
IBM® Rational® Rhapsody® TestConductor Add On

User Guide

Rhapsody®

IBM® Rational® Rhapsody®
TestConductor Add On

User Guide

Release 2.8.0

2

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software including documentation and its fitness for any
particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and

IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2017 BTC Embedded Systems AG. All rights reserved.

3

Contents

Content
Contents..4

Contacting IBM® Rational® Software Support...9

About this document...10

Preliminary Note..11

Introduction...14

Rhapsody Testing Profile..18
Adding the Testing Profile automatically...18

Adding the Testing Profile manually..18

Using the Testing Profile..19

Refining Testing Profile Stereotypes..19

Model-based Unit Test Definition..21
TestArchitectures..22

Replacements...24
Dependencies used for Navigation on Replacements..25

Interfaces...26
Ports...27
VariationPoints and Variants..27
Inheritance...28
Templates and Template Instances...28

Automatic TestArchitecture Generation...28
Context Menu 'Create TestArchitecture'...28
Test scheduling with <<Scheduler>> TestComponents..31
Test arbitration with <<Arbiter>> TestComponents...32

Creating test executables with TestingConfigurations..33
Generate and Build the TestContext...33

Using Classes (UML) and Blocks (SysML)...33
Using Objects...33
Using Files (Modules)..35
Using Parts of composite classes..35
GreyBox TestArchitectures for classes and objects..35
TestArchitectures with multiple SUT classes or objects...36
Updating TestArchitectures..37
Up-to-date check for TestArchitectures..37
TestArchitectures for MicroC Models..38
TestArchitectures for Code centric Models..38
Production Code (Black Box) Testing..39

Black Box Testing..39
Grey Box Testing...40

TestCase Definition..42
TestCase Definition with Code...42

Defining a Code TestCase..42

4

Testing reactive behavior with Code TestCases...42
TestCase Definition with Flow Charts..43

Defining a Flow Chart TestCase..43
Testing reactive behavior with Flow Chart TestCases..43

TestCase Definition with Statecharts..43
Defining a Statechart TestCase..43

TestCase Definition with Sequence Diagrams..44
Defining a Sequence Diagram TestCase..44
Failure Analysis in Sequence Diagram TestCases..45

TestConductor.h, TestConductor_C.h and TestConductor_C.c...45
Support for interfacing Files in C using <<CInterfaceFile>> Stereotype.....................................45
TestConductor Support for Testing Private Operations in Rhapsody in C....................................46
TestConductor Support for Testing Private and Protected Operations in Rhapsody in C++.........47
Support for Rhapsody Action Language...48

Model Population – Create Driver Operations and StubOperations..48
Driver Operations...48
StubOperations...49
Clean TestComponent..52
Clean TestPackage..52

Specifying a TestScenario...52
Creating TestCases with the TestCase wizard...52
Creating Sequence Diagram TestCases from existing Scenarios using an explicit instance
mapping...55

Definition of mappings for sequence diagram TestCase creation from existing scenarios.......56
SDMappings for Replacements..58

Test Execution..59
Overview..59

Testing Configuration...59
Tags of the <<TestingConfiguration>> Stereotype...60
TestConfiguration Dependency..67
Execution Results...67
Performing result verification for TestCase execution..68

TestCase Execution..69
Test Execution Dialog for code, flow chart, startechart based tests..70

Test Execution Dialog..70
Test Information...71
Controlling TestCase execution...71

Test Execution Dialog for sequence diagram based tests...71
Test Execution Dialog..71
Test Information...72
Displaying Test Results by witness scenarios..73
Automatically adding witness scenarios to the model for failed SDInstances..........................73

Abort Test Execution..73
Execution Timeout...73
Test Execution Report..75
Debugging TestCases...76

TestContext Execution..76
Starting Test Execution..76
Stopping Test Execution...77
Execution Timeout...77
Ordering of TestCases..77
Test Execution Report for TestContext...78

5

TestPackage Execution...78
Starting Test Execution..78
Stopping Execution..79
Execution Timeout...79
Test Execution Report for TestPackage..79

Computing Model Coverage during Test Execution...79
Computing Model Coverage for single TestCases..80

Coverage Items..80
Choosing the Coverage Kind for Model Coverage..81
Model Coverage Measurement and Animation Instrumentation..81
Traceability of Coverage Items..81

Computing Requirement Coverage...82
Computing Requirement Coverage for TestCases and TestContexts..82
Transitivity of Dependencies (Refinement of model elements and requirements)........................83

Computing Code Coverage...85
TestConductor code coverage criteria..86

Command Line Execution..90
Command Line Syntax for rhapsody.exe..90
Command Line Syntax for rhapsodycl.exe...92
Test Execution Report..93

TestCase Execution on Targets...93

Test Management..95
Managing Test Data..95

Linking TestCase to Requirements...95

TestConductor Dialog...96

TestConductor Settings...96
General Properties..98
TestContext Properties...101

Generating Test Reports with Rhapsody ReporterPLUS..102
Executing the ReporterPLUS with the Test Report Template...102
Using the HTML Test Report...103
Using the Test Requirement Coverage Report..103
Customizing the Test Report..104

Generating Test Reports with Rational Publishing Engine...104
Creating the Test Report...104
Test Requirement Coverage Report..104
Creating Report Templates...105

Using the TestConductor API...105
Available TestConductor API Commands..105
Defining Callbacks for TestConductor functions..107

Specifying Requirements with Sequence Diagrams...108
Supported Diagram Elements in TestScenarios..108

Limitations of design elements (sequence diagrams)...110
Message Realization...110

Ignoring Unrealized Messages...110
Virtual Call vs Nonvirtual Call (Rhapsody in C++)...111
Self-Messages in BlackBox and GreyBox Testing...113
SelfMessageRealizationInParts..113

Using Time Interval for Delay Driving from TestContext and TestComponents........................114
Specifying Argument Values..114

6

Specifying dataflows..115
Specifying Return Values...115
Specification of Out and InOut Argument Values...116
Interaction Occurrence – Reference Sequence Diagram...117
Don't care values..117
Range Specification..118

Influencing DriverOperation and StubOperation Generation..119
User Defined DriverOperations..119
User Defined StubOperations...120
Influencing DriverOperation and Stub generation using <<RTC_MsgInfo>> tags....................120

RTC_DriverInitCode and RTC_DriverInitCodeAdditional..121
RTC_DriverCallCode and RTC_DriverCallCodeAdditional..121
RTC_StubBodyCode..122
Deleting <<RTC_MsgInfo>> Tags (User Defined Driver and Stubs)....................................122

Influencing DriverOperation and Stub generation using TestActions in TestScenarios..............122
Clean TestComponent..125
Clean TestPackage..125

(general) TestActions, TestAssignments and TestConditions..125
Preconditions (for SysML/HarmonySE)..127
Using <check> Conditions / TestCondition..127

Using Interaction Operators in SD TestCases...129

Using Serialize/Unserialize Functions for User Defined Types..130
Using auto generated serialization/unserialization functions..130
Using manually defined serialization/unserialization functions...131

Failure Analysis...132
Failure Analysis using Witness Scenarios...133

Failure Analysis for InteractionOccurrences..134

Debugging TestCases..136

Result Verification..136

Using TestConductor from Eclipse..137

TestConductor Rhapsody Plugins..138
TestConductor Merge Coverage Reports Plugin...138

Merging model coverage reports..138
Merging code coverage reports..139
Merging requirement coverage reports...139

TestConductor Rhapsody Quality Manager Plugin...140

TestConductor Check Model Plugin...141

Appendix..143
Definitions of the Rhapsody Testing Profile...143

Structure Overview..143
UML Testing Profile (UML20TP) Package...143

TestArchitecture Package..144
TestBehavior Package..144

TestConductor (RTC) Package...145
TestArchitecture Package..145
TestBehavior Package..150
TestDocumentation Package..154

Automatic Test Generation (ATG) Package...155
Formal Testing Package...155

7

TestConductor Assert Macros (C/C++)...156
Using IntelliVisor for TestConductor Assert Macros..158

Testing AUTOSAR Models..160
Unit testing of AUTOSAR Software Components...160

Migrating animation based TestArchitecture to assertion based TestArchitecture..........................166
Automatic Migration of animation based TestArchitectures to assertion based Testing mode. . .167

Functional Limitations..168

8

Contacting IBM® Rational® Software Support
IBM Rational Software Support provides you with technical assistance. The IBM Rational
Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,
read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational
Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in
your country (where available). For specific country phone numbers, go to
http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information
that you will need to describe your problem. When describing a problem to an IBM
software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time,
know the answers to these questions:

What software versions were you running when the problem occurred?

Do you have logs, traces, or messages that are related to the problem?

Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

9

http://www.ibm.com/planetwide
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/support/

About this document

This document is part of the documentation of the IBM® Rational® Rhapsody®
TestConductor Add On.

Further documentation can be found in the Rhapsody documentation folder in
<RhapInstall>/Doc/pdf_docs and <RhapInstall>/Doc/html_docs:

• TestingCookbook (open index.html)
A collection of TestConductor related questions and answers with examples.

• Tutorials:

• TestConductor_Tutorial_Ada.pdf

• TestConductor_Tutorial_C.pdf

• TestConductor_Tutorial_Cpp.pdf

• TestConductor_Tutorial_Java.pdf

• RQMTestConductorAdapter_HowTo.pdf
Small document describing the TestConductor Adapter to Rhapsody Quality
Manager and how to use the adapter.

• RTC_Release_Notes.pdf
TestConductor Release Notes.

• RTC_User_Guide.pdf
TestConductor User Guide for Rhapsody in Java and Rhapsody in Ada.

• TC_CodeCoverage_Limitations.pdf
Document describing features of the TestConductor Code Coverage Measurement
and its limitations.

• Testing with TestConductor on a small target.pdf
Document describing TestConductor's generic approach for testing on a target.
The approach is based on providing a simple proxy for compilation, download to
target, execution control and transfer of results. The document describes also the
usage of an example proxy using eclipse.

• Testing with TestConductor on an Integrity Target.pdf

• Testing_with_RTC_on_a_Linux_Target.pdf

• Testing_with_RTC_on_a_VxWorks_Target.pdf

10

Preliminary Note
The terms SUT, TestContext and TestComponent are defined in the UML Testing Profile,
specified by the Object Management Group (OMG). The Rhapsody Testing Profile is
based on the UML Testing Profile (cf. section Rhapsody Testing Profile on page 18).

Throughout this document we use the terms SUT, TestContext and TestComponent in a
logical and in a technical manner:

• SUT (“System Under Test”) denotes the classes, objects or files to be tested. The
SUT is taken 'as is' - without affecting or modifying its behavior. In its logical
meaning, SUT can be an individual model element as well as a set of classes,
objects or files with their relations among each other.

In its technical meaning, <<SUT>> is a new term on Rhapsody meta class
Object defined by the Rhapsody Testing Profile. Besides <<SUT>>, the
Rhapsody Testing Profile also defines the new terms

◦ <<TestSUTObject>> – used for global objects considered as SUT.
TestConductor distinguishes the stereotype <<SUT>> for instantiation of SUT
classes as part of the TestContext and <<TestSUTObjects>> for
instantiation of SUT classes or SUT objects as global objects outside the
TestContext. Also classes, objects and files not explicitly instantiated and
stereotyped in the TestArchitecture are logically regarded as SUT.
As a rule of thumb, it can be stated: all model elements which are not
marked to be TestComponents belong to the SUT.

◦ <<TestSUT>> – for Grey Box Testing (cf. sections GreyBox
TestArchitectures for classes and objects on page 35 and Grey Box Testing on
page 40), it is necessary to instrument also parts of the SUT with assertions
enabling observation. This instrumentation is never applied to original model
elements but on copies of the affected model elements (cf. section
Replacements on page 24). From the logical point of view, <<TestSUT>> is
treated like other SUT elements, even though <<TestSUT>> technically
denotes a testing artifact.

• TestComponent logically denotes a testing artifact that can be instrumented and
modified for testing purposes. TestComponent form the environment of the SUT
in the TestArchitecture. This environment has to conform to the SUT's
declarations of relations to other model elements to ba able to act as
communication partner of the SUT. If the SUT requires relations to e.g. implicit
objects or files, then the environment has to provide appropriate candidates for the
SUT's relations.

Technically, <<TestComponent>> is a new term on Rhapsody meta class
Class.

Using only classes as TestComponents would not permit many desired use cases,
such as providing test artifacts for singleton objects or files (Rhapsody in C).

11

Thus, the logical term TestComponent comprise more than only classes in the test
environment.

Technically, the Rhapsody Testing Profile defines the following stereotypes and
new terms (list not complete) to denote model elements belonging to the test
environment for a SUT:

◦ <<TestComponent>> – new term on Rhapsody meta class Class. A
<<TestComponent>> class can inherit from an interface or a model class,
replace a model class in the code generation scope (cf section Replacements
on page 24), can be a <<Variant>> of a <<VariationPoint>> or can
be newly introduced as additional testing artifact to the TestArchitecture –
such as a 'DummyDriver' or the TestContext.

◦ <<TestFile>> – new term on Rhapsody meta class Module. Modules are
displayed as 'File' in the Rhapsody browser. Modules are mainly supported for
Rhapsody in C1.
Since Rhapsody in C only supports inheritance from interfaces,
<<TestFile>> files can inherit from a <<CInterfaceFile>> (cf.
section Support for interfacing Files in C using <<CInterfaceFile>>
Stereotype on page 45), can be a <<Variant>> of a
<<VariationPoint>> or replace a model file in the code generation
scope.

◦ <<TestContext>> – new term on Rhapsody meta class Class. The
TestContext is a specific TestComponent, aimed at instantiating SUT and test
environment and the relations among the elements belonging to the
TestArchitectures. The TestContext owns the TestCases and is the backbone of
test organization. Since the TestContext has relations to all elements belonging
to the TestArchitecture, the TestContext can also be used for test execution,
e.g. providing the SUT with stimuli.

◦ <<TestComponentInstance>> – instantiation of a
<<TestComponent>> class as part of the TestContext.

◦ <<TestComponentObject>> – a TestComponentObject is either a global
object of a <<TestComponent>> class in the TestPackage or it is itself a
replacement of an implicit object in TestComponent place.
TestComponentObjects are needed only for TestArchitectures using global
objects, when instantiation of SUT and TestComponents global objects is
preferred to instantiating them as parts of the TestContext, e.g. if implicit
objects have to be dealt with (cf. sections Replacements on page 24 ff and
Using Objects on page 33).

Even though there is a variety of distinguished new terms denoting model
elements in TestComponent place, these testing artifacts adhere to common
rules regarding generation of driver operations and stubbing and
instrumentation with assertions. We therefore refer often to the logical term
'TestComponent' throughout this document – comprising
<<TestContext>> class, <<TestComponent>> classes, implicit
classes of <<TestFile>> files and implicit classes of
<<TestComponentObject>> objects. Similarly we often refer to the

1Rhapsody in C++ supports Modules/Files only for use of external sources, while Rhapsody in C also provides
code generation for the model element Module.

12

logical term 'TestComponentInstance' comprising
<<TestComponentInstance>> parts of a TestContext, global
<<TestComponentObject>> objects and <<TestFile>> files.

13

Introduction

Welcome to the User Guide for IBM® Rational® Rhapsody® TestConductor Add On.
TestConductor is part of the Rhapsody Testing Environment which is based on three main
components: “Automatic TestArchitecture Generation”, “Automatic TestCase Execution”
and “Automatic TestCase Generation”. These three components are developed along the
UML Testing Profile as implemented in Rhapsody.

TestConductor supports the two main features “Automatic TestArchitecture Generation”
and “Automatic TestCase Execution” of the Rhapsody Testing Environment. The optional

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) supports the
feature “Automatic TestCase Generation”.

In the Rhapsody Testing Environment the implementation of TestCases can be chosen out
of:

• Sequence diagrams

• Statecharts

• Flow charts (only Rhapsody in C/C++)

• Pure code

The Rhapsody Testing Environment provides the ability to test a design against its
requirements. Advantages of using sequence diagrams as TestCases are:

• Graphical definition

• Monitors/drivers

• Parameterized sequence diagrams

• Color-coded failure sequence diagrams

TestConductor is a model based testing environment used to debug and test object-
oriented embedded software designed in Rhapsody. TestConductor supports unit testing as
well as software integration testing based on graphical test definitions using sequence

14

Figure 1: Rhapsody Testing Profile and TestConductor

diagrams. TestConductor supports Rhapsody in C++, Rhapsody in C, Rhapsody in Java
and Rhapsody in Ada. In Rhapsody in C++, Rhapsody in C, Rhapsody in Java, and
Rhapsody in Ada TestCases can be defined also by statecharts or pure code. For Rhapsody
in C++ and Rhapsody in C TestCases can also defined by FlowCharts.

Using sequence diagram related TestCases, TestConductor supports an advanced graphical
failure analysis. These features make it easy to define and execute extensive test suites, as
well as to create complex tests drivers and test monitors.

This document regards only the so called assertion based testing mode, which is
applicable to Rhapsody in C and Rhapsody in C++ only. For Rhapsody in Java or
Rhapsody in Ada (or when using the so called animation based testing mode for C++ or C)
please have a look into the document RTC_User_Guide.pdf.

Using TestConductor

This manual assumes that Rhapsody and TestConductor are already installed on your
system, and that you have a valid license. If you need assistance with installation or
licensing, contact customer support.

To execute tests, TestConductor relies on the compiled and linked model code of the
TestArchitecture. Therefore, the project with the system under test must be in a state such
that you can compile and run the TestArchitecture.

Rhapsody Testing Profile

The Rhapsody Testing Profile contains new terms and stereotypes that can be used to
model test artifacts in Rhapsody. It is based on the official UML Testing Profile. However,
several elements defined in the UML Testing Profile are currently not part of the
Rhapsody Testing Profile, while the Rhapsody Testing Profile contains additional elements
that are not part of the UML Testing Profile. These additional elements are used for test
activities that are not addressed by the UML Testing Profile, for instance stubbing.

The definitions of the Rhapsody Testing Profile are listed and explained in detail in
appendix Definitions of the Rhapsody Testing Profile on page 143 ff.

Automatic TestArchitecture Generation

The automatic TestArchitecture generation – first supporting layer of the Rhapsody
Testing Environment and part of TestConductor – automates the complex task of creating
the test environment for e.g. arbitrary classes of the UML design. The TestArchitecture
allows modeling of all kinds of test artifacts, including driver or stub code, and the
relations between tests and tested requirements or functionality without modifying the
tested design. TestConductor supports a strict separation of design elements from test
elements while enabling traceability and resusing modeled information.

From the Rhapsody project the user easily initiates the automatic generation of a
TestArchitecture including:

• Creation of a new TestPackage

• Creation of a new TestContext including

15

◦ System under test (“SUT”)

◦ TestComponents

◦ Links between SUT and TestComponents

TestConductor offers two different modes for TestArchitecture creation (see section
TestArchitectures on page 22 ff for details):

• TestArchitecture using parts

• TestArchitecture using global objects

While using parts is appropriate for testing classes, implicit objects, singletons in
Rhapsody in C and files can not be instantiated as parts of a TestContext. Such model
elements have to be instantiated as global objects.

TestConductor supports BlackBox- and GreyBox testing (cf. sections Black Box Testing
and Grey Box Testing on page 39 ff) for both kinds of TestArchitectures.

TestCase Definition

A TestCase represents the smallest element that can be defined and executed by
TestConductor. A TestCase describes a sequence of input stimuli and expected behavior, in
order to verify a certain functional behavior of a system under test. TestCases can define
both, black box and white box behavior.

TestConductor supports several ways to define TestCases:

• Sequence diagrams

• Statecharts

• Flow charts

• Pure code

With the optional add-on Rhapsody® Automatic Test Generation (ATG™) for Rhapsody
in C++ TestCases can be generated automatically.

TestCase Execution

TestConductor is a TestCase execution engine and represents the second stage of the
Rhapsody Testing Environment. It enhances the testing capabilities by not only executing
the automatically generated TestArchitecture, but it also offers a test execution analysis
with respect to the expected results. If the TestCase e.g. is implemented by a sequence
diagram the expected behavior is expressed by

• The ordering of defined messages

• Parameter values of messages

• Messages from SUT to testing components

16

• Specified return values on operation calls

TestResult Representation

TestConductor presents TestExecution results as reports which are maintained as part of
the model. Besides an execution report (see section Execution Results on page 67), also
reports for various coverage measures are generated and added to the model:

• ModelCoverage (cf. section Computing Model Coverage during Test Execution
on page 79)

• RequirementCoverage (cf. section Computing Requirement Coverage on page 82)

• CodeCoverage (cf. section Computing Code Coverage on page 85).

17

Rhapsody Testing Profile
The Rhapsody Testing Profile is based on the official UML Testing Profile. It contains new
terms and stereotypes that can be utilized for model testing artifacts in Rhapsody. A couple
of elements defined in the UML Testing Profile are presently not part of the Rhapsody
Testing Profile. However, the Rhapsody Testing Profile includes supplementary elements
that are not part of the UML Testing Profile. Stubbing, for example, is one of these
additional elements that are used for test activities which is not not addressed by the UML
Testing Profile.

For further information on the Rhapsody Testing Profile please refer to the TestConductor
Tutorial, where depict examples on the Rhapsody Testing Profile are provided.

The definitions of the Rhapsody Testing Profile, i.e. stereotypes and new terms overriding
properties and defining tags, are listed and explained in appendix Definitions of the
Rhapsody Testing Profile on page 143 ff.

Adding the Testing Profile automatically
The first usage of any TestConductor functionality automatically adds the Rhapsody
Testing Profile to a model. For example this can be done by choosing the Rhapsody menu
entry Tools > TestConductor.

In case the model does not yet contain the actual Rhapsody Testing Profile, TestConductor
offers to add the missing Rhapsody Testing Profile automatically.

In case the Rhapsody Testing Profile is unloaded, TestConductor ask to load it.

In case a loaded profile already uses the name “TestingProfile” Rhapsody TestConductor
advises the user.

Once the Rhapsody Testing Profile has been loaded into a Rhapsody project by starting
TestConductor the Rhapsody browser window will contain the above stated testing profile
packages and its individual sub-packages as shown in the following picture.

