateChart: statechart_3
ROOT.Running

Detailed Coverage Summary of Display {4/5)

Operations

covered ShowTirme

EventReceptions

covered evShow
StateChart: statechart_2

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test

Stte cases, i.e, what is the achieved Model
st Coverage when executing the test cases.

TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts

-

covered ROOT. running State
: 0 Transiton etc. that shows the achieved model coverage.
not covered [ER Transition
ey s ; - g _ \ /Elﬁa TCon_StopWatch \
Configuration : DefaultConfig in TPkg_StopWatch_Comp & TestContexts bﬂ Attributes
General | Description | Initislization | Settings | Checks | Relations | Tags | Properties = % EE Dependencies
FH-= Links
Fi H =
o EIQ ModelCoverageResults
=I| TestArchitecture Q TCn_StoWatch_mcuv_D.html
=l TestingConfiguration - Operations
CormputeCodeCover| [SR E_‘a ‘?’UTSC oi
= teModziC e . est Context Diagrams
e . Update Testarchitecture 5%, TestCases
Coveragetind SUT_hierarchical Te | BE-® Code t 00
H % Code_tc
""), TesT_OATIgQUr ATIoNs A=

On the tags tab of the

and set “CoverageKind” to
“SUT _hierarchical”

configuration, turn on
“ComputeModelCoverage”

/

EIQ MedelCoverageResults
BT o iooviaicnCode tc 0 meou 0.l
After execution has finished,
Execute the test context e model coverage reports can
“TCon_StopWatch™. be found both for individual
test cases as well as a
cumulative coverage report
AN for the test context. /

Assessing Test Case Code Coverage |

Besides coverage of the requirements

| and model elements, an important additional
COVE rage Report information is to what extend the code of the

Environment Info

Table Of Contents

Coverage Statistics

Goals Covered

Source Code

SUT generated by Rhapsody’s code generator

is executed, i.e, which Code Coverage is
achieved when executing the test cases.
TestConductor can compute this information

Stat tC 70 43| 61.4% . 0
egisian Tswszgrzge 5 T157%| during test case execution. When code
Condition Coverage 0 0 n.a. 1 1
ey ey ————24 coverage co_mputatlon is turned on, after test
Modified Condition/Decision Coverage 20 7| 35% case execution Testconductor adds a COde
coverage report to the test cases, test contexts
etc. that shows the achieved code coverage.
é 4 I ‘ I
- EJ) TPkg_St:pWah:h Configuration : Release in TPkg_StopWatch_Comp
=1 CDmpDnEntS General | Description | Initialization | Settings | Checks || Relations | Tags | Properties
= TPkg_StopWatch_Comp oy
=0 Configurations
+- 53 «TestingConfigurations DefaultConfig =| MESEAH TR
=5 ingConfiquration» Release =/ Testingtonfiguration
ComputaCodeCoverage
ComputeiodelCoverage |
Coveragekind SUT _hierarchical
Create a copy of the rhapsody
configuration “DefaultConfig”, On the tags tab of the configuration,
0 rename it to “Release” and e turn off “ComputeModelCoverage”
make it the active and turn on
configuration. “ComputeCodeCoverage”.
_ A\ /

Assessing Test Case Code Coverage Il

Coverage Report The Code Coverage report contains .

En\nrnnmenrtrlnfn Table Of Contents Global Statistics Source Code detailed information to What extend the Code Of

m T ~ the SUT has been executed by the test cases.

@ i s, s ae) The report contains both a summary about the

m o | oo achieved coverage (e.g. statement coverage)

EI"I\."irC bl igj RiCBoolean HtopWatch_startBehavior (StopWatch® const me) Source CDdE aS We" aS detailed information about eaCh

R e — single line of code. The source code view
Cove' 6 108 done &= Dlspla;istartﬂehavlur(&tmef>1tlesplay)’): . .

: e T contains color coded presentations about the
s © : T coverage status of statements, decisions and
Statemer 6 111 RiCTask_start(sime->ric_task)); 70 43| 61,49 00
Decision ' m I R — -] conditions of the tested code.

Condition —o.o wnt ! 0 0 n.a.
Condition/Decision Coverage 20 7| 35%
Modified Condition/Decision Coverage 20 7l 35%
4 N B P TestContexts) N /=y TCon_StopWatch_érchitecture
= 33 TiCon_StopWvatch - DEpEﬂdEﬂEiES
[hatrumertation : ; lélln e i * TestComponents
. _ &g ¢ Build TestContaxt =59 TestContexts
[nztrumentation Mode: Maone o %, T ——— S ¥ TCDH_SmpWath
- : (= Aftributes
o @ T Ypdate Testirchitecture = I, CodeCaoverageResults
+- %y, TEST_ONTIQUT AU0NS |
On the settings tab of the e e After test case execution has
0 configuration, set Select the test context finished, by double clicking
Instrumentation Mode to _ell_ga!(réan;j dt? “lépqlzte the code coverage element in
“None”. TestContext”, clljlth the browser you can open the
b estontext-an erl code coverage report.
Execute TestContext”.

\ 2N 2N /

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

4

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates of
requirements, model elements and generated source
code. Developers can easily and fast analyze reasons for
not covered elements.

highly automates the testing process and can save test
development time compared to traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet
information portal or contact one of our
worldwide sale agencies.

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