Adding the Testing Profile manually
It is also possible to add the testing profile manually to a model:

• Open your project in Rhapsody

• Select the menu item File > Add Profile to Model…

• Select the following Data Type: ‘Profile (*.sbs)’

• Select in Rhapsody installation folder:
‘...\Share\Profiles\TestingProfile\TestingProfile_rpy\T
estingProfile.sbs’

• Press Open to add the Rhapsody Testing Profile to the model.

18

Using the Testing Profile
The Rhapsody Testing Profile defines a set of stereotypes and new terms which are
automatically applied on model elements by Rhapsody TestConductor in

• TestArchitecture creation,

• TestCase creation, definition and specification,

• automatic preparation for TestCase execution,

• result management,

• coverage measurement and

• reporting.

TestConductor provides a set of context menu helpers applicable on certain model
elements. For example, TestArchitecture creation is applicable on model elements Class,
Object, Block, Module among others. E.g. when creating a TestArchitecture for a class,
TestConductor creates a TestPackage (new term on package) hierarchy, with a
<<TestingConfiguration>> stereotyped code generation configuration, a
<<TestContext>> new termed class structuring and organizing the relations of SUT
and <<TestComponent>> new termed classes forming the environment of the SUT.

By using these stereotypes and new terms, TestConductor adds functionality applicable to
stereotyped and new termed model elements to Rhapsody and tailors Rhapsody behavior
on model elements to testing purposes.

Refining Testing Profile Stereotypes
Most model elements in a TestArchitecture created by TestConductor are marked with
stereotypes or new terms defined in the Testing Profile. Stereotypes are used for three
functions:

• To arrange special elements in the same group in the model browser ('new term'
stereotypes, some of them with their own icon);

• As a hook for TestConductor actions (TestConductor actions are only available on
certain elements);

• Stereotypes add or modify certain properties/tags of elements of the
TestArchitecture.

For example TestCases in a TestArchitecture are basically operations provided with the
new term stereotype <<TestCase>>, which sets some property values and leads to
grouping all TestCases in the model browser underneath the node TestCases (instead of
operations). Also several TestConductor actions (e.g. “Update TestCase”) are only possible
for <<TestCases>> but not for ordinary operations. As another example the stereotype
<<TestingConfiguration>> is used to distinguish standard configurations from
TestingConfigurations which are adjusted to the special needs of the TestConductor
TestArchitecture. A <<TestingConfiguration>> has additional tags for
configuring additional features (like coverage measurement) or fine-tuning the test
execution (e.g. rtc_log_kind to define the manner of logging).

19

Users may wish to create their own stereotypes to have a simple and transparent way to
induce specific changes to elements in reoccurring scenarios. But if settings or tags are to
be modified which are also affected by a coexisting Testing Profile stereotype on the same
element – meaning that two stereotypes are trying to modify the same property in the same
way – it is not sure which stereotype's modification is actually applied on the element,
therefore it is not recommended to have conflicting stereotypes. The option to replace the
Testing Profile stereotype with the user stereotype is not advised either, since the Testing
Profile stereotypes act as hooks for TestConductor actions, thus disabling TestConductor
functionality on that element. The solution is to have the user stereotype inheriting from
the Testing Profile stereotype, thus preventing conflicts and preserving TestConductor
functionality on that element2.

In fact the Testing Profile already provides such a refined stereotype: The stereotype
<<TargetTestingConfiguration>> inherits from stereotype
<<TestingConfiguration>> and adds additional tags and modifications to
properties suitable for test execution on target. Because of the inheritance of the original
stereotype <<TestingConfiguration>> all TestConductor actions expecting a
TestingConfiguration will accept this <<TargetTestingConfiguration>> as
well.

2Note that changing default values of TestConductor stereotypes may affect the functionality of the
TestArchitecture.

20

Model-based Unit Test
Definition

The term unit test is often used within the software development, but interpreted quite
different. Unit tests are performed on differently large software units like simple functions,
simple classes up to complex function libraries. However, the goal of each unit test is in
most cases the same. On the one hand the unit is tested for its functional behavior. On the
other hand often additionally structural analysis are accomplished, in order to find
uncovered (dead) code.

In order to prepare, execute, and assess a unit test several steps are usually performed:

1. A TestArchitecture (or test harness or test frame) must be constructed
2. TestCases must be defined and implemented
3. TestCases must be executed on the host machine
4. TestCases must be executed on the target machine

Each of the four mentioned steps is usually time consuming and difficult to perform.
TestConductor makes the preparation, execution, and the assessment of tests much easier
by lifting the test process up to the level of UML models, and by offering a high degree of
automation for the steps listed above.

TestConductor supports unit testing on model-level by following the UML Testing Profile.
Therefore TestConductor automates the time consuming and complex task of test
environment creation. The automatic TestArchitecture generation can be used for:

• Simple classes (In SysML: Activities, Blocks, Viewpoint)

• Simple classes with inheritance

• Composite classes

• Composite classes with inheritance

• Objects (In SysML: Parts)

• Files (Modules)

The other complex task of unit testing is the definition of TestCase or TestScenarios,
typically done by writing test code in the same language than the unit to be tested. Model-
based unit testing with TestConductor combines the advantage of graphical TestCase
definition via sequence diagrams or flow charts with the familiar pure code based
TestCases. Using the optional add-on Rhapsody Automatic Test Generation (ATG), you
have also the possibility to perform automatic TestCase generation.

21

TestArchitectures
Testing units of a Rhapsody model using the Rhapsody Testing Profile requires certain
preparation steps to be repeatedly performed. Therefore TestConductor provides a
powerful feature that creates the complete TestArchitecture automatically. Automatic
TestArchitecture generation means:

• Creation of a new TestPackage.

• Creation of a new TestContext.

• Depending on the chosen mode for TestArchitecture creation either instantiation
of the selected SUT class as part of the TestContext or as a global object in the
TestPackage.

• Creation of TestComponents.

• Depending on the chosen mode for TestArchitecture creation either instantiation
and 'wiring' of TestComponentInstances as parts of the TestContext or as global
TestComponentObjects in the TestPackage.

• Creation of an adequate code generation component and configuration.

• Adding a test configuration (dependency-relation) to the TestContext referring to
the created code generation configuration.

• Creation and drawing of a TestContext diagram.

Fundamentally, TestConductor supports two different testing modes: Animation based and
assertion based testing mode. TestArchitecture creation will create different resulting
TestArchitectures depending on the chosen testing mode:

• animation based testing mode (applicable to C, C++, Java, Ada models): In
animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a TestCase is passed or failed, is based on
animation messages coming from Rhapsody’s animation feature.
In particular comparison of message observations to the expectations according to
the test specification relies on serialization underlying the animation feature.
Test execution is based upon running an appropriate test specific observer in the
Rhapsody process communicating with the tested application via the Rhapsody
animation socket. Hence, animation based testing mode always requires:

◦ animation instrumentation (including requirement of appropriate serialization
for types, objects, classes, functions, events, e.t.c)

◦ socket connection between tested application and Rhapsody application.

• assertion based testing mode (applicable to C and C++ models only, not available
for Java and Ada): In contrast to animation based testing mode, in assertion based
testing mode both scheduling and arbitration of TestCases is directly controlled by
assertions that are compiled into the test executable, i.e., scheduling and
arbitration of TestCases is independent from Rhapsody’s animation feature. Since
in assertion based testing mode the TestCases are part of the application itself,
neither animation instrumentation nor socket connection between tested
application and Rhapsody application is required, giving way for testing the
application without the animation overhead (e.g. enabling testing production code)

22

as well as testing without the requirement of a runtime connection to the tested
application (e.g. enabling testing on target).

This document only refers to the assertion based testing mode.

For TestArchitecture creation, so-called replacement TestComponents (cf. Section
Replacements on page 24) will be introduced, if inheriting TestComponents don't allow
overwriting of behavior according to the needs of test execution. For replacements, it can
be preselected whether stubs or wrapper will be created (property
TestConductor.Settings.ReplacementCreationMode = {Wrapper, Stub},
Wrapper is the default).

TestArchitecture generation can be customized interactively using property
TestConductor::Settings::CreateTestArchitectureMode (cf TestConductor
settings “General Properties”, page 98).

If CreateTestArchitectureMode is set to ‘Standard’, then project properties are used in the
generated code generation Configuration, the compile environment is set to the project's
default environment and animation instrumentation is enabled while ‘Advanced’ opens a
dialog that allows selection of an existing configuration from which all overridden
properties, settings, and scope settings will be inherited.

When choosing 'Advanced' TestArchitecture creation mode for assertion based
TestArchitectures, a dialog will appear, letting the user individually choose the
replacement's kind of implementation for each TestComponent.

It may sometimes be necessary to manually adjust the scope of the code generation
Component after automatic TestArchitecture creation. In rare cases, all classes of one
package may have been replaced by replacements, but types or events of that package still
need to be regarded in the scope. In this case, it might be helpful to select a package with
right-click instead of left-click. While left-clicking a package in the scope dialog selects
the package and its contents, right-click selects only the package and its non-selectable
content.

Note that TestConductor can't determine meaningful parameters for non-standard
constructors automatically for instances of TestComponents or classes having no default
constructor. It might be necessary to manually adjust the constructor calls for
TestComponentInstances or for the SUT after TestArchitecture creation w.r.t. constructor
arguments.

By default, TestArchitectures are created as 'BlackBox' TestArchitectures, i.e. the SUT will
not be instrumented with testing assertions and thus internals of the SUT such as self-
invocation of operations or communications among parts of the SUT can not be
considered in sequence diagram TestCases. When setting property
TestConductor::Settings::CreateTestArchitectureTransparency to
'GreyBox' (cf TestConductor settings “General Properties”, page 98), TestArchitecture
creation will create a copy of the SUT model element in the TestArchitecture. This copy
will be used as replacement of the original SUT model element and enables TestConductor
to instrument the SUT replacement for testing purposes. Using 'GreyBox' testing, also self
messages as well as communication among parts of the SUT can be considered in
sequence diagram TestCases.

23

Using the default TestArchitecture creation, implicit objects can neither be grey box
tested, nor can implicit objects or singletons be used in TestComponent position. Stubbing
in implicit objects or singletons is not supported by default.

Optionally, TestArchitecture creation can be customized by checking property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects
(cf TestConductor settings “General Properties”, page 98), If this property is set, then
TestArchitecture creation will instantiate all SUT classes and TestComponent classes as
global objects instead of instantiating parts for classes. This construction enables also
usage of links to instantiate associations among classes and implicit objects. This would be
impossible for parts connected to global objects, since these connections would cross
composite class boundaries, which is not supported by Rhapsody code generation in
general. Fundamental support of global objects as test artifacts enables also treatment of
implicit objects by object replacement copies for grey box testing (on SUT side) as well as
for stubbing (in TestComponent place). Using global objects is recommended if implicit
objects or singleton objects are involved in modeling in particular in Rhapsody in C
models.

Replacements

It is crucial for assertion based testing mode that TestComponents in general as well as the
SUT in grey box testing mode can be instrumented for testing purposes, since all checks as
well as all observations in the TestCases are based on assertion instrumentation. Since
TestConductor must never modify model elements in the user model, assertion
instrumentation must only affect testing artifacts. Thus, whenever possible,
TestArchitecture creation introduces TestComponents inheriting from the design model
elements for instrumentation. In Rhapsody in C, inheritance is restricted to inheritance
from interfaces. For all other model elements, no inheriting TestComponents can be used.
For Rhapsody in C++, inheritance is restricted to virtual and abstract operations. A non-
virtual operation can not be overridden by an inheriting TestComponent. Thus, for all
these cases, inheriting TestComponents can not be used to realize driver operations and
stubs or observation instrumentation without affecting the original model elements in the
user model.

If inheriting TestComponents can not be used, replacing the original model element in the
scope of the code generation with a copy of the model element and instrumenting the copy
for testing purposes solves the problem. TestArchitecture creation for assertion based
testing mode makes use of replacements whenever inheritance is inappropriate for creation
of TestComponents.

All references to a replaced model element in the TestArchitecture, such as instances,
links, connectors, etc. refer to the replaced model element and also the TestScenarios of
sequence diagrams refer to the original model elements3. Identification of replacements for
referenced model elements is based on stereotyped dependencies, e.g. a
TestComponentInstance referring to model class A is equipped with a
<<use_replacement>> dependency on replacement class A' (a copy of A in the
TestArchitecture). Replacement A' is equipped with a <<replacement>> dependency
on A.

3Except for replacements of files (modules). For TestFile – replacement of file – the TestScenarios refer to the
TestFile instead of the replaced file.

24

In the code generation scope, class A is deselected, whereas A' belongs to the scope
instead of A. It is important to understand that a replacement always must have the same
name as the model element replaced by it.

Creation of replacements depends on property
TestConductor.Settings.ReplacementCreationMode. If the property is set
to 'Wrapper' (Default) then the replacement will be created as 'identical' copy of the
replaced model element, which means the replacement will preserve most of the behavior
of the replaced class. If the property is set to 'Stub' then e.g. operation bodies in the
replacement will be emptied and the original behavior of the replaced class will not be
preserved.

Copying or cloning, respectively, of classes and objects does not always yield an 'identical'
clone of the original class or object:

• Bidirectional associations: since bidirectional associations consist of both ends
and cloning one side of the bidirectional association would require the other side
to be related the original associated element as well as to the cloned associated
element. Thus, on the cloned side of the bidirectional association, the association
becomes a directed one. Directed associations are initialized differently from
bidirectional associations. To solve this problem, TestConductor adds appropriate
functions to the cloned class or object, enabling initialization of the relation as if it
was a bidirectional one.

• Composite classes and objects: relation 'Knows parent as' of parts becomes
uninitialized in the clone. This mainly affects composite grey box SUT clones, i.e.
clones of classes with parts in SUT position for grey box testing. In order to fix
this issue, either appropriate initialization code has to be added to the initializer of
the TestContext, or in a TestAction in each TestCase for the grey box architecture
(cf. GreyBox Architecture in
Samples/CSamples/TestConductor/TestingCookbook/CCompositeCoffeeMachine
_wo_ports_objects,
Samples/CppSamples/TestConductor/CppCompositeCoffeeMachine_wo_ports).

Since TestArchitecture update does not affect code generation component and
configuration, it might be necessary to adapt the scope of the code generation component
manually after either manually adding or removing replacements or after TestArchitecture
update.

(See also TestingCookbook:

• “How can I create a greybox test architecture with multiple SUT classes?”

)

Dependencies used for Navigation on Replacements
The following table gives an overview about the dependency stereotypes being used for
navigation on replacements.

Dependencies used for navigation on replacements

ArchitectureUsingGlobalObjects==False

TestComponent
replacement of class A

type of
TestComponentInstan
ce itsA is A

TestComponentInstanc
e itsA has
<<use_replacement>>
dependency on replacement

Replacement
TestComponent A' has
<<replacement>>
dependency on class A

25

TestComponent A'

TestSUT replacement of
class A (greybox testing)

type of SUT itsA is A SUT itsA has
<<use_greyboxreplace
ment>> dependency on
replacement TestSUT A'

Replacement TestSUT A'
has
<<greybox_replaceme
nt>> dependency on class
A

TestFile replacement of
file X

type of TestFile X' is
implicit

TestContext has
<<use_filereplacemen
t>> dependency on
TestFile X'

Replacement TestFile
X' has
<<filereplacement>>
dependency on file X

ArchitectureUsingGlobalObjects==True

TestComponentObject
replacement of implicit
object O

type of
TestComponentObject
O' is implicit

TestContext has
<<use_instancerepla
cement>> dependency on
TestComponentObject
O'

TestComponentObject
O' has
<<instancereplacmen
ent>> dependency on
implicit object O

TestSUTObject
replacement of implicit
object O (greybox testing)

type of TestSUTObject
O' is implicit

TestContext has
<<use_greyboxinstan
cereplacement>>
dependency on
TestSUTObject O'

TestSUTObject O' has
<<greyboxinstancere
placement>> dependency
on implicit object O

TestComponent
replacement of class A

type of
TestComponentObject
itsA is A

TestComponentObject
itsA has
<<use_replacement>>
dependency on replacement
TestComponent A'

Replacement
TestComponent A' has
<<replacement>>
dependency on class A

TestSUT Replacement of
class A (greybox testing)

type of TestSUTObject
itsA is A

TestSUTObject itsA
has
<<use_greyboxreplac
ement>> dependency on
replacement TestSUT A'

Replacement TestSUT A'
has
<<greybox_replaceme
nt>> dependency on class A

TestFile Replacement of
file X

type of TestFile X' is
implicit

TestContext has
<<use_filereplaceme
nt>> dependency on
TestFile X'

Replacement TestFile
X' has
<<filereplacement>>
dependency on file X

Table 1: Dependencies used for navigation on replacements

The dependencies allow TestConductor to instrument A' whenever test artifacts, such as
driver operations or stubs, would have to be added to A.

For replacements, it can be preselected whether stubs or wrapper will be created (property
TestConductor.Settings.ReplacementCreationMode = {Wrapper, Stub},
Wrapper is the default).

Interfaces
Interfaces are basically abstract classes. Implementations for interfaces have to be
provided by inheriting classes. For Rhapsody in C, code generation supports inheritance
from interfaces by virtualization tables, for Rhapsody in C++ the code generation is
straight forward.
TestArchitecture creation creates inheriting TestComponents for relations of the SUT with
interfaces.

Interfaces can not be selected as SUT for TestArchitecture creation.

26

Ports
(See also TestingCookbook:

• “How can I create a test architecture for a class using ports?”

)

TestConductor supports TestArchitecture creation for classes and objects using ports. For
each port of the SUT, a TestComponent is created with a suitable corresponding port, i.e.
providing the required contracts and requiring the provided contracts of the SUT port.

Note, that for each port of the SUT a separate TestComponent will be created which might
cause problems when using the TestCase Wizard for creation of TestCases for existing
sequence diagrams (cf. section Creating TestCases with the TestCase wizard, page 52 ff.).

The TestArchitecture can be modified manually, s.t. TestComponents for multiple ports are
merged from the separated ones and ports are connected according to the capabilities of
the merged TestComponents. TestArchitecture update will keep existing links and not
introduce separate TestComponents for existing port connections.

TestArchitecture creation 'realizes' provided contracts, i.e. adds reception declarations and
operations to the TestComponents created for SUT relations to ports. These realizations
are required for message realizations in TestScenarios of SD TestCases. It might
sometimes be necessary to add realizations – in particular event receptions – manually to
be able to realize messages in TestScenarios. Especially for so-called rapid ports (ports
without contracts – aimed at receiving and sending events), TestArchitecture creation and
update can not automatically add all desired event receptions to realize the implicit port
contract.

VariationPoints and Variants
(See also TestingCookbook:

• “How can I test models using variation points?”

)

TestConductor supports relations of the SUT to VariationPoints by creating
<<Variant>> TestComponents. On creation of the TestComponent, TestConductor adds
a <<Static>> generalization relation to the TestComponent and a <<Varies>>
dependency on the VariationPoint, s.t. the <<Variant>> TestComponent becomes a
valid implementation of the VariationPoint.

Furthermore, TestArchitecture creation adds a VariationPoint mapping to the
<<Variant>> TestComponent to the code generation component of the
TestArchitecture. Since code generation component and configuration are not affected by
TestArchitecture update, it might be necessary to adapt these mappings manually after
TestArchitecture update.

Note, that stereotypes <<VariationPoint>> and <<Variant>> are applicable to
Rhapsody meta class Class. Hence, they can also be applied on files in Rhapsody in C
(modules) and on implicit objects, since files and implicit objects own their implicit class.
But Rhapsody does not allow inheritance from implicit objects. Thus, <<Variant>>
TestComponentObject or <<Variant>>TestFile can not sufficiently be created
automatically.

27

Inheritance
General inheritance is not feasible in Rhapsody in C. Inheritance is only supported by the
concepts of interfaces, ports and variation points. Therefore, TestArchitecture creation is
mainly based on the concept of replacements.

For Rhapsody in C++, inheritance is fully supported. TestArchitecture creation by default
creates inheriting TestComponents, whenever the class to be represented by the
TestComponent is virtual. If the class is abstract, the representing TestComponent will
have to implement the abstract class by inheritance. This is in particular the case for
interfaces.

If the class to be represented by a TestComponent is non-virtual, a replacement will be
needed in TestComponent place, since otherwise stubbing can not be performed in the
TestComponent but would have to be done in the base class.

If the class to be represented by a TestComponent itself inherits non-virtually from another
class, then replacements will be created along the entire inheritance hierarchy unless a
virtual base class has been reached.

Templates and Template Instances
Templates and Template Instances are not supported by automatic TestArchitecture
creation and update. In order to test models using templates or template instances,
TestArchitectures have to be created and maintained manually.

Automatic TestArchitecture Generation
TestConductor offers automatic creation of TestArchitecture for a selected SUT class,
object or file. By default (cf. section TestConductor Settings on page 96 ff), a
TestArchitecture is created that instantiates the SUT and its testing environment artifacts
as parts of the TestContext. For testing global objects, a different mode of TestArchitecture
creation can be chosen, such that global objects and object replacements are instantiated in
a TestPackage and the TestContext is equipped with associations to these global objects.

Even though TestArchitecture creation is aimed at fully automatically creating suitable
TestArchitectures for unit testing the selected SUT elements, it might be necessary to
apply manual modifications to the obtained architecture and to adapt the code generation
scope manually, respectively. In principle, a TestArchitecture can be modified and
modeled like any other modeling artifacts in Rhapsody. In particular, TestComponents can
be used for implementing testing related additional observations, such as 'no other event
was sent to the TestComponent', user-defined stub-operations for code TestCases can be
implemented. Links can be established in a different way: e.g. TestConductor creates one
TestComponent per port of the SUT. Sometimes it may be preferred to have more complex
TestComponents serving and driving more than one of the SUT ports. Such modifications
can be applied on the TestArchitecture – TestArchitecture update will keep such manual
modifications and complete the TestArchitecture only with missing artifacts.

Context Menu 'Create TestArchitecture'
By default, context menu 'Create TestArchitecure' can be invoked mainly on Class, Object,
Block (SysML) and Module (i.e. file model elements) model elements – besides some
other kinds of model elements which are derived from the mentioned ones.

For user defined new terms on the basis of these meta classes, the context menu will not
be offered by default. By adding the respective new term to the applicableTo<nr> entry for

28

the corresponding name<nr>=Create TestArchitecture entry in the Rhapsody.ini file, the
functionality can be made applicable to also user defined new terms.

1. The created TestPackage contains two sub TestPackages, one architecture sub
package that actually contains the TestContext and the TestComponents that are
connected to the SUT, and a control TestPackage that contains an auto generated
scheduler TestComponent and the auto generated arbiter TestComponents that
control the test execution in assertion based testing mode.

Figure 2: TestArchitecture in Rhapsody
Browser

2. Inside the top level TestPackage, two static objects are defined. One object is an
instance of the created TestContext, and one object is an instance of the created
scheduler. Since the top level package is part of the scope of the
TestingConfiguration that is used to generate and build code for the test
executable, always a TestContext instance and a scheduler instance is defined in
the test executable.

3. The configuration that is created inside the top level TestPackage is used in order
to generate and build the code of the test executable. It is stereotyped with
<<TestingConfiguration>>. The stereotype provides several tags that can
be used to define several testing options (cf. section Tags of the
<<TestingConfiguration>> Stereotype on page 60).

4. TestComponentInstances forming the environment of the SUT are either instances
of so called replacement TestComponents or instances of TestComponents
inheriting from the original design classes. In C inheritance is only supported from
interfaces, i.e. TestComponentInstances for associations to interfaces may be
represented by instances of TestComponents realizing the interfaces, whereas all
other TestComponentInstances are necessarily instances of replacement
TestComponents. Replacement TestComponents are derived by copying from the
original design classes and replace these in the scope of the TestingConfiguration,
i.e. are used for code-generation instead of the original classes.

29

In C++, usage of inheritance vs. replacement TestComponents is determined by virtuality.
If all operations of a design class are virtual, then the TestComponent used for
instantiation of this class can be derived by inheritance. If at least one of the member
operations isn't a virtual operation, a replacement TestComponent is used for instantiating
the respective TestComponentInstance.

The user can influence the way replacements are created using property
TestConductor.Settings.ReplacementCreationMode = {Wrapper, Stub}

A wrapper replacement is created as a fully functional copy of the design class, whereas a
stub replacement is created as a copy from which behaviors are removed, e.g. operation
bodies are emptied, statecharts are emptied, etc.

If property TestConductor.Settings.TestArchitectureCreationMode is set to
“Advanced”, the user can specify the kind of each TestComponent individually as either
inheriting, wrapper replacement, or stub replacement, respectively.

TestConductor then first analyzes all connections of the SUT with its environment via
ports and associations and then opens a dialog using which the user can determine how the
TestComponents around the SUT will be created.

As already explained above, for some TestComponents inheritance from the
original design class is not possible, since an inheriting TestComponent would not
allow the necessary stubbing of operations (due to non-virtuality or language
limitations). For these TestComponents, the user can only choose between stub
and wrapper.

30

Figure 3: Advanced TestArchitecture Creation Dialog

Test scheduling with <<Scheduler>> TestComponents

As described in the previous section, when creating a TestArchitecture, a scheduler
TestComponent is generated that is used to control the starting and stopping of TestCases.
The scheduler is part of the test executable. By, default, the behavior of the scheduler is
defined by the following statechart:

Figure 4: TestCase Scheduler
Statechart

By default, the scheduler parses the command line when the test executable is started.
Based on the specified TestCases that shall be executed, the scheduler starts the selected
TestCase(s). This default behavior can be adjusted according to your needs. For instance,
if you want to e.g. add an automatic timeout mechanism for all TestCases you can adjust
the behavior of the scheduler as it is described in section Execution Timeout on page 77.

The TestCaseScheduler can be customized using properties
TestConductor.TestContext.PreTestCaseOperation and
TestConductor.TestContext.PostTestCaseOperation of the TestContext.

31

These properties can be set to operation-names4 to be called before starting a TestCase and
after termination of a TestCase, respectively.
TestConductor.TestContext.PreTestCaseOperation denotes an operation
to be called on entering state startPreTestCaseOperation_state, whereas
TestConductor.TestContext.PostTestCaseOperation denotes an
operation to be called on entering state startPostTestCaseOperation_state –
the respective TestCase is started in state startTestCase_state (cf. section
TestContext Properties on page 101).

Test arbitration with <<Arbiter>> TestComponents

If you define the behavior of a TestCase by using a sequence diagram, in assertion based
testing TestConductor automatically adds a so-called arbiter TestComponent to the control
sub package of your TestArchitecture. An arbiter is a TestComponent that contains the
stereotype <<Arbiter>>. Besides the arbiter class, TestConductor also adds an instance
of the arbiter class to the TestContext that contains the TestCase. During runtime, this
instance is used to control the TestCase execution of the TestCase to which the arbiter
belongs. The TestCase and its arbiter are connected by a dependency that contains the
stereotype <<ControlArbiter>>:

Figure 5: Arbiter of SD TestCase

Note: If an arbiter TestComponent has changed after an update of the corresponding
sequence diagram TestCase, the TestContext owning the arbiter instance needs to be build.
Also, the TestPackage owning the instance of the TestContext needs to be build. The

4For using 'void x(void)' member-operation of the TestContext, 'x' has to be specified in the property. Only void
operations without arguments are supported using this mechanism.

32

Makefile generated by Rhapsody does not contain the necessary Makefile rule which
forces building the TestPackage after a change in an arbiter TestComponent. In most cases
this is not a problem, the TestPackage is build anyway after an update because of changes
in other TestComponents. But if only a time interval in a sequence diagram TestCase
changes the TestPackage is not build automatically. This can cause the tested application
to crash during test execution.
To avoid this, after adding, removing or modifying a time interval the user should
explicitly invoke a Code->Clean before building the test application again using 'Build
TestCase/TestContext/TestPackage' from the context menu.

Creating test executables with TestingConfigurations
In order to execute TestCases in assertion based testing mode, always a test executable is
needed that actually contains the code for the TestArchitecture, the scheduler and all
arbiters. In order to generate the code, a Rhapsody <<TestingConfiguration>>
code generation configuration is created. the test executable always contains all the code
that is necessary in order to execute TestCases of the TestContext that belongs to the
TestingConfiguration. In particular, it is not necessary to have animation turned on for the
TestingConfiguration. Both animated and non-animated configurations can be executed
the same way.

Generate and Build the TestContext
After generation of the new TestContext you should check whether it is complete and
consistent. Therefore you should generate and build the TestContext to get information
about potential compile or link warning or errors.

Right-click on the TestContext and select Build TestContext from the context menu.

If the generate, compile and link procedure are resulting in an executable you are able to
execute it (a TestContext without any TestCase cannot be executed).

Using Classes (UML) and Blocks (SysML)
(See also TestConductor Tutorial for Rhapsody in C and Rhapsody in C++.

See also TestingCookbook:

• “How can I create a test architecture for a class using ports?”

• “How can I test models using variation points?”)

Creating TestArchitectures for single individual classes (Rhapsody in C and C++ - as well
as for blocks in Rhapsody for SysML models) is the standard TestArchitecture creation for
unit testing considered throughout this entire section. TestArchitecture creation is tailored
to support particular features of classes in a specific manner, such as dedicated support for
ports, associations with interfaces and variation points, e.t.c.

Variations of this standard TestArchitecture creation and influences from particular testing
strategies are described on the following pages.

Using Objects
(See also TestingCookbook:

33

• “How can I create a test architecture using global objects?”

• “How can I create a test architecture for a singleton object?”

)

Creating a TestArchitecture on objects is a similar work flow as for classes, but in order to
create a TestArchitecture for testing an object, the object can not be directly instantiated as
part of a TestContext. If an object was instantiated as part of a TestContext, the object
would be moved into another scope and thus the model would be modified. Hence, in
order to provide testing support for objects without modification of the original design, the
TestContexts just references the object from the design using directed associations and
directed links. Since by default the original (implicit) object is referenced with all its
relations to other objects in the model and because TestConductor can't modify these
relations without modifying the referenced object or other model elements in its scope,
stubbing is not supported in TestArchitectures for objects in animation based testing mode.
Stubbing is also not supported in assertion based testing of objects unless
TestArchitectures are created with specific support for global objects (checking property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects
– cf TestConductor settings “General Properties”, page 98)

In order to refer to an object, the TestContext is created with a directed association to the
selected object, which does not modify the object. This association is stereotyped with the
testing profile stereotype <<instantiated>>.

Except for TestArchitectures created with global object support (to enable global object
support for C or C++ models, check property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects)
<<instantiated>> associations are not initialized by links but the TestContext is
instrumented with an additional constructor/initializer initializing the association with the
address of the global variable representing the object. This constructor/initializer has to
take the multiplicity of the object into account.

Except for TestArchitectures created with global object support, the TestArchitecture for
objects will not care about ports of the object, since the mapping of these ports to ports of
other objects may already be defined in the design. The only way to stimulate an object in
a system TestArchitecture is to use the association from the TestContext to the object.

Rhapsody offers an alternative to create a TestArchitecture on a selected object. The user
can expose the class of the selected object. For Rhapsody in C++ this alternative will set
the user into the position of applying unit tests to the underlying class of the object under
test. For Rhapsody in C, in general, exposing an object’s class might not be the best
choice, because exposing an object's class massively affects the code representation of
the object's functions.

TestConductor optionally supports to create a TestArchitecture suitable for unit testing of
an object (or a class associated with an object), including automatic generation of driver or
stub code also in implicit objects. To create such a TestArchitecture, open the
TestConductor main dialog (Rhapsody menu Tools->TestConductor) and set option
“Architecture using global objects” to True (or check property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects
for the project) before creating a TestArchitecture. An example can be found in the
TestConductor testing cookbook, section “How can I create a TestArchitecture using
global objects?”.

34

Using Files (Modules)
(See also TestingCookbook:

• “How can I test an external file?”

• “How can I test an external library?”

)

Creating a TestArchitecture on files(to be more precise: modules) is a similar work flow as
shown for objects. Support of modules is useful mostly for Rhapsody in C, since
Rhapsody in C++ only allows external files within the scope of a CG component. Since
modules provide global declarations and definitions, test support for modules is realized
by a TestContext referring the module using a <<Usage>> dependency.

The declaration of external (source and library) files and testing with TestConductor is
demonstrated in the TestingCookbook (“How can I test an external file?”).

TestConductor offers special support of <<CInterfaceFile>> stereotype in
AssertionBased TestingMode. Interfacing files using the <<CInterfaceFile>>
stereotype is briefly explained in chapter Support for interfacing Files in C using
<<CInterfaceFile>> Stereotype at page 45.

Using Parts of composite classes
Only global (i.e. top-level) objects may be tested. There will be no support for testing parts
(with implicit class) of composite classes.

If the part is an instance of an explicit class, then a TestArchitecture for that class can be
created and the class can be tested using this TestArchitecture.

GreyBox TestArchitectures for classes and objects
(See also TestingCookbook:

• “How can I create a greybox test architecture with multiple SUT classes?”

• “How can I observe the communication between parts of a greybox SUT?”

)

By default, TestConductor doesn't support observation of self-messages of the SUT or
messages among SUTs in assertion based testing mode. In assertion based testing mode,
TestConductor instruments the TestComponents and the TestContext before code
generation with assertions, checking the values of operation arguments, the return values
from operation calls, the order of messages between TestComponents and the SUT e.t.c.

Since the SUT itself is not instrumented, TestConductor does not regard messages from
SUT to SUT, i.e. self-messages of the SUT are ignored by default. In order to enable also
observation of self-messages, TestConductor can create a special variant of
TestArchitectures for so-called GreyBox testing. Observability of SUT internals is
restricted to operations and event receptions of the SUT class and its parts. Observability
of operations and event receptions of parts of the SUT is limited to one level of

35

decomposition, i.e. internals of parts of parts are not observable in GreyBox testing (see
also section Grey Box Testing on page 40).

When property
'TestConductor.Settings.CreateTestArchitectureTransparency' is
set to 'GreyBox' (default is 'BlackBox'), the SUT Class is copied to the
TestArchitecture as <<TestSUT>>. This copy is then used for testing instead of the
original class (the <<TestSUT>> copy is equipped with a
<<greyboxreplacement>> dependency on the original class). TestConductor will
instrument the <<TestSUT>> according to the needs of the individual TestCases. The
SUT instance is equipped with a <<use_greyboxreplacement>> dependency on
the <<TestSUT>>. The scope of the CG-component of the TestArchitecture is computed
s.t. the <<TestSUT>> replaces the original class in the CG scope.
If the SUT is decomposed into parts, then classes of the parts will be treated similarly:
<<TestSUT>> copies of the part classes will be created in the TestArchitecture for
testing purposes and these copies will be equipped with appropriate
<<greyboxreplacement>> dependencies on the original classes in the design and the
parts of the SUT copy will be enriched with <<user_greyboxreplacement>>
dependencies on the <<TestSUT>> copies of their classes. To distinguish
<<TestSUT>> copies of part classes from the <<TestSUT>> copy of the SUT,
TestArchitecure creation annotates <<TestSUT>> copies of classes with a tag
decomplevel. For part classes the tag is assigned value 0 whereas it is assigned a value
>0 for the <<TestSUT>> copies of the parent classes, i.e. the SUT classes.

 Property
'TestConductor.Settings.CreateTestArchitectureTransparency' can
either be set in the features dialog on project level or in TestConductor's main dialog (via
menu Tools->TestConductor).

Note: Changes in the original design class, such as modified operation bodies e.t.c., will
be regarded in the TestArchitecture only after explicit 'Update TestArchitecture'.
Update of particular model elements such as statechart, operations, attributes or the entire
class can be inhibited by stereotyping that model element by <<Stub>> in the
<<TestSUT>> copy. TestArchitecture update will omit updating model elements
stereotyped <<Stub>>.

Note: GreyBox testing of files is not supported.

TestArchitectures with multiple SUT classes or objects
(See also TestingCookbook:

• “How can I create a test architecture with multiple SUT classes and/or instances?”

• “How can I create a greybox test architecture with multiple SUT classes?”

• “How can I create a test architecture for a Package with multiple classes?”

)

TestArchitectures with more than one SUT class or object can simply be created by first
creating a TestArchitecture for one of the classes or objects to be tested and successively

36

adding further SUT instances. TestArchitecture Update can be used to automatically
complete the TestArchitecture with TestComponents and TestComponentObjects.

Creating TestArchitectures for more than one class or object will in general be an at least
partially manual task, since the SUT elements have to be connected accordingly and the
code generation scope has to be manually adapted according to the involved model
elements.

For black box TestArchitectures an iterative approach of TestArchitecture creation,
removal of TestComponents, addition of further SUT elements, appropriate connection of
SUT elements and TestArchitecture updates can easily performed using Rhapsody
modeling capabilities and the context menu helpers in the Rhapsody browser.

For adding SUT replacements in grey box testing, TestConductor provides the dedicated
helper “Create Greybox SUT” (see Testing Cookbook for example usage).

The testing cookbook provides examples e.g. answering the questions “How can I create a
TestArchitecture with multiple SUT classes and/or instances?”, “How can I create a
TestArchitecture for a Package with multiple classes?” and “How can I create a greybox
TestArchitecture with multiple SUT classes?”

Updating TestArchitectures
TestArchitecture creation generates an appropriate test environment for the SUT in its
state of development in a particular instant of time. When the model is further developed,
functions of the SUT and its environment may change their signature, interfaces and ports
may be added or deleted, relations may be added and deleted, etc. Whenever such
modifications took place, the TestArchitecture needs to be adapted to the modified model.
For existing TestArchitectures, TestConductor provides the possibility to automatically
update a TestArchitecture after changes have been made in the model.

'Update TestArchitecture' is offered as context menu entry on TestContexts.

'Update TestArchitecture' follows the same rules as TestArchitecture creation and will
complete the existing TestArchitecture with appropriate TestComponents for added
relations and update TestComponents w.r.t. modified relations and interfaces of the SUT.
Since TestArchitecture avoids deleting model elements that may contain user changes –
such as e.g. existing operation bodies. Furthermore, TestArchitecture update will not affect
the scope selection in the code generation component. Hence, it might become necessary
to manually adapt the scope selection and to manually delete artifacts in the
TestArchitecture, which have become superfluous due to modifications of the model. It is
in general recommended to update the TestArchitecture after modifications of the SUT in
order to keep track of the changes in the TestArchitecture.

Up-to-date check for TestArchitectures
TestConductor offers a context menu entry on TestContext “Check if TestArchitecture is
up-to-date”. Using this context menu item it can be checked whether “Update
TestArchitecture” will apply changes to an existing TestArchitecture or if the
TestArchitecture is up-to-date.

37

TestArchitectures for MicroC Models
TestConductor supports testing of MicroC models with a specifically tailored
TestArchitecture generation.

Per default TestConductor restricts code generation component for the generated
TestArchitecture such that all design packages but only the TestPackage containing the
architecture belong to its scope. Setting property
TestConductor::Settings::CreateTestArchitectureMode to ‘Advanced’ allows inheritance of
overridden properties from an already existing configuration

Since code generation for MicroC does not regard initialization settings of the
configuration, i.e. no initial instance selection, TestConductor explicitly creates an object
of the TestContext.

The MicroC profile provides two different initialization modes: ‘CompileTime’ and
‘RunTime’. While ‘RunTime’ is like normal initialization for C models which requires no
specific support by TestConductor, ‘CompileTime’ influences a set of model elements,
such as e.g. accessibility of associations. In particular, this affects the generated initializers
of TestContexts for objects (cf. TestArchitecture creation “Using Objects”, page 33).
Consequently, TestArchitectures generated for initialization mode ‘RunTime’ are in
general not compilable with ‘CompileTime’ initialization and vice versa.
Note, that this also affects the initializer of TestComponents generated for statechart
TestCases (cf. TestCase Definition with Statecharts, page 43 ff). It is, hence, strictly
recommended to check the initialization mode defined for the project before creation of a
TestArchitecture and to check the initialization mode defined for the referenced
configuration before creation of the first statechart TestCase.

Assertion based testing mode relies on code instrumentation according to the needs of the
individual TestCases. In order to leave the original design elements untouched,
TestConductor creates copies of the classes associated with the SUT class. The scope of
the CG component is then adjusted, s.t. the copied classes are used instead of the original
design classes when building the test application – these copies are called replacements.
MicroC CG for CompileTime does not properly initialize objects or parts of these
replacements. The relation initialization for associations is not generated consistently for
links among replacements or between SUT and replacement TestComponentInstances. In
particular, outgoing associations of replacement classes are not initialized in MicroC
CompileTime TestArchitectures. This affects the ability to drive the SUT with messages
from replacement TestComponentInstances, whereas stubbing and invocation of
operations of TestComponents by the SUT works as expected.

In order to enable also driving the SUT by replacement TestComponentInstances, it is
recommended to set property
'C_CG.Configuration.AllCategoriesInitializingMode' to
'ByCategory' and property
'C_CG.Configuration.RelationInitializingMode' to 'RunTime'.

For greybox Testing (cf. section Grey Box Testing on page 40) this setting of properties is
required.

TestArchitectures for Code centric Models
(See also TestingCookbook:

• “How can I test applications developed with Rhapsody Architect for Software?”

38

)

For code centric Rhapsody models, the source code of the SUT is compiled to a library
and the executable with the test harness is linking this library. The code of the SUT library
is not instrumented with animation code and it is built with the code centric property
settings while the test harness contains animation instrumentation.

For the SUT library, it is possible to chose an already existing library of the project or
TestConductor can automatically create a new library CG Component.

When invoking “Create TestArchitecture” on a class in a code centric Rhapsody model, a
dialog appears with the options to select an existing library CG Configuration or to create
a new library CG Component and Configuration for the SUT. If an existing CG
Configuration is selected, a TestArchitecture is created with another CG Component and
Configuration for the generation and compilation of the test harness. This CG
Configuration has some properties enabled which are usually disabled in the code centric
profile, for example properties “CG::Relation::AddGenerate” and
“CG::Relation::SetGenerate” are enabled and
“CG::Configuration::MainGenerationScheme” is set to “Full”. The scope of the newly
created CG Component contains only the test harness and it has a “Usage” dependency to
the CG Component of the SUT, making sure the needed header files and the library of the
SUT can be found.
If creation of a new CG Component for the SUT library is chosen, then TestConductor
creates two CG Components in the TestArchitecture: First a library CG Component
“libSUT” with the scope set to the SUT class and its associations and the default property
settings of the project and second an executable CG Component for the test harness.

After creating the TestArchitecture, the user should revise the settings of the newly created
CG Components and Configurations. It might be necessary for example to add more
model elements to the scope of the CG Components or to modify the options for the
“Additional Sources”, “Include Path” etc. The user has to build the SUT library; for the
CG Configuration “RadioLib::RadioDebug” this can be done by executing the shell script
“buildLib.sh” (located on the project folder) in a cygwin shell. The executable of the test
harness can be build using the TestConductor menu functions “Build TestCase”, “Build
TestContext” or “Build TestPackage”.

The TestArchitecture for code centric models can be used the same way as
TestArchitectures for non code centric models, with some restrictions because of the not
animated SUT (internal communication of the SUT cannot be observed).

Production Code (Black Box) Testing
Production code or black box testing means that the internal behavior of the SUT can not
be observed by TestConductor. The objective is to test the interface behavior of a SUT.

Note: You can use the same TestCases defined for white box testing. In case of black
box testing TestConductor ignores all messages which communicate between SUT
objects. Only the input and output messages are observed.

Black Box Testing
By default, in assertion based testing mode, internals of the SUT such as self-messages
aren't observable for TestConductor. TestConductor only instruments TestComponents
with assertions and, thus, doesn't regard self-messages of the SUT.

39

In order to also regard such self-messages for debugging purposes or in early phases of
test application, TestConductor supports Grey Box testing with a dedicated
TestArchitecture creation (cf. Grey Box Testing on page 40 and GreyBox
TestArchitectures for classes and objects on page 35).

For using assertion based testing mode with MicroC models cf. section TestArchitectures
for MicroC Models on page 38)

Grey Box Testing
In assertion based testing mode, observability of messages is established by automatically
instrumenting the code with assertions. By default, this instrumentation is limited to the
test harness, i.e. TestConductor will not instrument the SUT itself, but only the
TestComponents that form the test environment of the SUT. Thus, by default, internals of
the SUT are not observable by TestConductor in assertion based testing mode, self-
messages of the SUT are ignored, the SUT is treated as black box.

Sometimes, especially for debugging purposes and in early phases of testing, it may
desired, to regard also internal messages of the SUT in the TestCases. For this use case,
TestConductor supports a special variant of TestArchitecture creation. If property
'TestConductor.Settings.CreateTestArchitectureTransparency' is
set to 'GreyBox' (default 'BlackBox') on project level, the class to be tested is copied to
the TestArchitecture and the copy is used for the testing activities instead of the original
class. This allows TestConductor to instrument the copy according to the needs of the
TestCases, without modification of the original class. Property
'TestConductor.Settings.CreateTestArchitectureTransparency' can
either be set in the features dialog on project level or in the TestConductor main dialog
(available via Tools->TestConductor).

Observability of self-messages is restricted to operations of the SUT class itself, messages
among parts of the SUT are not observable for GreyBox testing.

Note that Grey Box testing tests a copy of the SUT. Hence, the TestArchitecture does not
automatically keep track of modifications to the SUT. It is strictly recommended apply
'Update TestArchitecture' (cf. section Updating TestArchitectures) after modifying the
SUT in the model.

Testing a copy of the SUT instead of the original classes involves dealing with model
representation and code generation subtleties:

• copying a class associated with other classes via bi-directional associations breaks
the bi-directionality of the associations of the copy: associations in the copied
class to associated elements become directed, since the associated classes still
refer to the original class. TestConductor therefore creates a set of functions
needed for initialization and cleanup of association instantiation, e.g. by links.
Normally, Rhapsody code generation auto generates such functions for bi-
directional associations. TestConductor aims at reproducing this functionality but
may fail with respect to disregarded properties affecting generate code.

• copying a class disregards/omits dependencies owned by elements outside the
class but referring to elements belonging to the original class as source5.

5dependencies on requirements are intentionally removed from the copy in order to not confusing
RequirementCoverage measurement and reporting tools. RequirementCoverage measurement instead regards the
<<greyboxreplacement>> and <<greyboxinstancereplacement>> dependencies of the copy on the original
element in order to consider the dependencies on requirements in the original model elements.

40

• for composite GreyBox SUTs, code generation does not initialize 'Knows parent
as' relations of parts with the composite class, since these relations are valid only
among the original classes but are not valid among the replacement copies.
Such relations have to be established either in a TestContext initialization function
(e.g. initializer/constructor) or in the individual TestCases, for example by
invoking an appropriate routine in a TestAction.

• Rhapsody code generation for Rhapsody in C does not always generate all
necessary include statements into the code of a composite class instantiating a
class with ports - when the instantiated class is replaced by a copy (cf section
Replacements on page 24). Normally, for each port of a class an additional file is
generated, but the formal classifier of the instance is deselected from the code
generation scope, since the classifier has been replaced by a copy of it. In order to
avoid compiler warnings (and possible errors), the missing includes can be added
to property C_CG.Class.ImpIncludes or C_CG.Class.SpecIncludes, respectively.

• since TestConductor has instrument event processing in order to establish
observability of event consumption, GreyBox testing can not deal with non-
standard event consumption6.

• CodeCoverage measurement (cf. section Computing Code Coverage on page 85)
is not meaningful for GreyBox testing, since the SUT copies are instrumented for
testing purposes and CodeCoverage would also consider instrumentation.

For MicroC and SMXF GreyBox Testing is supported only with limitations: Since
compile-time initialized associations can not dynamically be re-initialized during run-time
by default Rhapsody code generation (pointer variables in the class-representing struct are
declared with const modifier), replacement technique does not initialize bi-directional
associations sufficiently. For MicroC, this can be workaround-ed by setting framework-
properties, s.t. relations are run-time initialized in the GreyBox TestArchitecture.
TestArchitecture Creation and Update issue an adequate warning:

WARNING: TestArchitecture uses TestComponent-replacements with associations to
other classes.
It is recommended to set property
'C_CG.Configuration.AllCategoriesInitializingMode' of the CG-configuration to
'ByCategory' and
'C_CG.Configuration.RelationInitializingMode' to 'RunTime'.
Otherwise, the associations will not be initialized properly.
If TestComponent-replacements are aimed at receiving events, then also property
'C_CG.Configuration.FrameworkInitializingMode' should be set to 'RunTime'.

Using this workaround, GreyBox testing can also applied for MicroC models.

Since SMXF does not support run-time initialization at all, this workaround does not exist
for SMXF. Therefore, TestConductor doesn't fully support GreyBox Testing for SMXF.

6For RiC++, TestConductor overrides OMReactive::processEvent() locally with an own implementation. At the
end of this local implementation OMReactive::processEvent() is invoked. This conflicts with user-defined
solutions overriding OMReactive::processEvent() locally.
For RiC including MicroC a similar approach is implemented using the properties
C_CG.Framework.OverrideReactiveConsumeEventOperation and
C_CG.Framework.ReactiveConsumeEventOperationName. This conflicts with user-defined solutions using
these properties.
For SMXF the TestConductor approach is based on using property
C_CG.Class.RootStateDispatchEventBeginCode. Also this policy conflicts with user defined modifications of
this property.

41

In any case, it is recommended to compare GreyBox testing results with corresponding
BlackBox TestCases for establishing evidence for validity of GreyBox testing results.

Hence, GreyBox testing should be seen as a test development strategy and as a debugging
aid, rather than a reliable stand-alone testing policy.

TestCase Definition
For the generated TestContext, individual TestCases can be defined. TestConductor
supports four possible ways to define TestCases:

• TestCase definition with code

• TestCase definition via flow charts

• TestCase definition via statecharts

• TestCase definition via sequence diagrams

TestCase Definition with Code
Probably the most common way to test units today is writing TestCases in the same
language than the application is written.

With Rhapsody and TestConductor it is also possible to write TestCases manually, because
TestCases are stereotyped operations of a TestContext.

Defining a Code TestCase
The creation of a new TestCase is nearly the same than creation of a new operation:

• Right-click on the TestContext and select Create Code TestCase

• A Code TestCase is created and its features dialog automatically opens.

• The Code TestCase is created with a predefined body consisting of a comment and
an initial assertion. The body can be edited in the implementation tab of the
features dialog.

Note: TestConductor provides several RTC_ASSERT macro types, which can be used to
define assertions within TestCases. A detailed description of these macros can be
found in the chapter TestConductor Assert Macro on page 156.

Testing reactive behavior with Code TestCases
Since code TestCases are basically operations of a TestContext, testing reactive behavior,
i.e. reaction to events, can not be done without modifications to the TestContext.
Operations can't wait on events so the TextContext has to be made an active object and
thus execute in a separate thread. Now, the thread executing the TestContext can be
delayed unless the SUT has reacted to an event.

• Example code in C++:
itsClass_0.GEN(evX());

42

OXFTDelay(1000);
RTC_ASSERT_NAME(“reaction”,itsClass_0.IS_IN(reaction_state))
;

• Example code in C:
RiCGEN(&(me->itsClass_0),evX());
RiCOXFDelay(1000);
RiCIS_IN(&(me->itsClass_0),reaction_state);

TestCase Definition with Flow Charts
A graphical way to describe TestCases is by using flow charts. Since TestCases are special
operations of a TestContext you can use flow charts. Flow charts can be used to define the
behavior of operations with Rhapsody.

Defining a Flow Chart TestCase
• Right-click on the TestContext r and select Create FlowChart TestCase

• The FlowChart TestCase is created and the graphical FlowChart editor opens with
the automatically predefined FlowChart specification of the newly created
TestCase.

Testing reactive behavior with Flow Chart TestCases
Since flow chart TestCases are basically operations of a TestContext, testing reactive
behavior, i.e. reaction to events, can be done with the same techniques as applied for Code
TestCases (cf. page 42).

TestCase Definition with Statecharts
TestCases can also be defined using statecharts. Due to the ability of statecharts to wait on
timeouts, statechart TestCases are particularly suited for testing reactive behavior.

In order to separate TestCase behavior from possible reactive behavior of the TestContext,
statechart TestCases are defined using specialized TestComponents, which are then
dynamically instantiated for test execution.

Note that the statechart TestCase can be used easily to stimulate reactive behavior in the
SUT, but that in general the SUT will react but not respond to the stimuli, i.e. since the
SUT has in general no relation with the stimulating TestComponent, the SUT will not send
events to this TestComponent. Observation of reactions on stimuli thus may often be only
achieved indirectly or require manual modifications of the TestArchitecture.

Statechart TestCases are comprised of the following model elements:

• a TestCase, i.e. basically an operation of the TestContext.

• a TestComponent owning the statechart defining the TestCase behavior.

• a dependency of the TestCase on the TestComponent. This dependency is
stereotyped <<StatechartTestCase>>.

Defining a Statechart TestCase
• Right-click on the TestContext and select Create Statechart TestCase

43

• A TestCase operation for starting the statechart TestCase is created in the
TestContext

• A new <<SCArbiter>>TestComponent with a predefined statechart is created
and the graphical statechart editor is opened with the predefined staechart.

Creation of a statechart TestCase adds an operation ('new termed' TestCase) to the
TestContext. This TestCase has a dependency on a newly created
<<SCArbiter>>TestComponent owning the statechart. The TestComponent has a
directed association to the TestContext, which can be used to refer to parts, variables and
operations of the TestContext. Upon 'Update TestCase', a <<SCTCInstance>>
TestComponentInstance instantiating the TestComponent is added to the TestContext.
'Update TestCase' also instruments the TestCase operation with initialization of required
associations and with sending an evTCStart event to the TestComponentInstance to start
statechart execution, i.e. trigger ist initial transition..

Furthermore, the TestContext needs to be populated with a rtc_init() and a
rtc_exit() operation which are invoked by the statechart. This population is initiated
by “Update TestCase”, “Update TestContext”, and “Update TestPackage”, respectively.

TestCase Definition with Sequence Diagrams
Another option to define TestCases is by using sequence diagrams. In the context of the
Rhapsody Testing Profile such sequence diagrams are stereotyped (new termed)
<<TestScenario>> . TestScenarios play a dominant role in the TestConductor test
process. They are the graphical means of specifying and defining the tests, and enable
TestConductor to visualize design flaws.

Detailed information regarding the usage of the powerful features of sequence diagram
TestCases are described in chapter Specifying Requirements with Sequence Diagrams on
page 108 ff.

Detailed information on generation of DriverOperations and StubOperations can be found
in section Model Population – Create Driver Operations and StubOperations on page 48
and in section Influencing DriverOperation and StubOperation Generation on page 119).

By default, TestConductor ignores self-messages of the SUT specified in TestScenarios. In
order to test also self-messages of the SUT, Grey Box Testing, cf. page 40, can be applied.

Defining a Sequence Diagram TestCase

• Right-click on the TestContext and select Create SD TestCase

• An operation ('new termed' TestCase) is added to the TestContext.

• A TestScenario is created below the TestCase. The TestScenario is predefined with
life-lines for all SUTs and TestComponentInstances belonging to the TestContext
(and accordingly for all TestSUTObjects and TestComponentObjects for
TestArchitectures using global objects).

• The graphical sequence diagram editor opens with the predefined TestSceanario
specification of the newly created TestCase.

Specification using TestScenarios is discussed in detail on pages 108 ff.

44

Failure Analysis in Sequence Diagram TestCases

When the test is executed, the results of the individual assertions as well as the overall
execution result is shown in the execution window. After execution, a witness
TestScenario for the TestCase execution can be generated and inspected via 'Show As SD'
from the context-menu of the execution window.

Further information about test execution and the related results is described in chapter Test
Execution on page 59 (in particular: Interpretation of witness diagrams on page 73).

Further information about failure analysis can be found in chapter Failure Analysis on
page 132.

TestConductor.h, TestConductor_C.h and TestConductor_C.c
Since Rhapsody 7.1 the testing profile require the TestContext, TestComponents, and
TestComponentInstances to include the TestConductor header file by setting property
CPP_CG.Class.ImpInclude to TestingConductor.h. Additionally, TestConductor
adds the path '$(OMROOT)/../TestConductor' to the include-path of the code-
generation component when creating a TestArchitecture.

To provide an adequate assertion support for Rhapsody in C, a similar header file is
provided and the testing profile was extended, such that TestContext, TestComponents,
and TestComponent instances automatically include an appropriate TestConductor_C.h
header by setting property C_CG.Class.ImpInclude to TestConductor_C.h. In
contrast to the Rhapsody in C++ solution, for Rhapsody in C also an C-Implementation
file was provided, which must be linked only once. Therefore, the TestConductor_C.c
file is included by the code generation configuration Main file (cf. property
C_CG.Configuration.ImplementationProlog of the
<<TestingConfiguration>> code generation configuration).

Support for interfacing Files in C using <<CInterfaceFile>>
Stereotype

Rhapsody predefines a stereotype <<CInterfaceFile>> in package
PredefinedTypesC. Applying this stereotype to a file causes the code generation to
just generate the declarations of the functions without implementing them. For
<<CInterfaceFile>> afile, all functions are declared as afile_$op, where $op is the
basic name of the function. In order to use a <<CInterfaceFile>> file interface, a
file can refer to the interface using a generalization. The inheriting file should have
property C_CG.Operation.PublicName set to “<afile>_$op”, where <afile> is the
name of the <<CinterfaceFile>>. Furthermore, <<CInterfaceFile>> afile as
well as the inheriting file should override
C_CG.Operation.UseProtectedNameAndPublicNameInFile by checking
the property. Now, the inheriting file defines the implementation of the functions declared
by the <<CInterfaceFile>> afile. Other files that are desired to use these
implementations only have to refer to the <<CInterfaceFile>>. This ways, a notion
of interfaces can be used with files in C, declaration and implementation of functionality

45

can be handled separately in the model.
TestConductor offers specific support for <<CIntefaceFile>> interfaces, by stubbing
the implementations if a file to be tested as SUT refers to <<CInterfaceFile>>
interfaces.

TestConductor Support for Testing Private Operations in Rhapsody
in C

(see also TestingCookbook:

• “How can I access file-static (private) variables in C files?”

)

Rhapsody in C allows to set the visibility of attributes to 'private' or 'public'. For 'private'
operations, code generation generates file static operations, which aren't accessible from
outside the generated implementation file. In particular, such operations can not be
referred to in TestCases. Hence, normally such operations can only be tested indirectly, by
testing operations internally using them.

To set the tester into the position to test also private operations explicitly, TestConductor
optionally creates wrapper functions for private operations in the SUT. Such wrapper
function is a public operation created with the same signature as the private operation and
belonging to the same unit, i.e. class, object or file.

These wrapper functions are generated to an advanced header file with name
publicwrap_<unitname>.h and an include statement at the end of
<unitname>.c

Example:

for some private operation int f(int x) of class_A, Rhapsody generates

static int class_A_f(class_A* me, int x) {

...

return …;

}

in file class_A.c.

TestConductor then generates a file publicwrap_class_A.h containing:

int class_A_callprivate_f(class_A* me, int x)

#ifdef WRAPPERIMPL

{

return class_A_f(me, x);

}

#endif

To file class_A.c an include is appended:

46

#define WRAPPERIMPL

#include “publicwrap_class_A.h”

such that the public wrapper operations become part of the implementation file. Code,
flow chart and statechart TestCases can now make use of these public wrapper operations
to invoke the referenced static, i.e. private, operations. The public wrapper operations are
not available in sequence diagram TestCases, since they are not part of the model.

Note: do not apply roundtripping when prompted by code generation.

The generation of public wrapper operations regards the respective properties for
arguments, argument types, argument code pattern, implementation name, public and
protected name, as well as the singleton stereotype suppressing me-pointer generation on
singleton objects.

Although a lot of properties is regarded for generation of public wrappers for private
operations, the feature may produce not compilable code under some circumstances. I
such cases, stereotype <<nopublicwrapper>> can be applied on individual functions
of the class, object or file to be tested, in order to omit public wrapper generation for the
respective function.

Testing support for private operations in Rhapsody in C can be turned on using
configuration's tag PrepareForTestingPivateOps.

TestConductor Support for Testing Private and Protected
Operations in Rhapsody in C++

Very similar to support for testing private operations in Rhapsody in C, TestConductor
also supports testing private and protected operations for Rhapsody in C++.

For C support, basically only suitable wrapper functions have to be generated into the
same file7 as the static operations and of course also an appropriate header has to offered
with the declarations. For C++ the class declaration itself has to be extended for providing
suitable public call wrappers for private operations, since private operations can only be
called by member operations of the class itself. This extension requires identification of a
correct position in the class declaration in the respective header. TestConductor does
neither modify the class in the model nor uses a simplifier to achieve this goal, since
original model elements are never modified for testing purposes and using a simplifier for
this goal would cause conflicts with other simplifier applications. Thus, class extension is
simply performed on file system level and relies on certain assumptions regarding the
structure of the generated code.

TestConductor aims at inserting an #include directive including a file containing public
wrapper function declarations and definitions right before the closing curly bracket '}' of
the class declaration. If TestConductor fails to identify this position in the class declaration
file, comment “//TestPrivateOpsInstrumentation“ can be used to force
TestConductor to add the #include directive below this comment8.

7for which purpose TestConductor makes use of the C-Preprocessor by providing an external file and
instrumenting the class implementation with an appropriate #include directive.
8This comment can be added to the generated file by e.g. round tripping or via
CPP_CG.WriterTemplates.ClassSpec property.

47

Although a lot of code generation related properties is regarded for generation of public
wrappers for private and protected operations, the feature may produce not compilable
code under some circumstances. I such cases, stereotype <<nopublicwrapper>> can
be applied on individual functions of the class or object to be tested, in order to omit
public wrapper generation for the respective function.

Testing support for private operations in Rhapsody in C++ can be turned on using
configuration's tag PrepareForTestingPivateOps.

Support for Rhapsody Action Language
(See also Testing Cookbook:

• “How can I test an action language model?”

)

TestConductor also supports testing of SysML models using Rhapsody Action Language.

To be able to Action Language expressions also in user defined assertions in TestCases a
function RTC_ASSERT_NAME_RAL(String name, Boolean exp) must be
provided by the user – e.g. by importing the package with the macro from the Testing
Cookbook sample model using Rhapsody's Add-To-Model function (Model:
Samples/CppSamples/TestConductor/TestingCookbook/CppCompositeCoffeeMachine_R
AL).

Model Population – Create Driver Operations and
StubOperations

TestComponents are used to drive input messages of the SUT or to return specified values
for operation calls. Therefore TestComponents have to be equipped with appropriate
driver operations and stubs.

By using sequence diagram TestCases TestConductor automates the generation of driver
operations and stubs. Automatic generation of driver operations and stubs according to the
needs of the TestCases is invoked using the context menu 'Update TestCase' on
TestCase, or 'Update TestContext' on TestContext, or 'Update TestPackage'
on TestPackage, respectively. These menu entries start a “model population” process,
analyzing all affected TestCases and generating Driver and stubs for the TestComponents
according to the TestScenario specifications of the TestCases (cf. section Influencing
DriverOperation and StubOperation Generation on page 119).

Besides driver operation and stub generation, “model population” populates the
TestArchitecture also with other artifacts required for test execution, such as generation of
<<Arbiter>> TestComponents, instantiation of arbiters, setting properties in various
model elements in the TestArchitecture, updating operations in Scheduler and TestContext,
e.t.c.

Driver Operations
DriverOperations are created for messages from a TestComponent to the SUT, except for
messages with checked the tag RTC_Monitor in stereotype <<RTC_MsgInfo>>, or
messages starting at a life-line with the tag RTC_Monitor in stereotype
<<RTC_InstInfo>>. In this case TestConductor will not drive the message.

48

The name of the driver operation is the concatenation of the name of the TestCase, “_”,
the name of the original operation, “_” and a number to create a unique name. A comment
is generated into the code of the driver operation that contains the message_id and the
name of the TestCase for which the driver operation was generated. This allows the user to
identify the correct driver operation if he wants to edit it.

message_id is a unique identifier that is assigned to the message by “model
population” due to 'Update TestCase/TestContext/TestPackage'. The message_id is stored
in tag RTC_MsgId of the <<RTC_MsgInfo>> stereotype. The <<RTC_MsgInfo>>
stereotype is also applied on the message by “model population”.
The message_id is also referred to by TestConductor assertions that are populated into
e.g. DriverOperations and StubOperations.

The visibility of the driver operation is public to make sure this operation can be invoked
by TestConductor.

The body of the driver operation consists of a call of the original operation on the SUT
either directly on the destination instance via association or via port, depending on the
structure of the TestArchitecture.

The values of any input argument for the driven operation call is derived from the
specification in the TestScenario. The specified return-value(if specified) and the specified
output argument values are stored in local variables for checking after the call.

If the sequence diagram specifies that the returned value has to be checked, the macro
RTC_ASSERT_SD_NAME is used to check if the returned value adheres to the specified
return value. The same macro is used also to check out or in/out argument values (cf. 116)
according to the specification TestScenario. If any of these checks fails, the entire
TestCase will fail.

For information on how to customize the driver operation, see section User Defined
DriverOperation on page 119.

StubOperations
StubOperations are used to return specific return values for operation-calls according to
the needs of TestCases as well as for checking argument values.

StubOperations are created for every message referring to an operation from SUT life-line
to a life-line representing a TestComponent (except for messages with checked tag
RTC_Monitor in stereotype <<RTC_MsgInfo>> or messages to a TestComponent life-
line with checked tag RTC_Monitor in stereotype <<RTC_InstInfo>>).

For operations, invocation of the StubOperations for different calls (of different TestCases)
are controlled by one dedicated StubbedOperation – replacing the original operation or
default operation in the TestComponent.

For event messages all required stubs have to be in one operation that is invoked in event
processing. For dataflows messages the setter of the associated attribute is instrumented
for stubbing.

TestConductor has to determine and control the value returned by the operation for the
specified messages in the TestScenario. On the other hand there might be calls of the same
operation without a specified return value or the operation is called by e.g. another class
on a TestComponent. Therefore, TestConductor has to generate an implementation of the

49

operation which provides stub returns for specified invocations but it must remain possible
to call the original operation.

To ensure this, for replacement TestComponents TestConductor creates a copy of the
original operation with the prefix original_ followed by the operations name, having the
same signature as the original operation. This copy of the original operation is stereotyped
(new termed) <<DefaultOperation>>, whereas the original operation is stereotyped
(new termed) <<StubbedOperation>>.

For inheriting TestComponents, TestConductor creates a new
<<DefaultOperation>> in the inheriting TestComponent calling the inherited
operation non-virtually.

For each occurrence of the operation in the TestScenario which has to be stubbed, a new
operation is added to the TestComponent with the same signature as the original operation.

These operations are stereotyped (new termed) <<StubOperation>>. Each of the
StubOperations returns the particular specified return value, out and in/out arguments for
one message in the TestScenario. The name of the StubOperation is the concatenation of
the name of the TestCase, the string “_stub_”, the name of the original operation and a
number in order to make it unique.

The body of the <<StubbedOperation>> operation is emptied completely – on
cleaning TestComponent or TestPackage (cf. sections Clean TestComponent and section
Clean TestPackage on page 52), the body can be restored using the DefaultOperation -
and a new StubbedOperation implementation is generated this way: The
StubbedOperation determines which StubOperation (or the DefaultOperation) has to be
called according to the number of the actual TestCase and according to a counter for the
number of invocations of the operation.

50

For all messages from a SUT life line to a TestComponent life line, TestConductor creates
<<StubbedOperation>> operations and DefaultOperations – also if no specific
return values or out values of arguments have to be stubbed. Since without mandatory
animation instrumentation observability can only be established using assertion
instrumentation, these 'observation'-stubs are used to track messages during TestCase
execution.

If

• the tag TestConductor::RTC_MsgInfo::RTCMonitor for the sequence
diagram message is set to true, or

• the tag TestConductor::RTC_InstInfo::RTCMonitor of stereotype on the
receiver life-line in the TestScenario is checked (Note that <<RTCInstInfo>>
is not applied to life-lines by default)

TestConductor will not provide StubOperations returning specified return values or output
argument values. In this case, the generated StubbedOperation will only serve observation
purposes and the concerned messages will be monitored but not be stubbed. The
StubbedOperations will always call their DefaultOperations in this case.

For further information how to customize the StubOperation please read the chapter
Fehler: Referenz nicht gefunden at page Fehler: Referenz nicht gefunden.

51

Figure 6: SD TestCases - Stubbing and Observing Operations

Clean TestComponent
DriverOperations, StubbedOperations and StubOperations can be deleted manually, but
TestConductor provides the functionality to delete the automatically generated operations
of a TestComponent at once. To clean a TestComponent select the TestComponent and
choose from the context menu the item Clean TestComponent.

Clean TestPackage
Clean TestPackage also deletes all results and coverage results as well as the arbiter
TestComponents from the TestPackage.

To clean a TestPackage select the TestPackage and choose from the context menu the item
Clean TestPackage.

Note, that invoking Clean TestPackage will yield slightly different results when invoked
on the TPkg_<element> TestPackage or on the contained
TCon_<element>_Architecture package. The latter cleans only all artifacts that are
referenced by elements of the TCon_<element>_Architecture TestPackage, whereas
Clean TestPackage on the TPkg_<element> TestPackage also removes unreferenced
obsolete Testartifacts, such as <<Arbiter>> TestComponents of deleted TestCases,
which will remain in the model if Clean TestPackage is invoked only on the
TCon_<element>_Architecture TestPackage.
It is therefore recommended to invoke Clean TestPackage always on the
TPkg_<element> TestPackage.

Specifying a TestScenario

Using TestScenarios as TestCase specifications is a key concept of TestConductor.

Sequence diagrams are an intuitive graphical formalism aimed at capturing
communications among communicating objects. Sequence diagrams may consist of a wide
range of graphical elements, such as messages, conditions, actions, timers, Interaction
Operators, e.t.c. pp.

TestConductor supports a well defined subset of these graphical elements, some of them as
specialized (stereotyped) variants. In order to distinguish between the rather informal
character of sequence diagrams and the formal interpretation of TestCase specifications by
sequence diagrams, sequence diagrams supported as TestCase specifications are
stereotyped ('new termed') <<TestScenario>>.

Specification of TestScenarios is discussed in detail in section Specifying Requirements
with Sequence Diagrams on pages 108 ff.

Creating TestCases with the TestCase wizard
As an alternative to manually create TestCases, one can also automatically create
TestCases with the TestCase wizard. The TestCase wizard allows to automatically create
TestCases based on existing

• Sequence Diagrams

• Operations and Event Receptions

52

• Requirements

The TestCase wizard automatically add a TestObjective to the newly created TestCase
referring to the element for which the TestCase has been created (cf. section Using the Test
Requirement Coverage Report on page 103).

A SD TestCase based on an existing Sequence Diagram can be created with the following
steps:

1. Right click on a sequence diagram in the browser or in sequence diagram editor
and selection of “Create TestCase…” from the context menu.
This opens the TestCase wizard dialog:

2. In the TestCase wizard dialog, all TestArchitectures (i.e., all TestContexts) that are
suitable to map the life lines of the existing sequence diagram to the life lines that
are available in the TestArchitecture (i.e., the life lines of the SUT instances and
the life lines of the TestComponentInstances) are listed. The list only shows the
short names of the TestContexts – if the mouse hovers over the name, a 'bubble'
opens and reveals the full path name of the respective TestContext. A
TestArchitecture is suitable, if

• All life lines of the existing sequence diagram can be mapped to life lines of
SUT instances or TestComponentInstances s.t. all specified messages can
occur also between the remapped life lines of the TestArchitecture.

• At least one life line of the existing sequence diagram must belong to the same
class (or file/object) as one of the SUT instances of the TestArchitecture. This
rule can be turned on/off by setting the property
“TestConductor.Settings.MapSDToTestArchitectureMode”
to “weak”. By setting this property to “weak”, no existence of a life line that
has the same class as one of the SUT classes is required any more. Only the
specified messages must be possible in the remapped life lines of the
TestArchitecture. This mode allows to remap an existing sequence diagram
also to TestArchitectures that contain completely disjoint classes but which
have at least interfaces that are compatible. The default value for this property
is “strict”.

3. If no suitable TestArchitecture can be found, the list will contain only the entry
<<new>>. On selecting <<new>> a new dialog will open that lists all classes of
all life lines of the selected sequence diagram. In this dialog the SUT class has to
be selected for which the TestArchitecture will be created. Pressing ok will invoke
TestArchitecture creation for the selected SUT.

4. As a result, a new sequence diagram TestCase will be created that contains the
same messages as the original sequence diagram, mapped to life lines referring to
suitable instances in the TestArchitecture.

53

Figure 7: SD TestCase mapping using TestCase Wizard

Note that the long names of the life-lines are navigation expressions referring to suitable
instances of the respective classifiers in the target TestArchitecture. TestConductor needs
these navigation expressions e.g. for identifying suitable links when generating driver
operations.

In order to create a TestCases based on an operation or an event reception, do the
following:

1. In the browser, select one of the operations or event receptions of a class (or
file/object) and select “Create TestCase…” from the context menu.

2. In the TestCase wizard dialog, all TestArchitectures (i.e., all TestContexts) that
contains a SUT instance of the class (or file/object) of the selected
operation/event reception are listed. Additionally, the element <<new>> is listed.
In the lower left of the dialog a drop down box can be used to select the kind of
TestCase to be created. Depending of the selection of the TestArchitecture and the
TestCase kind, a new TestCase is created and added to the selected
TestArchitecture. If <<new>> is selected, a new TestArchitecture for the class (or
file/object) of the selected operation will be created.

3. The created TestCase already contains a call to the selected operation with default
arguments. Additionally, a dummy assertion is created that can be refined in order
to check out values of the called operation.

In order to create a TestCases based on a requirement, do the following:

1. In the browser, select a requirement and select “Create TestCase…” from the
context menu.

2. In the TestCase wizard dialog, all TestArchitectures (i.e., all TestContexts) of the
model are listed. Additionally, the element <<new>> is listed. Furthermore, a
drop down box can be used to select the kind of TestCase one wants to create.
Depending of the selection of the TestArchitecture and the TestCase kind, a new
TestCase is created and added to the selected TestArchitecture. When <<new>>
is selected, a new TestArchitecture (a subsequent dialogs asks for the class for
which a new TestArchitecture should be created) is created. Furthermore, the
original requirement for which the new TestCase has been created is linked as a
test objective to the TestCase.

54

Creating Sequence Diagram TestCases from existing Scenarios
using an explicit instance mapping

(see also TestingCookbook:

• “How can I use an existing sequence diagram for tests?”

)

Creating Sequence Diagram TestCases from existing Scenarios can be done either fully
automated using the TestCase Wizard (cf. section Creating Sequence Diagram TestCases
from existing Scenarios using an explicit instance mapping, page 52 ff) or by explicitly
selecting the TestArchitecture in which a TestCase shall be created for the source scenario.
Optionally, a mapping of the classifiers of the source scenario to classifiers in the
TestArchitecture for which the TestCase will be created can be provided.

When attempting to create a sequence diagram test using the case wizard, the TestCase
wizard first analyzes all existing TestArchitectures for being suitable candidates for
TestCase creation and offers the suiting TestArchitectures for selection as target for
TestCase creation. Hence, if instances or messages in the source scenario have no possible
realization according to the automatic mapping algorithm, the respective TestArchitecture
is not offered for selection. The algorithm provides no information why certain
TestArchitectures aren't considered suitable for the particular scenario.

The heuristics of the mapping algorithm maps classifiers of the source scenario to
'compatible' –according to the chosen mapping strategy (weak or strict, cf. pages General
Properties, page 98 ff.) – classifiers in the selected TestArchitecture. The heuristics work
pretty well for classifiers with port contracts. In particular for classifiers engaged in only
few communications or without port contracts, the heuristics may produce not optimal
results.

The TestCase wizard is only capable of an instance to instance mapping. Merging or
splitting life-lines – e.g. according to composite and part relations – is not supported by
the TestCase wizard.

To overcome the drawbacks described above, creating sequence diagram TestCases from
existing scenarios – optionally using an explicit instance mapping – has been introduced
as alternative to the TestCase wizard.

A sequence diagram TestCase from an existing scenario can be created by invoking
'Create TestCase from Scenario' on the scenario.

For a user defined mapping and a determined TestArchitecture, the TestCase is created in
any case and a detailed report provides feedback about the individual actions the algorithm
performed for TestCase creation and scenario mapping. If no mapping is active on
invocation of 'Create TestCase from Scenario' the resulting TestCase
resembles the result of invoking the TestCase wizard with the major difference that the
TestCase is created in the target TestArchitecture even though the TestCase wizard
considers the TestArchitecture not suitable. The 'MappingReport' comment in the created
TestCase will contain detailed information regarding the successful steps and problems
during creation and mapping.

Mappings can define

• simple mappings of individual classifiers to classifiers,

55

• splitting life-lines of classifiers into a set of life-lines of particular classifiers – as
needed e.g. for mapping a composite to its parts,

• merging life-lines of a set of classifiers to one life-line of a particular classifier –
as e.g. used in mapping parts to its parent composite.

Once created mappings are part of the model (TestingProfile model element SDMapping)
and can be shared for further TestCase creations. Definition of mappings is described on
page 56.

Mappings refer to the classifiers of life-lines. Mapping of individual messages is currently
not supported.

The work flow of sequence diagram TestCase creation for an existing scenario consists of
the following steps:

1. Activation of the desired SDMapping. An SDMapping is activated by setting
stereotype <<ActiveSDMapping>> on the SDMapping. At most one
SDMapping must be stereotyped at a time.
A dedicated helper 'Set as Active SDMapping' unsets the stereotype from
all currently stereotyped SDMappings and activates the selected one.

2. The target TestArchitecture is determined by setting one of its code generation
configurations active. The active code generation configuration must be
stereotyped <<TestingConfiguration>> or
<<AnimationBasedTestingConfiguration>> or by a stereotype
inheriting from one of them.

3. Invocation of 'Create TestCase from Scenario' on a sequence diagram
or a TestScenario.

Definition of mappings for sequence diagram TestCase creation from existing
scenarios

Testing profile model elements

• SDMapping,

• SDInstanceRealizationMapPair,

• SDInstanceRealizationSplit,

◦ SDInstanceRealizationSplitTarget,

• SDInstanceRealizationMerge,

◦ SDInstanceRealizationMergeOrigin

have been introduced for defining mappings for sequence diagram TestCase creation from
scenarios.

These model elements have – depending on their meaning to the mapping – tags
'Origin' and 'Target' of type ModelElement9.

9Classifier would be more appropriate, but for classifier, the selection dialog doesn't offer files and implicit
objects. Thus, to be able to pick also files and objects from the selection dialog for tags, Classifier is too

56

The top level element of each mapping is an SDMapping

SDMappings can consist of

• SDInstanceRealizationMapPair – simple mappings of individual
classifiers to classifiers, SDInstanceRealizationMapPair has two tags
'Origin' and 'Target' of type ModelElement. life-lines referring to 'Origin'
shall be mapped to 'Target'.

• SDInstanceRealizationSplit – splitting life-lines of into a set of life-
lines of particular classifiers. SDInstanceRealizationSplit has tag
'Origin' for defining, which Classifier shall be split and

◦ arbitrary many SDInstanceRealizationSplitTarget elements,
each with a tag 'Target'. The set of
SDInstanceRealizationSplitTarget elements belonging to a
SDInstanceRealizationSplit define the set of classifiers to which
the life-lines referring to 'Origin' classifier shall be split.

• SDInstanceRealizationMerge - merging life-lines of a set of classifiers
to one life-line of a particular classifier. SDInstanceRealizationMerge
has a tag 'Target' denoting the classifier for which the origins will be merged
and

◦ arbitrary many SDInstanceRealizationMergeOrigin elements,
each with a tag 'Origin'. The set of
SDInstanceRealizationMergeOrigin elements belonging to a
SDInstanceRealizationMerge define the set of elements for which
the referring life-lines shall be merged to an life-line referring to 'Target'
classifier.

SDMappings can be created in any package or TestPackage in the model, but it is
recommended to create SDMappings in the target TestArchitecture to which the
SDMapping maps classifiers of scenarios.

SDMappings can be created using the context menu item “Add New-
>TestingProfile->SDMapping” on a package or TestPackage. According to
the hierarchy of mapping elements, SDInstanceRealizationMapPair,
SDInstanceRealizationSplit, SDInstanceRealizationMerge can be
added to a SDMapping with the context menu item “Add New->TestingProfile-
> SDInstanceRealizationMapPair”, etc. on a SDMapping.

Similarly, SDInstanceRealizationSplitTarget and
SDInstanceRealizationMergeOrigin can be added accordingly to
SDInstanceRealizationSplit and SDInstanceRealizationMerge,
respectively.

The 'Origin' and 'Target' tags of the mapping elements can be set in the tags-tab of
the features dialog of the respective element: on clicking into the value entry field of the
tag, a '…' button appears on the right side of the entry field. Pressing that '…' button opens
a 'Select Value' dialog, which is basically a mini model browser.

restrictive. Instead of restricting the selection, the defined SDMapping is strictly checked on application of the
mapping.

57

Unfortunately, the tag value is displayed only with its short name in the browser and in the
entry field in the features dialog – and the selected model element is not preselected when
opening the selection dialog again for a defined tag. This makes it difficult to verify
correctness of an existing mapping or even understand its meaning with only the
information provided in the browser and in the features dialog. In order to obtain
information about the model paths of the selected classifiers in the mapping tags, context
menu item 'Update Description' can be invoked on SDMapping. This helper will
generate an information report for the mapping using model path names of the tag values
and write the report to the description of the SDMapping.

SDMappings for Replacements

TestComponents are often realized by replacements, i.e. copies of the original classes,
objects or files in the environment of the SUT – replacing the original model elements in
the code generation scope for testing purposes (cf. section Replacements on page 24). It is
important to note that even though replacements are used for instrumentation, the
TestScenarios of sequence diagram TestCases refer to the replaced original model
elements10. Thus, for mappings also the original model elements have to be selected – not
the replacements.

10Except for TestFiles replacing files.

58

Test Execution
During test execution, TestConductor drives events, operation calls, and dataflows sent
from the TestComponents or TestContext to SUT objects, and monitors all messages from
SUT objects to TestComponents as specified in the TestCases. TestConductor
automatically checks and reports whether the order of messages corresponds to the real
order in the running application. In addition, TestConductor monitors the arguments of
messages.

Before Rhapsody 7.6, TestConductor only supports so-called animation based testing
mode. In animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a TestCase is passed or failed, is based on animation
messages coming from Rhapsody’s animation feature. Starting from Rhapsody 7.6,
TestConductor also supports so-called assertion based testing mode. In contrast to
animation based testing mode, in assertion based testing mode both scheduling and
arbitration of TestCases is directly controlled by assertions that are compiled into the test
executable, i.e., scheduling and arbitration of TestCases is independent from Rhapsody’s
animation feature. Since in assertion based testing mode the TestCases are part of the
application itself, observation of messages or behavior in the initialization of the
application is limited. The TestCase arbitration and scheduling is not initialized before
other parts of the application. Hence, for testing system setup using the assertion based
testing mode, it is recommended to provide the model with an initial trigger for starting
system setup.

This document only refers to the assertion based testing mode.

Overview
TestConductor supports execution of

• individual TestCases

• TestContext

• TestPackage

The test execution is visualized with an execution dialog. Depending on the type of
TestCases the view and interaction possibilities of the execution dialog slightly differ.

Testing Configuration
Prerequisite for each execution of an application is a defined Rhapsody code generation
configuration. This configuration must be compileable and linkable.

The code generation configuration used for updating, building and executing must have
the stereotype <<TestingConfiguration>>. Each TestArchitecture is

59

automatically equipped with a suiting <<TestingConfiguration>> code
generation configuration upon TestArchitecture creation using the context-menu 'Create
TestArchitecture' TestConductor.

Tags of the <<TestingConfiguration>> Stereotype

The stereotype <<TestingConfiguration>> contains several tags that can be used
in order to control how the test executable is created, and which test execution options
should be applied when executing TestCases using that configuration:

• CodeCoverageOptionsFileName
In this tag a file name of a code coverage options file can be specified. In the
options file, one can specify compiler specific options for controlling the source
code annotation tools that annotate the code of the SUT in order to compute code
coverage achieved by the executed TestCases.

• ComputeCodeCoverage:
If this option is turned on, when executing TestCases TestConductor computes
which parts of the code generated for the SUT are covered to what extend.
TestConductor computes statement coverage, decision coverage,
decision/condition coverage and modified condition/decision coverage (MC/DC).
Which parts of the SUT are considered for code coverage can be controlled by the
tag “CoverageKind”. Note: Code coverage is restricted to C and C++.

(Default: false)

• ComputeModelCoverage:
If this option is turned on, when executing TestCases TestConductor computes
which model elements of the SUT are covered. TestConductor computes which
states, transitions and operations are executed by the TestCases. Which parts of the
SUT are considered for code coverage can be controlled by the tag
“CoverageKind”.
Note: Model coverage is restricted to animated configurations.

(Default: false)

• ComputeRequirementCoverage:
If this option is turned on (requires also ComputeModelCoverage to be turned on),
TestConductor measures dynamical requirement coverage on the basis of model
elements linked to requirements using stereotyped dependencies (cf. page 82 ff.
for details on the coverage measure and its configuration options).

Note: Requirement coverage is restricted to animated configurations.

(Default: false)

• CoverageKind:
This tag controls which parts of the TestArchitecture is considered by model
coverage and code coverage. The possible values are

◦ SUT_flat: Only the SUT itself is considered.

◦ SUT_hierarchical: The SUT and its parts are considered.

◦ TestContext_flat: The SUT and all TestComponents are considered.

60

◦ TestContext_hierarchical: The SUT and its parts, and all TestComponents
with all their parts are considered.

(Default: SUT_flat)
Despite choosing the coverage kind in general, the coverage scope can be fine-
tuned by adding <<considerForCoverage>> and
<<considerNotForCoverage>> dependencies on the respective model
elements (classes, objects and files) to the TestContext.

• CreateWitnessScenariosForFailedSDTestCase:
This tag controls whether TestConductor should automatically create a so called
witness scenario if an SD based TestCase has failed.

(Default: false)

• EnableOverloading:
For Rhapsody in C++, TestConductor supports overloaded operations in
TestComponents by default, i.e. operations with identical names but differing
formal argument lists - differing in argument types or of different lengths.
Normally, there is no reason to disable support for overloaded operations.

(Default: true)

• NoConsoleApp:
This tag controls whether TestConductor should hide console windows (cmd
windows) when executing test applications and helper tools on Windows.

(Default: false)

• PopulateCompileCommandForCodeCoverage :
If this option is turned on, the property “<lang>.<Env>.CCompileCommand” will
be automatically populated by TestConductor in order to call the code
instrumentation tools of TestConductor that are needed when computing code
coverage of TestCases.
If there are problems with the automatic population of this property, turn off this
option and adjust the property “<lang>.<Env>.CCompileCommand” manually.

(Default: true)

• PopulateInvokeExecutableProperty:
If this option is turned on, when executing TestCases from within Rhapsody,
TestConductor automatically overwrites the property
“<lang>.<Env>.InvokeExecutable” with the content of the tag
“rtc_testexecution_script_filename”.

(Default: true)

• PrepareForTestingPrivateOps:
Rhapsody in C generates file static operations for private model operations, which
can not be seen or invoked from outside the generated implementation file.
In order of being able to test also private operations in the SUT, TestConductor
will generate additional operations to the SUT code, providing 'public' wrapper
operations calling the private operations. These wrapper operations can be used in
code , flow chart , and statechart TestCase to test private operations (see section
TestConductor Support for Testing Private Operations in Rhapsody in C on page
46 for details).

61

Rhapsody in C++ uses C++ declaration modifiers public, private and protected
according to the visibility settings in the features dialog of operations.
For C++, support for testing private and protected operations similar to the
support for testing private operations in C is available using this tag (see section
TestConductor Support for Testing Private and Protected Operations in Rhapsody
in C++ on page 47 for details).

(Default: false)

• RTC_MAX_ASSERT:
The value of this tag defines how much memory TestConductor reserves for
storing the results of executed assertions. The memory for storing the results of
assertions is always defined statically in order to allow test execution on targets
that don’t support dynamic memory allocation. If during test execution the
assertion memory exceeds its limits, TestConductor stops test execution and logs
an error message.

(Default: 200)

• ResultVerification:
TestCases can be defined by either sequence diagrams, flowcharts, statecharts or
plain code. Based on the behavior specification of the TestCase, TestConductor
populates the model with operations and statecharts that implement the behavior
of the TestCase as specified e.g. by a sequence diagram. After model population,
TestConductor uses Rhapsody’s code generator in order to generate code from the
populated model. Now, if Rhapsody’s code generator contains an error, a TestCase
execution could yield the wrong result since TestConductor has used Rhapsody’s
code generator to generate the testing code. In order to prevent such situations,
TestConductor can perform a so-called result verification. Result Verification is a
technique that checks the consistency of a test execution with the TestCase
behavior specification in Rhapsody. If result verification is turned on,
TestConductor will detect potential errors in Rhapsody’s code generator, thus
making sure that the TestCase result TestConductor computes is correct even if
code generation errors occurred in the testing code.

(Default: true)

• ShowActualValueInWitnessScenario:
This tag controls if TestConductor should automatically show the observed
parameter or return value for failed messages when creating a witness scenario.
Showing the actual value is supported for basic types (like int, long, double) but
not for typedef of enum types. This option is not supported in combination with
option rtc_assert_handling set to by_id.

(Default: true)

• rtc_adapter_content:
This tag allows for defining adapter code, that can be used to realize the transfer
of results from the target to the host. For example, a target debugger script can be
provided in this tag, that reads out the assertion array and dumps the content of the
array to a file on the host.

(Default: empty)

• rtc_adapter_filename:
If tag rtc_adapter_content is not empty, then rtc_adapter_content is written to the
denoted file for use in e.g. a target debugger.

62

(Default: $CONFIGDIR/rtcadapt.txt)

• rtc_assert_dumptofile:
If turned on, then the contents of the assertion array will be dumped to the file
denoted by tag rtc_assert_resultfilename.
The tag must be turned off if the target does not support files.

(Default: true)

• rtc_assert_dumptofile_kind:
This tag controls when the collected assertions are dumped into the result file.
Possible values are

◦ at_exit: assertions are dumped when the test executable exits.

◦ after_testcase: assertions are dumped after one TestCase execution.

◦ immediately: assertions are dumped immediately when they are executed.

(Default: immediately)

• rtc_assert_handling:
This tag controls how much information is stored with the outcome of each
assertion. Possible values are:

◦ by_string: With this value it is possible to add a string with additional
information to each assertion, providing more information when doing show
assertion or show as SD. This allows easier analyzing of test outcomes but
increases the memory consumption of the tested application.

◦ by_id: With this value only a unique number and the result of each assertion.
This reduces the memory consumption of the tested application.

(Default: by_string)

• rtc_assert_mem_code:
This tag allows for customization of the rtc_assert_id function. Function
‘void rtc_assert_id(int e, int ln, int nr)’ is defined in in
TestConductor_C.c (for C) and TestConductor.h (for C++), respectively.
If rtc_assert_mem_code is empty, the original implementation as provided by
TestConductor is used.
The function takes 3 arguments:

◦ int e: the value of the assertion expression

◦ int ln: the line number of the assertion in the source code

◦ int nr: the number of the implementation file according to a TestConductor-
internal numbering of generated files.

TestConductor expects a result file on the host with the following syntax:

Lines ::= 

| Lines Line

Line ::= ASSERTION = nr,ln,e

63

Where  means the empty word, ‘ASSERTION’ , ‘=’ , and ‘,’ are token and nr,
ln, e are integer values according to the arguments of rtc_assert_id. (in
reversed order).
For simplicity, arbitrary text lines not starting with ‘ASSERTION’ may be
contained in the result file but are ignored.

Using rtc_assert_mem_code, the implementation of rtc_assert_id can be
customized in any way that produces a result file in correct syntax on the host,
e.g. sending the values via serial connection to a serial port server application
on the host that creates the result file.

(Default: empty)

• rtc_exit_kind:
This tag controls how the test executable shall be exited. Possible values are:

◦ by_system_exit: The test executable exits by calling “exit”.

◦ User_defined: The test executable exits by executing the content of the tag
“rtc_exit_user_definition”.

(Default: by_system_exit)

• rtc_exit_user_definition:
In this tag you can specify a code sequence that shall be executed when the test
executable exits. This can be useful e.g. for targets that need a special way for
correctly terminating executables.

(Default: empty)

• rtc_info_filename:
This tag specifies the name of the so-called info file that is used by TestConductor
in order to generate some TestCase related information into a file, e.g. name and id
of TestCases. The info file is used by the reporting tool repgen in order to generate
execution reports.

(Default: $CONFIGDIR/rtcinfo.txt)

• rtc_log_autogenerate
If this tag is turned on, TestConductor automatically adds log messages to the test
executable. The log messages give information e.g. which TestCase is currently
executed. Based on the value of the tag “rtc_log_kind”, the generated log
messages are either printed to the console or to a log file or both.

(Default: true)

• rtc_log_filename
This tag specifies the name of the log file that can be generated by the test
executable. If the file is generated or not during test execution depends on the
value of the tag “rtc_log_kind”.

(Default: $CONFIGDIR/rtclog.txt)

• rtc_log_kind
This tag specifies how log messages should be treated inside the test executable.
The possible values are

◦ to_console: log messages are printed to the console

64

◦ to_file: log messages are printed to the file specified in the tag
“rtc_log_filename”.

◦ to_console_and_file: log messages are printed to the console and are logged
into the file specified in the tag “rtc_log_filename”

◦ user_defined: when log messages are executed, the code entered in the tag
“rtc_log_user_definition” is executed.

(Default: to_console)

• rtc_log_user_definition:
In this tag you can specify a code sequence that is executed in the test executable
when a log message is specified. The specified code sequence will be executed if
the value of the tag “rtc_log_kind” is set to “user_defined”.

(Default: empty)

• rtc_report_dir
This tag specifies to which directory TestConductor generates the execution
reports after TestCase execution.

(Default: $CONFIGDIR)

• rtc_result_filename:
This tag denotes the file from which TestConductor will read the result of
TestCase execution. If tag rtc_assert_dumptofile is set to true, then the results
will automatically be written into this file.

(Default: $CONFIGDIR/rtcresult.txt)

• rtc_result_handling:
This tag specifies how test execution results are treated in the test executable.
Possible values are

◦ automatic: if set to automatic, TestConductor automatically reads in test
results after test execution.

◦ Manual: if set to manual, TestConductor does not automatically reads in test
results after TestCase execution.

• rtc_testexecution_script_content:
This tag specifies the content of the script file that is used by TestConductor to call
the test executable. The tag contains the options for the test executable that e.g.
are used to select the TestCase that shall be executed.

(Default: "$executable" -resultfile "$rtc_resultfile" -logfile "$rtc_logfile" -tcontext
$tcontext -tcase $tcase)

Note: When testing with Cygwin environment a trailing
“$OMROOT/etc/cygwinrun.bat” (with $OMROOT expanded) is added to the
script content to make sure the tested application can load the necessary Cygwin
dlls and start correctly.
This can be disabled by adding the tag “DisableUseCygwinrun” with the value
“True” to the code generation configuration.

65

• rtc_testexecution_script_filename:
This tag specifies the name of the script file that is used in order to call the test
executable.

(Default: $CONFIGDIR/tc_run.bat)

• rtc_testexecution_script_populate:
This tag specifies whether the content of the file specified in the tag
“rtc_testexecution_script_filename” is populated with the content specified in the
tag “rtc_testexecution_script_content”.

(Default: true)

• rtc_testexecution_uptodate_check:
By default, TestConductor checks on every invocation of 'Build
TestCase/TestContext/TestPackage' and on every invocation of 'Execute
TestCase/TestContext/TestPackage' whether an update of the TestCase,
TestContext or TestPackage, respectively is needed, since test definitions have
been modified and test artifacts have to be updated accordingly.
The update check may take reasonable time on large TestContexts and
TestPackages if e.g. many TestCases are involevd. Tag
rtc_testexecution_uptodate_check turns off the update check and leaves it to the
user to ensure that all TestCases have been updated appropriately before invoking
build and execute.
Main use case is to turn off update check for applying manual modifications after
update before build and execute, since update check inhibits build and execute for
not appropriately updated TestCases.
Note: be careful disabling update check.

(Default: false)

• rtc_testreport_script_content_tcase:
This tag specifies the content of the script file that is used by TestConductor to
generate html execution reports for TestCases from the test results computed by
the test executable. The tag contains the options for the repgen tool that are used
in order to generate the html reports for TestCases

(Default: "$RTCINSTALLDIR/repgen" -infofile "$infofile" -resultfile
"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext -tcase
$fulltcase)

• rtc_testreport_script_content_tcontext:
This tag specifies the content of the script file that is used by TestConductor to
generate html execution reports for TestContexts from the test results computed by
the test executable. The tag contains the options for the repgen tool that are used
in order to generate the html reports for TestContexts.

(Default: "$RTCINSTALLDIR/repgen" -infofile "$infofile" -resultfile
"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext)

• rtc_testreport_script_filename:
This tag specifies the name of the script file that is used by TestConductor in order
to generate html reports based on the execution results computed by the test
executable.

(Default: $CONFIGDIR/tc_rep.bat)

66

• rtc_testreport_script_populate:
If this tag is turned on, the content of the file specified in the tag
“rtc_testreport_script_filename” will be populated with the content of the tag
“rtc_testreport_script_content_tcase”, if a TestCase is executed, and with the
content of the tag “rtc_testreport_script_content_tcontext”, if a TestContext is
executed.

(Default: true)

TestConfiguration Dependency
Most TestConductor functions depend on properties and definitions in code generation
configurations. E.g. instrumentation during 'Updates TestCase/TestContext/TestPackage'
as well as TestArchitecture Update compute their results according to certain properties to
support test execution against different code generation configurations. After creation
there is a <<TestConfiguration>> dependency targeting a Rhapsody
<<TestingConfiguration>> code generation configuration, located underneath
the TestContext.

The algorithm TestConductor uses to choose the appropriate configuration is as
following:

• If the currently active configuration is located in the same component as the
configuration targeted by the <<TestConfiguration>> dependency of the
TestContext is a <<TestingConfiguration>>, the currently active
configuration will be used.

• Otherwise the configuration targeted by the <<TestConfiguration>>
dependency (Default TestingConfiguration) of the TestContext will be used.

One can switch between the code generation configurations by switching the active
Rhapsody configuration from those configurations in the same component as the default
TestingConfiguration.

If no <<TestConfiguration>> dependency exists, an error message is issued if the
active code generation configuration is not stereotyped
<<TestingConfiguration>>. If the active code generation configuration is
stereotyped <<TestingConfiguration>>, TestConductor will try to perform the
desired action with the active code generation configuration without further checking if
the active configuration is suitable for the TestArchitecture.

Execution Results
After the test executable has been built, individual TestCases, entire TestContexts or
TestPackages can be executed. When invoking a TestCase from within Rhapsody,
TestConductor calls the script specified in the <<TestingConfiguration>> tag
“rtc_testexecution_script_filename” that actually calls the test executable with the
parameters that select the TestCase that shall be executed. The chosen TestCase is
executed, and after termination the results are dumped into the result file specified in the
<<TestingConfiguration>> tag “rtc_result_filename”. However, this result file
only contains the raw results, i.e., the outcome of the assertions that have been executed

67

during test execution. In order to generate a complete test execution report based on these
raw results, TestConductor uses the tool “repgen”. After test execution, when the raw
results have been computed by the test executable, TestConductor calls the script that is
specified in the tag “rtc_testreport_script_filename”. This script actually calls repgen with
the correct parameters in order to generate both a xml report and a html report that shows
the detailed test results. The generated xml report is only used internally by
TestConductor in order to present the execution results in the test execution GUI when
working within Rhapsody. In summary, in assertion based testing, test execution and test
reporting is a process separated into 2 steps:

• TestCases are executed by calling the test executable with the correct parameters.
The test executable computes raw test results.

• Based on the raw test results, a call of the repgen tool with the correct parameters
generates readable html reports based on these raw results.

Both of these steps can either be done from within Rhapsody (the same way as for
animation based testing) or outside of Rhapsody.

Performing result verification for TestCase execution
When operating in assertion based testing mode, TestConductor provides the option to
perform a so-called result verification after TestCase execution. This feature is turned on
if the tag “ResultVerification” of the TestingConfiguration is turned on. When result
verification is turned on, after TestCase execution TestConductor checks if the raw results
written to the result file by the test executable is consistent with the graphical behavior
description in Rhapsody (either as sequence diagram, statechart, or flowchart). For a
behavior description provided as plain code no result verification is performed. For
graphical behavior description provided as a sequence diagram, TestConductor populates
the model with a statechart that represents the possible allowed execution sequences
specified in the sequence diagram. The result verification check made by TestConductor
is independent from Rhapsody’s code generator, and can be used in order to detect defects
of Rhapsody’s code generator that may influence the TestCase execution results. By using
result verification, TestConductor makes sure that the test execution results computed by
TestConductor are ALWAYS correct, even in case of errors in Rhapsody’s code generator
that may affect the correctness of the testing source code that is used to build the test
executable. The result verification is able to detect e.g. the following potential code
generation problems that may influence the test execution result:

• The code generator wrongly ignores transitions or states in a statechart

• The code generator wrongly takes additional transitions in a statechart

• The code generator fires statechart transitions in wrong order

• The code generator wrongly ignores transitions or actions in a flowchart

• The code generator wrongly takes additional transitions in a flowcharts

• The code generator fires flowchart transitions in wrong order

When result verification is turned on (by default), the generated html test execution result
always contains the information if result verification was enabled or not, and if it was
successful or not. In case result verification was enabled and it was not successful, the
TestCase status is automatically set to “Error”.

68

Figure 8: Test Result Report with Result Verification Information

TestCase Execution
In order to execute a TestCase, the TestCase has to be updated (for details of the update cf.
section Model Population – Create Driver Operations and StubOperations on page 48) and
build:

• The context menu on TestCase, TestContext and TestPackage offers 'Update
TestCase', 'Update TestContext' and 'Update TestPackage',
respectively.

Definition of this functionality is hierarchical: 'Update TestCase' instruments
the TestContext according to the needs of the individual TestCase. 'Update
TestContext' is based on updating all TestCases belonging to the TestContext,
while 'Update TestPackage' is based on updating all TestContexts and
TestPackages contained in the TestPackage to be updated.
TestConductor may issue warnings and errors during update. Warnings and errors
will appear in the 'Log'-tab off the output window.

• The context menu offers 'Build TestCase', 'Build TestContext' and
'Build TestPackage' on TestCase, TestContext and TestPackage,
respectively.

69

By default, building TestCase/TestContext/TestPackage performs an up-to-
dateness check before building and prompts for ok if a an update is considered
necessary before building. The up-to-dateness check can be turned off by
unchecking tag rtc_testexecution_uptodate_check of the concerned
<<TestingConfiguration>> code generation configuration.
Note that invoking the build from the context-menu is not the same as invoking
regenerate and build for the active code generation configuration in the Rhapsody
user interface or 'Code' menu: TestConductor requires some additional
information for result verification and a configuration header
TestConductorControl.h configuring basic TestConductor functionality. This
required information will only be generated and written when using the context-
menu build commands.

• The context menu offers 'Execute TestCase', 'Execute TestContext'
and 'Execute TestPackage' on TestCase, TestContext and TestPackage,
respectively.
Again, this functionality is hierarchically based on executing a single TestCase
very similar to update and build).

Test Execution Dialog for code, flow chart, startechart based tests
Flow chart, code, and statechart TestCases are merely code based TestCases, because
TestConductor uses the code generation capabilities of Rhapsody’s code generator. The
execution dialog enables you to activate the actual test execution and displays the test
results.

If you have modified your SUT or your TestContext, you must rebuild the code of the
TestContext before you start actual test execution.

Execute any TestCase by using the context menu entry 'Execute TestCase'. The
TestConductor execution dialog will open, and the TestCase execution will be started.

Test Execution Dialog
TestConductor displays the assertions defined in a code, flow chart, or statechart TestCase
at run-time of the TestCase. During test execution new assertions are listed as soon as they
are reached and checked by TestConductor. Each line in the dialog displays information
about one particular assertion including the final results, as shown in the following figure.

Figure 9: Test Execution Dialog for Code-, Flowchart- and Statechart
TestCases

70

After the TestCase execution has been terminated you can analyze the results of executed
assertions.

Test Information
TestConductor displays information to analyze the test results. The information columns
are as follows:

• Name—Displays the name of the assertion checked by TestConductor during test
execution.

• File/Iteration—Shows information about the source file name in which the
TestConductor assertion is specified. If a SD TestCase is executed, it shows the
iteration number of the SDInstance.

• Line/Progress—Shows information about the code line within the file in which
the assertion is specified. If a SD TestCase is executed, it shows the progress of
the SD instance.

• Result—Shows the result of the assertion. The possible values are PASSED and
FAILED.

Double clicking an individual assertion or invoking 'Show Assertion' on an assertion in the
execution dialog will highlight the assertion in their model context.

Controlling TestCase execution
The TestCase execution dialog provides several functions that can be used to control the
TestCase execution. The functions are available by pressing one of the icons in the top
right corner of the execution dialog.

Test Execution Dialog for sequence diagram based tests
The execution dialog enables you to activate the actual test execution and displays the test
results. You can use test results in order to generate sequence diagrams for further
regression testing or in order to prepare documentation.

If you have modified your SUT or your TestContext, you must rebuild the code of the
TestContext before you start test execution.

Context menu entry 'Execute TestCase' of a selected TestCase opens the execution dialog.
For a sequence diagram that is exclusively referenced by only one TestCase, the execution
dialog can alternatively be opened using the context menu entry 'Execute TestCase of
TestScenario' of the selected sequence diagram. After selecting 'Execute TestCase', the
execution dialog opens and the TestCase execution starts.

Test Execution Dialog
During TestCase execution, the test execution information is displayed in the test
execution dialog.

71

Test Information
In the execution window, TestConductor displays information to analyze the test results.
The information columns are as follows:

• Name—Shows the list of all run-time instances in the order of their appearance in
the test. You can activate sequence diagram instances sequentially (one after
another) or in parallel (independently).

• Status—Shows the current states of run-time instances during test execution. The
possible values are “NOT ACTIVE”, “ACTIVE”, “PASSED”, and “FAILED”. In the
example, the entire test executes automatically, until it eventually shows the final
result “(Status – FAILED)”, because TestConductor found an error.

• File/Iteration—In assertion based testing mode, TestCases can't be iterated.
Hence Iteration is always 1 in assertion based testing mode. For individual
assertions as in the Detailed Assertion Information of SD TestCases or the user
defined assertions of Code TestCases, column File/Iteration shows the file in
which the respective assertion is located.

• Line/Progress—Shows the percentage of message actions that passed
successfully through the tested sequence diagram instance during test execution. A
message action is one of the following:

◦ Event sending

◦ Internal event consumption

◦ Operation call

◦ Condition mark validation

For example, every event arrow in a sequence diagram potentially specifies two ordered
message actions. It depends on the source and origin of a message (SUT or
TestComponent) whether sending or reception of the message can be instrumented or not
(cf. section Influencing DriverOperation and StubOperation Generation on page 119 ff).
TestConductor only counts the instrumented message ends for the progress counter.
TestConductor displays the progress as “percentage X/Y”. The X stands for the number of
instrumented actions that passed; Y stands for all the instrumented actions belonging to the
sequence diagram.

72

Figure 10: Test Execution Dialog for SD TestCases

Displaying Test Results by witness scenarios

After execution of a TestScenario based TestCase, 'Show As SD' can be invoked from the
execution window to generate and show a witness TestScenario of the execution.

On invoking “Show as SD”, TestConductor automatically adds a color coded TestScenario
in the model to the failed TestCase.

The resulting witness can be used for failure analysis.

See section Failure Analysis on page 132 ff for more information about failure analysis.

Automatically adding witness scenarios to the model for failed SDInstances
Sometimes it is useful that SDs showing failed SDInstances are added automatically to the
model after TestCase execution, e.g. for documentation purposes or if TestCases are
executed in batch mode and failed TestCases are analyzed later.
In order to do this in animation based testing mode, property
“TestConductor.TestCase.CreateSDForFailedSDInstance” can be switched on. Assertion
based testing mode ignores this property. Instead, tag
CreateWitnessScenarioForFailedSDTestCase of the
<<TestingConfiguration>> can be used to create witness scenarios for failed SD
TestCases executed for this configuration.

Now, after executing a TestCase with the tag switched on in the active code generation
configuration, TestConductor automatically adds a scenario to the TestCase showing the
reason of the TestCase failure.

Abort Test Execution
In order to abort a running test either click the stop icon in the Rhapsody tool bar or click
the abort icon in the test execution window.

Execution Timeout
In assertion based testing mode, in order to define a timeout for TestCases, the scheduler
that actually starts and stops the TestCase execution can be modified. By default, a
standard scheduler that is auto generated for a TestArchitecture has the following
structure:

73

Figure 11: Unmodified TestCase
Scheduler Statechart

In order to define a TestCase timeout that works for all executed TestCases, add the
following transition to the scheduler with the timeout value you want to have for your
TestCases. In the depicted sample, we choose a timeout value of 3 seconds:

74

Figure 12: Introducing TestCase
Timeout Transition

Alternatively, also property
TestConductor.TestCase.ExecutionIdleTimeout (Default 600 (seconds))
can be used to define a timeout for an individual TestCase. Note, that this is the only
TestConductor.TestCase – property on TestCases that is regarded by assertion
based testing mode.

Test Execution Report
After the execution of a TestCase has finished and the execution dialog has closed, an
execution report is written into a HTML file. This file is added to the TestCase as a
controlled file.11 If a report file already exists it is overwritten, only the report of the last
execution is stored in the model. If a TestCase is executed for multiple code generation
configurations, for each configuration a separate test execution report is stored in the
model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

TestConductor also stores a tag Verdict below the linked report file, which stores the result
of the TestCase execution.

Possible values are: "Passed", "Failed", "Aborted", "Timeout" and "Undefined" and
“Error”.

A double click on the test result in the browser opens the linked HTML test report12.

11Note that with the property TestConductor.Settings.ReportLocation (see page 99) a user can specify a dedicated
report location)
12Open policy for html documents can be influenced by properties Model.ControlledFile.OpenPolicy and
Model.ControlledFile.OpenCommand

75

Debugging TestCases
When a TestCase fails one can use TestConductor’s debugging capabilities to analyze the
reason for the fail. “Debugging mode” in the TestCase execution window can be turned on
by pressing the button displaying a bug:

Figure 13: Debugging Button in Test Execution Window

After turning on debugging mode, one can restart the TestCase, e.g. by pressing the “Start”
icon in the execution window. In contrast to normal test execution mode, in debugging
mode the test execution does not progress automatically but can be controlled by using
Rhapsody’s animation toolbar. TestCase execution can then be controlled “Go Step”,
“Go”, “Go Idle”, “Go Event” and “Go Action” commands in the animation toolbar. In the
execution window, one can see the current progress of the TestCase, and in parallel
Rhapsody’s animation features can be used (e.g. animated sequence diagrams or animated
statecharts) to inspect the model during execution of the TestCase. Besides the Go-
commands, also all other animation commands are available, e.g. one can add tracer
commands to the command prompt as for example “trace #all all” to trace almost
everything during execution.
Debugging TestCases is available only if the test application was built with animation
instrumentation.
Debugging a TestCase is possible only when executing a single TestCase. When executing
a TestContext or TestPackage the Debug button is disabled (and switched off).

The TestConductor Tutorials provide exercises on debugging TestCases.

TestContext Execution

Starting Test Execution
One kind of batch execution is the execution of a complete TestContext. It will then
execute all TestCases belonging to a TestContext.

• Right-click on the TestContext and select 'Update TestContext' from the context
menu. This updates all necessary driver and StubOperations derived from the
defined sequence diagram TestCases within the TestContext.

• Right-click on the TestContext and select 'Update TestContext' from the context
menu. This re-generates the necessary code for all elements of the
TestArchitecture and starts the compile and link process for the TestArchitecture.

• Right-click on the TestContext and select 'Execute TestContext' from the context
menu. This starts the batch execution for all defined TestCases within the
TestContext.

76

• If the user selects a TestContext and invokes its execution, all TestCases of this
TestContext are executed in a sequence.

Figure 14: Test Execution Window for TestContext Execution

Stopping Test Execution
To terminate the execution of a TestContext or a TestPackage, press the abort icon in the
test execution window.

Execution Timeout
The testing profile defines a global timeout, which can be overwritten for every
TestPackage, TestContext and TestCase. This default value is 600 seconds.

You may define a timeout for this batch mode execution of TestCases individually per
TestCase. This can be done via the property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this TestCase is interrupted and the next TestCase is
started. In this case, this TestCase will be marked as “timeout” in the result report.

Ordering of TestCases
The order of the TestCases inside the TestContext (similar to the “Edit Operations Order”
in the Rhapsody browser) can be changed. In this way you can influence the execution
order of the TestCases.

77

Per default the TestCases are sorted and executed in alphabetical order.

Test Execution Report for TestContext
After execution of each TestCase its result HTML report is written. The file is added to the
TestCase as controlled file.13

After execution of all TestCases an execution report of the whole TestContext is written
into an HTML file. The file is added to the TestContext as controlled file.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a TestCase or TestContext is executed for multiple code generation
configurations, for each configuration a separate test execution report is stored in the
model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

TestPackage Execution

Starting Test Execution
One kind of batch execution is the execution of a complete TestPackage. It will then
execute all TestCases underneath all TestContexts belonging to a TestPackage.

• Right-click on the TestPackage and select 'Update TestPackage' from the context
menu. This updates all necessary driver and StubOperations derived from the
defined sequence diagram TestCases within the TestPackage.

13Note that with the property TestConductor.Settings.ReportLocation (see General Properties on
page 99) a user can specify a dedicated report location)

78

Figure 15: Ordering of TestCases

• Right-click on the TestPackage and select 'Build TestPackage' from the context
menu. This re-generates the necessary code for all elements of the
TestArchitectures and starts the compile and link process of all TestArchitectures.

• Right-click on the TestPackage and select 'Execute TestPackage' from the context
menu. This starts the execution of all defined TestCases within the TestPackage.

Executing a TestPackage is almost like the execution of a TestContext, except the
following difference:

• If one TestContext cannot be executed, this TestContext is skipped, the reason for
the problem is written to the result report, and the next TestContext is executed.

Stopping Execution
The abort icon in the test execution window aborts the execution of a TestContext or a
TestPackage..

Execution Timeout
The testing profile defines a global timeout, which can be overwritten for every
TestPackage, TestContext and TestCase. This default value is 600 seconds.

A timeout for execution of TestCases can be defined individually per TestCase via the
property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this TestCase will be interrupted and the next TestCase
will be started. In this case, this TestCase will be marked as “inconclusive” in the result
report.

Test Execution Report for TestPackage
After the execution of all TestCases, the execution report is written into an HTML file.
This file is added to the TestPackage as a controlled file.14 A report for each TestContext
and TestCase that has been executed was also created during execution.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a TestCase or TestContext or TestPackage is executed for multiple code
generation configurations, for each configuration a separate test execution report is stored
in the model. This way the test results with different settings (debug, release) or from
different execution environments (host, target) can be compared.

Computing Model Coverage during Test Execution
(see also Sample-models:

14Note that with the property TestConductor.Settings.ReportLocation (see General Properties on
page 99) a user can specify a dedicated report location)

79

• CSamples/TestConductor/CModelCodeCoverage

• CppSamples/TestConductor/CppModelCodeCoverage

)

When executing TestCases, i.e., either individual TestCases, a TestContext or a
TestPackage, TestConductor provides the possibility to compute which model parts of the
SUT are executed during the execution of the TestCases. This information is provided by
an HTML report that is created and added to the model after the execution of the
TestCases. The report contains information about accumulated coverage of states,
transitions, events and operations (except constructors and destructors) of all SUT classes
used in the TestArchitecture.

Computing Model Coverage for single TestCases
The <<TestingConfiguration>> stereotype provides tag
“ComputeModelCoverage” for switching on model coverage measurement.

If the tag is switched on for a <<TestingConfiguration>> code generation
configuration, then each TestCase, TestContext and TestPackage execution for this
configuration will generate a model coverage report in addition to the execution report.
The model coverage report will be added to the model in the same location as the
execution report15. If a TestCase is executed for multiple code generation configurations,
for each configuration with enabled model coverage measurement a separate model
coverage report will be stored in the model.

Coverage Items
Model elements which are subject to the coverage are the operations, event receptions and
elements in behavior specifications (statecharts or activities) of the classes for which
coverage is measured (for the selection of classes for the coverage measurement see
section 'Choosing the Coverage Kind for Model Coverage'). If an operation is specified by
a behavior diagram16, this behavior is considered as well. Of a behavior all vertexes and
transitions contained in the behavior are considered. If a coverage item is marked as
'covered' this means that the corresponding code generated for the model element has been
traversed during the execution of the test, e.g. an operation has been called or a state in a
statechart has been reached17. The coverage information is from the model view, there is
no information about how much of the user code has been traversed, but only that the
model element was used. For a code view with detailed information about the coverage of
the generated and the user code you need to use code coverage.

Limitations:

• Overridden operations can not be distinguished

• Overloaded operations can not be distinguished

15Note that with the property TestConductor.Settings.ReportLocation (see section General
Properties on page 99) a user can specify a dedicated report location)
16For operations only token oriented activities are allowed.
17For some statechart and activity elements which are directly dependent of other elements Rhapsody does not
generate animation messages which are used by TestConductor to measure the coverage. For these elements
TestConductor applies a set of dependency rules to derive the coverage.

80

• Model elements for which animation is switched off appear as 'not covered' even
if they were used in the test execution.

Choosing the Coverage Kind for Model Coverage
TestConductor supports four different kinds of coverage measures, which can be chosen
using tag “CoverageKind” of the <<TestingConfiguration>> code generation
configuration.

• SUT flat (Default): Only coverage of the top level class of the SUT is measured,
i.e. states, transitions, and operations of parts of the SUT are not considered.
Coverage of model elements of TestComponents is also not measured.

• SUT hierarchical: Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically
regarded for coverage measure. Coverage of model elements of TestComponents
is again not measured.

• TestContext flat: Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the TestContext, i.e. all
states, transitions, and operations of the direct parts of the TestContext are
considered.

• TestContext hierarchical: all states, transitions, and operations in the hierarchical
structure of the TestContext are considered in coverage measure.

Despite choosing the coverage kind in general, the coverage scope can be fine-tuned by
adding <<considerForCoverage>> and <<considerNotForCoverage>>
dependencies on the respective model elements (classes, objects and files) to the TestContext.

Model Coverage Measurement and Animation Instrumentation
TestConductor uses the Rhapsody animation to determine the coverage of model elements,
therefore usage of model coverage requires the 'Instrumentation Mode' of the
configuration set to 'Animation'. With this setting the Rhapsody code generation
instruments the code with additional animation code, TestConductor listens at runtime to
animation messages sent by the application and uses these messages to determine the
model coverage. There are some elements for which the Rhapsody code generation does
not generate explicit animation messages because the code is included in a block of an
element with animation message (e.g. in transition chains with junction connectors only
the first transition is annotated with animation code, the code of the other transitions is
included in the code block of the first transition). For these scenarios TestConductor
applies a set of dependency rules to derive the coverage of these elements from the
coverage of elements with animation message.

Traceability of Coverage Items
The html report contains links for the navigation from the report to the Rhapsody model:
When clicking on the link of an operation, event, state or transition, the corresponding
model element is highlighted in the Rhapsody browser.
Highlighting model elements will work only if JavaScript is enabled in the browser and no
pop up blocker is active. For Internet Explorer 7 and up, protected mode has to be disabled
(Tools->Internet Options->Security).

To highlight the model element, a JavaScript script is used which sends a command to the
running Rhapsody application using a TCP/IP port. Per default, port number 50001 is used
for this communication. If this port is not available or when running different instances of
Rhapsody on the same machine, the port number can be changed so each running instance

81

of Rhapsody can communicate with the individual model coverage report. To do this, open
the TestConductor main dialog by Rhapsody menu Tools->Test Conductor, and change the
“Port number for coverage reports” and click OK. After this, double click the
ModelCoverageResult in the Rhapsody model to open the report with the modified port
number. Allowed port numbers are between 1024 and 65535.
To change the port number when the report is already opened in the browser, change the
port in the TestConductor main dialog and also in the edit field in the html report to the
same number.

A different default port number can be defined using the environment variable
PORTSNOOPERPORT: Set this variable to the new default number before starting
Rhapsody.

Computing Requirement Coverage
(see also TestingCookbook:

• “How can I compute requirement coverage?”

)

Computing Requirement Coverage for TestCases and TestContexts
Beyond measuring and reporting model element coverage for executed TestCases and
TestContexts, TestConductor offers also the measurement of the dynamic requirement
coverage for the executed TestCases and TestContexts.

Precondition for measuring requirements coverage by individual TestCases and
TestContexts is the linkage of operations, states and transitions with requirements in the
Rhapsody model. Stereotyped dependencies targeting requirements can be added to model
elements in order to establish e.g. traceability or to express that certain model elements
contribute to establishing a particular requirement.

Requirement coverage measurement is enabled by setting both tags
“ComputeModelCoverage” and “ComputeRequirementCoverage” on the
<<TestingConfiguration>> code generation configuration.

TestConductor optionally regards such dependencies in order to calculate requirement
coverage based upon model coverage information. The user can define the stereotypes to
be considered in requirement coverage calculation using property
ModelBasedTesting.Settings.StereotypesForDependenciesTo
Requirements of the code generation configuration. Consideration of multiple
stereotypes can be achieved by listing the stereotypes in a comma separated list. Per
default, stereotypes trace and satisfy are regarded.

TestConductor provides also two properties for the user in order to configure the
requirement coverage scope for TestConductor. So the user can specify the packages (and
their sub-packages), whose requirements shall be regarded at the requirement coverage
calculation within the property 'ModelBasedTesting.Settings.Requirement
CoverageRequirementsScope' of the code generation configuration. The setting of
multiple packages (and their sub-packages) can be archived via a comma separated list of
the fully qualified package paths, e.g.
"RequirementsAnalysisPkg::Requi

82

rementsPkg::SecSysReqs,TestPkg::RequirementsPkg::SecSysTestR
eqs".
The second property 'ModelBasedTesting.Settings.Requirement
CoverageRegardedTags' of the same code generation configuration, specifies via a
"requirement tag with name and value" those requirements within the pre-selected
packages, who shall be considered at the requirements coverage calculation. Again the
setting of multiple "requirement tags with name and value" can be archived via a comma
separated list, e.g.
"RequirementType=functional,RequirementType= additional".

TestConductor provides additionally two properties for the user in order to configure the
model elements scope for the TestConductor requirement coverage calculation. So the user
can specify the packages (and their sub-packages), the classes (blocks) or actors, whose
model elements shall be regarded at the requirement coverage calculation within the
property 'ModelBasedTesting.Settings.RequirementCoverageModel
ElementsScope' of the code generation configuration. The setting of multiple packages
(and their sub-packages), classes (blocks) or actors can be archived via a comma separated
list of the fully qualified package, classes (blocks) or actor paths, e.g.
"DesignSynthe
sisPkg::SecSysControllerPkg::SecSysController,ActorPkg::Card
ReaderEntry".

The second property 'ModelBasedTesting.Settings.Requi
rementCoverageExcludedMetaClasses' of the same code generation
configuration, specifies via an "excluded meta classes tag with name and value" those
meta classes within the pre-selected packages, classes (blocks) or actors, who shall be
excluded from (not considered at) the requirements coverage calculation. Again the setting
of multiple "excluded meta classes tags with name and value" can be archived via a
comma separated list, e.g.
"Attribute,Class,Event".

TestConductor distinguishes two kinds of requirement coverage by TestCases:

• full coverage

All model elements depending on a particular requirement (w.r.t. specified
dependency stereotypes) are covered by a TestCase or TestContext. The TestCase
or TestContext then fully covers the requirement – a dependency stereotyped
<<fully>> on the requirement is added to the Requirement Coverage Result
Report of the TestCase or TestContext.

• partial coverage

Not all model elements depending on a particular requirement (w.r.t. specified
dependency stereotypes) are covered by a TestCase or a TestContext. The
TestCase or TestContext then only partially covers the requirement – a
dependency stereotyped <<partially>> on the requirement is added to the
Requirement Coverage Result Report of the TestCase or TestContext.

Transitivity of Dependencies (Refinement of model elements and
requirements)

Via the TestConductor property "ModelBasedTesting.Settings.Requirement
CoverageTransitivityOfDependencies" the support for the refinement of

83

model elements and the refinement of requirements (for the TestConductor requirement
coverage calculation) can be switched on or off.

The figure above shows an application for the refinement of requirements and model
elements.

If transitivity of dependencies is switched off, ME_a1 is connected to Req_1.2, ME_a2 is
connected to Req_2.2 and ME_a3 is connected to Req_2.3. But if transitivity of
dependencies is switched on, the refinements of ME_a1 by ME_b1 and of ME_a3 by
ME_b2 and ME_b4 are considered during the requirement coverage calculation. This
means, the requirement Req_2.3 for example is only fully covered by a TestCase or a
TestContext if both model elements ME_b2 and also ME_b4 are covered by this TestCase
or TestContext (if class B is within the model element scope).

If transitivity of dependencies is switched off the connections between the requirements
Req_2.1, Req_2.2 and Req_2.3 to the requirement Req_2 are not considered. But if
transitivity of dependencies is switched on the requirement Req_2 is refined by the
requirements Req_2.1, Req_2.2 and Req_2.3 and these refinements are considered at the
requirement coverage calculation. This means, the requirement Req_2 is only fully

84

Figure 16: Transitivity of Dependencies (Refinement of model elements and
requirements)

covered by a TestCase or a TestContext, if the requirements Req_2.1, Req_2.2 and
Req_2.3 are as well fully covered by this TestCase or TestContext (if Req_2 is within the
requirements scope).

An example explaining the transitivity of dependencies related to the handling of refined
model elements: A model element "A1" (class A) has a satisfy dependency to a
requirement "req_17". And there is a refinement of the model element "A1", as the two
model elements "B1" and "B2" (class B) have both a trace dependency to the model
element "A1". And in the same way model element "B1" is refined by the model elements
"C1" and "C2" (class C) and model element "B2" is refined by the model elements "C3"
and "C4" (class C). If the property "RequirementCoverageTransitivityOfDependencies" is
set and "RequirementCoverageModelElementScope" is only set to "class B", then the
requirement "req_17" is fully covered by a TestCase, if the TestCase covers all of the
model elements "B1" and "B2". But if the TestCase covers only one of the model elements
"B1" and "B2", then the requirement "req_17" is only partially covered.

An example explaining the transitivity of dependencies related to the handling of refined
requirements: A model element "A1" (class A) has a satisfy dependency to a low level
requirement "req_LL_11". And this low level requirement "req_LL_11" has on his part
again a satisfy dependency to a high level requirement "req_HL_01". A model element
"A2" (class A) has a satisfy dependency to a low level requirement "req_LL_22". And this
low level requirement "req_LL_22" has on his part again a satisfy dependency to a high
level requirement "req_HL_01". If the property
"RequirementCoverageTransitivityOfDepen- dencies" is set and the high level
requirement "req_HL_01" is within the requirement scope, then this high level
requirement "req_HL_01" is fully covered by a TestCase, if this TestCase covers both the
low level requirements "req_LL_11" and also "req_LL_22" fully. But if a TestCase covers
either the low level requirement "req_LL_11" or "req_LL_22" only partially, then this
high level requirement "req_HL_01" is also only partially covered by this TestCase.

Computing Code Coverage
(see also Sample-models:

• CSamples/TestConductor/CModelCodeCoverage

• CppSamples/TestConductor/CppModelCodeCoverage

)

Besides computing model coverage of TestCases, TestConductor can also compute the
achieved code coverage of TestCases (for C and C++ only). In order to turn on code
coverage, the tag “ComputeCodeCoverage” of the TestingConfiguration must be
turned on'.

If the tag is checked, when building TestCases TestConductor instruments the test
executable s.t. during test execution code coverage information is computed. After
TestCase execution, the computed results are added as an html report to the model. The
result report both contains summary information (e.g. percentage of statement coverage,
decision/condition coverage, modified condition/decision coverage (MC/DC)) as well as
detailed information about each source line. If a TestCase is executed for multiple code
generation configurations, for each configuration a separate code coverage report is stored
in the model.

85

Please note, only implementation files are instrumented for computation of code coverage.
For code in specification files, for example C++ inline functions, no coverage information
is generated and the coverage report does not contain information if the code in
specification files has been covered by the tests or not. The Source Code section of the
code coverage report contains a list of not instrumented functions in specification files.
For C++, state_IN methods per default are generated inline into the specification files. To
be able to compute coverage information for state_IN methods, the property
CPP_CG::Class::IsInOperation can be set to virtual to generate these methods
into the implementation file.

Similar to model coverage, four different kinds of coverage measures are supported and
can be chosen by setting the tag “CoverageKind” of the TestingConfiguration. For
details, see previous section Choosing the Coverage Kind for Model Coverage on page 81.

Additional options for code coverage can be specified using a xml file. The location of the
file has to be entered in the tag “CodeCoverageOptionsFileName” of the
TestingConfiguration. In this tag, either the full path name of the options file or its path
relative to the location of the Rhapsody project file can be specified.

The options file can be used to

• Define additional implementation files which shall be instrumented for code
coverage. Either the path of the file or the model element can be defined:

◦ The files can be defined by the absolute path or by the path relative to the
code generation main folder (location of the Makefile).
Note: Supported are only files generated for model elements.

◦ Model elements can be defined by their full model path.

• Specify include paths.

• Specify defined macros.

• Specify details of the used compiler and compile environment.

A template of the options file showing the supported options is located in the
TestConductor installation folder: File “TCCodeAnnotationOptions.xml”.

TestConductor code coverage criteria
TestConductor reports code coverage according to different kinds of coverage criteria.
Depending on the coverage criteria, one coverage item comprises of one or more
individual coverage goals. TestConductor reports if a coverage item is not covered,
partially covered (at least one of its coverage goals has been covered) or completely
covered (all of its coverage goals have been covered).

• Statement Coverage
A statement is a statement in the sense of the C/C++ definition of this term. A
statement is considered as covered if it has been called during execution of the
tests.

• Function Coverage
A function is a function or operation in the generated code. A function is
considered as covered if it has been called during execution of the tests. To fulfill
this coverage criteria, it is not necessary the function or operation has returned.

86

• Condition Coverage
In order to define what conditions and decisions are, a notion of atomic Boolean
expressions is needed. Those atomic Boolean expressions are built using relational
operators such as < (less than), > (greater than), == (equality), and so on.
Examples for atomic Boolean expressions are x > 7, (z + 1) != y, and also x < y <
z.
TestConductor treats atomic Boolean expressions and negations of these
expressions as conditions. Therefore, not only expressions like x > 7, z + 1 != y
are conditions but also expressions like !(x > 7) or !b. Note that, in general,
conditions can not contain other conditions. This particularly means that
expressions like !(a < 7) or (x < y < z) induce single conditions. As a special rule,
TestConductor ignores constant expressions. For instance, expression 1 < 5 will
not be reported as separate condition, since it consists of literals only and the
value of the relational operator is constantly true.
If a condition appears more than once in a Boolean expression, each occurrence is
a distinct condition. Hence, in an expression “x == 5 && y ==z || x == 5 && y <
0”, there are four conditions, namely “x == 5”, “y == z”, “x == 5” and “y < 0”.
Each condition comprises of two coverage goals, a condition is completely
covered by the tests only if both coverage goals are covered:

1. The condition is true

2. The conditions is false

• Decision Coverage
Intuitively, decisions are built on conditions, this means, decisions consist of one
or more conditions. These conditions are connected using the Boolean connectives
in C++ and C, namely, && (Boolean and), || (Boolean or), ! (Boolean negation)
and, as a special rule, ^ (bitwise-xor). So, for example, the following Boolean
expressions are decisions:
x < 7 && a == b
x ^ y || !(x == 7 && a+7 == 25)
Normally, in C++ or C programs, decisions are used as control expressions for
choice points such as if- or while-statements. TestConductor analyzes the
following statements for the occurrence of decisions:

◦ Control expression of if-statements

◦ Control expressions of iteration-statements while, do, and for

◦ The first operand of a conditional operator (cond ? x : y)

◦ Maximal Boolean expressions occurring in other statements such as
assignments, function call etc.

Note that if an expression meets both the characteristics of a decision and a
condition, for instance in a term if(a > b) ..., then TestConductor reports the
expression as decision only. From the above definitions for conditions and
decisions, we obtain the following special examples:

x = a ^ b /* a ^ b is a decision */

f(i && (ul1 || ul2)) /* i && (ul1 || ul2) is a
decision, i, ul1, ul2
are conditions */

87

Each decision comprises of two coverage goals, a decision is completely covered
by the tests only if both coverage goals are covered:

1. The decision is true

2. The decision is false

• Condition/Decision Coverage (C/DC)
In TestConductor, Condition / Decision Coverage (C/DC) is defined as follows.

◦ Every decision has taken all possible outcomes (true, false) at least once.

◦ Every condition appearing in a decision has taken all possible outcomes (true,
false) at least once.

This is a standard definition for C/DC. In the C++ and C language, expressions
are calculated short-circuit. This particularly means that Boolean expressions are
evaluated from left to right, and an evaluation terminates when the outcome of an
expression is determined. For example, evaluation of Boolean expression

x > y && z == c

terminates after traversing x > y if x is less or equal y, as the outcome of the entire
conjunction is obviously false. In this example, condition z == c is not evaluated
at all.
For coverage of conditions, TestConductor takes such short-circuit calculations
into account. This means that conditions can only be covered if evaluation reached
their respective position in the surrounding expression, this means. there is no
short-circuit until that position. In the above example, this means that condition z
== c can only be covered in states where x is greater than y.
For decision evaluation, short-circuit calculation also plays a fundamental role. As
the decision’s conditions are evaluated from left to right and calculation
terminates whenever the outcome of the decision is determined, one obtains a very
important relation between decisions and their enclosed conditions. As a condition
is traversed only if the outcome of its decision is not yet determined, the
condition’s evaluation can independently affect the decision’s outcome.
From the above explanations, two additional properties for the C/DC definition of
TestConductor can be stated, which are inherited from the short-circuit evaluation
policy:

◦ Conditions in a decision can only be covered if the decision’s outcome is not
yet determined from the short-circuit left-to-right calculation.

◦ From the short-circuit evaluation setting, a condition can independently affect
the decision’s outcome if the left-to-right calculation reaches that condition.

Each C/DC coverage item comprises of one or more individual coverage goals, a
C/DC coverage item is completely covered only if all its coverage goals are
covered.

• Modified Condition/Decision Coverage (MC/DC)
Modified Condition / Decision Coverage (MC/DC) was originally defined for
non-short-circuit evaluation languages such as ADA. In such languages, neither a
calculation order nor an early termination property was defined. Therefore, the
additional property – compared with C/DC – that “every condition in a Boolean
expression in the program has been shown to independently affect that
expression's outcome” required dedicated definitions suitable for non-short-circuit

88

evaluation languages. In particular, to show independence of the entire
expression’s outcome, it was defined to hold all conditions but the one of
interested fixed while toggling the relevant one. This was done to preclude effects
of other conditions to the expression’s outcome, masking the one of the relevant.
As described above, the evaluation-semantics for Boolean expressions in C++ and
C is short-circuit. This imposes a calculation order on such expressions and
defines an early termination property. In particular, as defined in TestConductor
conditions in a decision can only be covered if the decision’s outcome is not yet
determined from the short circuit left-to-right calculation. Obviously, this relaxes
the requirement to keep conditions fixed while focusing on the relevant one. In
other words, the short-circuit evaluation property ensures that conditions
independently affect the decision’s outcome.
As a conclusion, in a short-circuit setting as defined in TestConductor C/DC and
MC/DC induce the same tests to be performed in order to fulfill the respective
requirements. There are no additional test vectors needed when improving from
C/DC to MC/DC. This is why TestConductor does not offer a separate report
section for MC/DC, as this would be the same as for C/DC.

• Relational Operator
Consider the expression (i > 5) which may be erroneously implemented as (i >=
5). In this case, the wrong relational operator “greater or equal than” was chosen
in the code. In order to detect such faults it is not sufficient just to test the cases
where the relational operation became true and false, it is necessary to check the
“boundaries” of the relational operator. To detect the problem for the above
implementation, the following valuations for i need to be tested:

i Specification i > 5 Implementation i >= 5

4 False False

5 False True

6 True True

This table shows that a test run assigning value 5 to i would reveal the wrong
implementation. TestConductor checks that all needed tests needed for full testing
of relational operators have been run. This requires a boundary check for each
relational operator within the C++ or C code. The general form of this problem is
expressed by <expr1> <relop> <expr2> where <expr1> and <expr2> are arbitrary
expressions and <relop> is a relational operator (<, <=, ==, !=, >=, >).
An optimal boundary check is done by executing a set of stimuli vectors which
lead to evaluations of the relevant relational operator while covering all of the
following properties:

◦ P1: (expr1) – (expr2) > 1 (operation became true)

◦ P2: (expr1) – (expr2) < -1 (operation became false)

◦ P3: (expr1) – (expr2) == -1 (boundary check)

◦ P4: (expr1) – (expr2) == 0 (boundary check)

◦ P5: (expr1) – (expr2) == 1 (boundary check)

For each relational operator, TestConductor reports if the tests which have been
run perform an optimal boundary check. Each relational operator comprises of

89

five coverage goals, a relational operator is completely covered by the tests only if
all five coverage goals are covered:

1. The operation is true

2. The operation is false

3. (left-right) == -1

4. (left-right) == 0

5. (left-right) == 1

For an example that shows how to use code coverage for C, please try sample
“CModelCodeCoverage” in the folder
<Samples/CSamples/TestConductor/CModelCodeCoverage>.

For an example that shows how to use code coverage for C++, please try sample
“CppModelCodeCoverage” in the folder
<Samples/CppSamples/TestConductor/CppModelCodeCoverage>.

Restrictions regarding applicability of code coverage computation can be found in the
document <Rhapsody install>/Doc/pdf_docs/CodeCoverage_Limitations.pdf.

Note: Computation of code coverage for Grey Box TestArchitectures does not filter the
instrumentation of the <<TestSUT>> for Grey Box testing. Code coverage is measured
for the executed code, i.e. the code that has been instrumented for Grey Box testing
purposes.

Command Line Execution
TestConductor can update, build, and execute TestCases, TestContexts or TestPackages
from the command line. Command line execution can either be performed by using the
command line feature of rhapsody.exe or by using rhapsodycl.exe.

Command Line Syntax for rhapsody.exe
You can use following syntax to execute tests from the command line:

 “<Rhapsody executable>” -cmd=open <model file>
-cmd=call "rtc TC_COMMAND TC_ELEMENT" -cmd=save –
cmd=exit

where TC_COMMAND is one of the following TestConductor commands

 update_build_execute

performs an update, then a build, and then an execute on the specified test
element.

 update_build

performs a build, and then an execute on the specified test element.

 update

90

performs an update on the specified test element.

 checkUpdateRequired

queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see below),
otherwise FALSE.

 build_execute

performs a build and then an execute on the specified test element

 build

performs a build on the specified test element.

 execute

performs an execute on the specified test element.

 clean_update_build_execute

performs a clean, then an update, then a build, and then an execute on the
specified test element.

 clean_update_build

performs a clean, then an update and then a build on the specified test
element.

 clean_update

performs a clean and then an update on the specified test element.

 clean

performs a clean on the specified test element.

and TC_ELEMENT is either “all” or the full path name of a TestCase, a
TestContext or a TestPackage.

TestConductor logs in the file “cl.log” in the project folder the command line actions
together with the result (SUCCEDED or FAILED for actions, TRUE or FALSE for
queries).

Note: -cmd=save needs to be defined in order to permanently update the link to the
HTML test result report (controlled file) and the Verdict tag under it. At this time
older test result files will not be overwritten, but a new file with an incremented
number will be created. In case the model will not be saved before exiting, still the
old or none result file will be referenced.

Examples:

• “<full Rhapsody path>\rhapsody.exe” -cmd=open D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call “rtc
update_build_execute
TPkg_CashRegister::TCon_CashRegister::tc_SimpleStart”

91

-cmd=save
updates, builds, and then executes the TestCase “tc_SimpleStart” of the model
CashRegister.

• “<full Rhapsody path>\rhapsody.exe” -cmd=open D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call
“execute TPkg_CashRegister::TCon_CashRegister” -cmd=save
executes the TestContext TCon_CashRegister of the model CashRegister.

• “<full Rhapsody path>\rhapsody.exe” -cmd=open D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call “rtc
build_execute TPkg_CashRegister” -cmd=save
builds and executes the TestPackage TPkg_CashRegister of the model
CashRegister.

Command Line Syntax for rhapsodycl.exe
If you run the command line version of rhapsody, rhapsodycl.exe, you can execute the
same TestConductor commands as for rhapsody.exe. In rhapsodycl.exe, the TestConducror
commands are invoked by specifying

 -cmd=call “rtc TC_COMMAND TC_ELEMENT”

in the command line prompt of rhapsodycl.exe (or in a file containing the list of
commands for rhapsodycl.exe). TC_COMMAND can be one of the following
TestConductor commands:

 update_build_execute

performs an update, then a build, and then an execute on the specified test
element.

 update_build

performs a build, and then an execute on the specified test element.

 update

performs an update on the specified test element.

 checkUpdateRequired

queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see below),
otherwise FALSE.

 build_execute

performs a build and then an execute on the specified test element

 build

performs a build on the specified test element.

 execute

92

performs an execute on the specified test element.

 clean_update_build_execute

performs a clean, then an update, then a build, and then an execute on the
specified test element.

 clean_update_build

performs a clean, then an update and then a build on the specified test
element.

 clean_update

performs a clean and then an update on the specified test element.

 clean

performs a clean on the specified test element.

and TC_ELEMENT is either “all” or the full path name of a TestCase, a
TestContext or a TestPackage.
TestConductor logs in the file “cl.log” in the project folder the command line
actions together with the result (SUCCEDED or FAILED for actions, TRUE or
FALSE for queries).

Examples (we assume that rhapsodycl.exe is already started):

 “> -cmd=call “rtc update_build_execute
TPkg_CashRegister::TCon_CashRegister::tc_SimpleStart”
updates, builds, and then executes the TestCase “tc_SimpleStart” of the model
CashRegister.

 “> –cmd=call “execute
TPkg_CashRegister::TCon_CashRegister”
executes the TestContext TCon_CashRegister of the model CashRegister

Note: TestConductor does not support rhapsodycl.exe on Linux.

Test Execution Report
After test execution all test reports are written in the same manner as described under
“TestCase Execution”, ”TestContext Execution” and “TestPackage Execution”.

TestCase Execution on Targets
In addition to executing TestCases on the host environment, TestCases can also be
executed on the target environment. The necessary steps are target environment specific
and are further described in the following documents:

• Testing_with_RTC_on_a_Linux_Target.pdf (Linux)

• Testing_with_RTC_on_a_VxWorks_Target.pdf (VxWorks)

93

• Testing with TestConductor on an Integrity Target.pdf (Integrity)

• Testing with TestConductor on a small target.pdf (generic environment)

94

Test Management
TestConductor is a fully integrated add-on solution for Rhapsody. All relevant test data
like the TestArchitecture, TestCases and their TestScenarios, test configurations and test
results are stored in the model. Navigation to all the elements can be done via the usual
capabilities of the Rhapsody browser.

Managing Test Data
With this tight integration you have all the possibilities you already know from other
elements like classes, package and so on, e.g.:

• Copy, paste, delete

• Create units for TestComponents, TestContext, SUT and TestComponentInstances

• Load / unload TestPackages, TestComponents, TestContext, SUT and
TestComponentInstances

• Requirements management

• Configuration management

• Documentation

Linking TestCase to Requirements
(see also TestConductor Tutorials:

• TestConductor_Tutorial_C.pdf

• TestConductor_Tutorial_Cpp.pdf

)

TestCases can be linked to their requirements which are defined in the model. This can be
done by using TestObjective to link model elements to the related requirements.

TestObjective is a new term on dependency.

A TestObjective can be added to a TestCase by right-clicking the TestCase in the browser
and choosing 'Add New->TestingProfile->TestObjective' from the context menu. A
dependency selection dialog will open and the respective requirement can be selected as
'Depends on' of the TestObjective.

The Rhapsody Testing Profile offers matrix layout 'TestRequirementCoverage' with
appropriate new term 'TestRequirementMatrix' on matrix view for documenting
requirement coverage by TestCases according to TestObjective relations.

95

Furthermore, the TestConductor addon provides templates for ReporterPLUS (see section
Generating Test Reports with Rhapsody ReporterPLUS on page 102) as well as for
Rhapsody Publishing Engine (see section Generating Test Reports with Rational
Publishing Engine on page 104) for report generation regarding requirement coverage by
TestCases according to TestObjective relations.

TestConductor Dialog
The TestConductor main dialog provides some global TestConductor settings and help
functions by selecting Tools > TestConductor from the Rhapsody tools menu:

The dialog offers the possibility to set some global TestConductor settings and to open
TestConductor’s tutorial by selecting Help > Tutorial. The global settings that can be
changed in this dialog are explained in the next section TestConductor Settings.

TestConductor Settings
TestConductor provides a range of global and also TestCase specific settings. The settings
are in most cases stored as properties in the model.

96

Figure 17: TestConductor Main Dialog

97

Figure 18: Properties - TestConductor

General Properties
TestConductor provides some general settings that change the general behavior of
TestConductor. These settings have to be done via properties on TestPackage level. Open
the Feature dialog of a TestPackage, select the Properties tab, switch in the dropdown
combo box View to All and navigate to the metaclass TestConductor::Settings

TestConductor::Settings::AcknowledgeApplyChanges

If this property is switched on, TestConductor requires an explicit acknowledge from the
user each time a SDInstance has been changed. If the property is switched off, changes of
SDInstances are acknowledged implicitly.

This property is irrelevant in assertion based testing mode.

TestConductor::Settings::CreateTestArchitectureMode

This property controls the behavior of the TestConductor function “Create
TestArchitecture”. If this property is set to “Standard”, each time “Create
TestArchitecture” is performed TestConductor creates a component and a configuration
for the newly created TestArchitecture using the default property settings for components
and configurations. If the property is set to “Advanced”, each time “Create
TestArchitecture” is performed TestConductor opens a dialog which allows to specify
from which of the existing components/configurations the property values of the newly
created component/configuration shall be derived. Furthermore, if the property is set to
“Advanced” and TestConductor::Settings::TestingMode is
“AssertionBased”, TestConductor offers the user a possibility to define the kind of each
TestComponent in the TestArchitecture to be created.

By default this property has the value “Standard”.

TestConductor::Settings::CreateTestArchitectureTransparency

98

Figure 19: Properties TestConductor.Settings

By default, TestArchitectures are created as 'BlackBox' architectures, i.e. the SUT is
only external communication of the SUT is observable for testing. Internal communication
such as self invocation of operations, communication among parts of the SUT is not
considered in sequence diagram TestCases.
If CreateTestArchitectureTransparency is set to 'GreyBox', then a copy of the selected
SUT will be created in the TestArchitecture that can be instrumented for testing purposes.
Testing such a grey box <<TestSUT>> replacement instead of the original SUT model
element enables TestConductor to instrument also the SUT model elements with
assertions, s.t. self messages and communication among parts of the SUT can be
considered in TestCases.

TestConductor::Settings::CreateTestArchitectureUsingGlobalOb
jects

Since Rhapsody 8.1.4, TestArchitecture creation can optionally use global objects instead
of parts for SUT classes and TestComponentInstances. Fundamental support for global
instantiation outside the TestContext gives way for grey box testing of implicit objects and
stubbing of implicit objects and in particular also <<Singleton>> objects. Note, that
parts of class can't be associated with global objects – at least, such associations can't be
instantiated using links, since such links would cross class boundaries of the composite
parent class of the involved parts. On the other hand 'classical' TestArchitectures using part
instantiation, can't deal with implicit objects and singleton objects in TestComponent
roles. Thus, it is recommended to use global object instantiation if implicit objects or
singleton objects are involved in the testing process.

TestConductor::Settings::MapSDToTestArchitectureMode

This property controls the behavior of the TestCase wizard when a TestCase is created for
an existing sequence diagram. If the value of this property is set to “Strict”, only those
TestArchitectures are considered to be suitable for the new TestCase that contain at least
on SUT instance of one of the classes of the life lines of the original sequence diagram. If
the value of this property is set to “Weak”, also all TestArchitectures are considered to be
suitable that does not contain a SUT instance of one of the classes of the life lines of the
original sequence diagram, but for which the same message exchange is possible as in the
original sequence diagram.

TestConductor::Settings::overwriteTestContextDiagram

This property controls the creation of TestContextDiagrams when performing an “Update
TestArchitecture” on a TestContext. If this property is set to “Never”, each time “Update
TestArchitecture” is performed a new TestContextDiagram is added to the existing
TestContextDiagrams, i.e., existing TestContextDiagrams are not overwritten. If this
property is set to “askUser”, each time “Update TestArchitecture” is performed
TestConductor asks if an existing TestContextDiagram shall be replaced with a new one. If
this property is set to “Always”, each time “Update TestArchitecture” is performed
TestConductor replaces an existing TestContextDiagram with a new one.

By default this property has the value “Never”.

TestConductor::Settings::ReportLocation

99

With this property18 TestConductor can be instructed to store test reports and results not in
the default location directly underneath the test element (TestPackage, TestContext,
TestCase) but at a location chosen by the user. The location has to be a (test-) package,
which will be created if not existing yet. For nested packages the qualified name has to be
specified using the delimiter '::' (e.g. “MyResults::Results_MR1”).

Affected by this property are Test Execution Results, Model Coverage Results,
Requirement Coverage Results and Code Coverage Results. Underneath the test element a
hyperlink will be created19 targeting the actual result. If the property expression can not be
parsed or the specified package could not be created, the results will be saved at the
default location underneath the test element.

Beside fixed package names TestConductor provides the following keywords which will
be substituted with the appropriate names of the execution context:20

$TESTPACKAGENAME: Will be substituted by the name of the TestPackage21 of the
executed element.

$TESTCONTEXTNAME: Will be substituted by the name of the TestContext of the
executed element. Will be ignored for TestPackage results.

$TESTCASENAME: Will be substituted by the name of the executed TestCase. Will be
ignored for TestPackage and TestContext results.

$CONFIGURATIONNAME: Will be substituted by the name of the TestingConfiguration
which was active at test execution. Will be ignored for TestPackage results.

TestConductor::Settings::TestCaseExecutionOrder

This property controls the execution order of TestCases when executing a TestContext.
Possible values are “BrowserOrder” and “DeclarationOrder” , where “BrowserOrder”
defines that TestCases are executed in the same order as they are displayed in the browser.
“DeclarationOrder” defines execution in a user defined order. The declaration order can be
specified by right-clicking “TestCases” and selecting “Edit TestCases Order” form the
context menu (cf. section Ordering of TestCases on page 77).

By default this property has the value “BrowserOrder”.

TestConductor::Settings::TestingMode

By default, new TestArchitectures created with Rhapsody 7.6 or higher are created with
testing mode set to assertion based testing, i.e., the property
“TestConductor.Settings.TestingMode” is set to “AssertionBased”.

To create a new TestArchitecture for animation based testing, open the TestConductor
main dialog by choosing “TestConductor” from the tools menu. In the upcoming dialog,
select the testing mode you want TestConductor to apply for a newly created
TestArchitecture. This setting does not affect any existing TestArchitecture.

18Property will be evaluated not only on project but also also on package level.
19Hyperlink will be created only for test elements which can be written.
20Note that the keywords may only be used to specify a complete package name, keywords may not be modified
(e.g. correct: “Results::$TESTPACKAGENAME”, incorrect: “Results:$TESTPACKAGENAME_1”)
21The outer TestPackage in assertion based mode

100

TestContext Properties
Also some properties for TestContexts can be set by the user. In order to change these
properties, open the Feature dialog of a TestContext, select the Properties tab, switch in
the dropdown combo box View to All and navigate to the metaclass

 TestConductor::TestContext

Figure 21: Properties TestConductor.TestContext

TestConductor.TestContext.TestContextExecution_RestartExecut
able

If this property is checked (true), for each TestCase during execution of the TestContext,
the executable of the TestContext is restarted. If the property is not checked (false), the

101

Figure 20: Setting TestingMode

TestCases are executed without restarting the executable after the previous TestCase has
finished its execution.

TestConductor.TestContext.TestContextExecution_PreTestCaseOp
eration

If this property contains a name of an operation of the TestContext, for each TestCase
during execution of the TestContext, before a TestCase is executed the operation specified
in this property is called automatically. In the operation specified in this property, one can
initialize or reset some variables that are needed in the subsequent TestCase execution.

TestConductor.TestContext.TestContextExecution_PostTestCaseO
peration

If this property contains a name of an operation of the TestContext, for each TestCase
during execution of the TestContext, after a TestCase is executed the operation specified
in this property is called automatically. In the operation specified in this property, one can
reset some variables that are needed in the subsequent TestCase execution.

Generating Test Reports with Rhapsody
ReporterPLUS

Rhapsody ReporterPLUS is a reporting engine. The user is able to customize the content
and style of a Rhapsody ReporterPLUS report by specifying a template. Rhapsody
TestConductor delivers the test report template (TestReport.tpl) and the test
requirement coverage report template (TestRequirementCoverage.tpl), which
will be installed in the folder “reporterplus\Template” in your Rhapsody
installation.

Executing the ReporterPLUS with the Test Report Template
To execute the test report template on the model containing test data:

• For creating a report only for a selected TestPackage and the containing
TestPackages, select a TestPackage in the Rhapsody browser and choose from the
menu Tools > ReporterPLUS > Report on selected package…

• For creating a report for all TestPackages in the model choose from the menu
Tools > ReporterPLUS > Report on all model elements…

• In the Rhapsody ReporterPLUS wizard Select Task specify the export file format
your report shall be displayed in and click Next>.

• In the Rhapsody ReporterPLUS wizard Select Template check the currently
active template. In case the template “TestReport.tpl” is not active click on
“”, open it from the folder “reporterplus\Templates” in your Rhapsody
installation folder and click Next>.

• The Rhapsody ReporterPLUS wizard Confirmation gives an overview about the
selected options. Click the button <Back to change the options. Click Generate to
start the execution of the Rhapsody ReporterPLUS report generation.

102

• In the dialog Generate Document specify a path and a name for the document to
generate and click the button Generate.

• Rhapsody ReporterPLUS will show the progress during creating the document
and start the corresponding application to show the test report.

Using the HTML Test Report
The created HTML test report is divided into two sections, the table of Contents on the left
side and the content section on right side. Dependent of the selected item on the left side,
the corresponding section of the report will be shown on the right side.

Note: The HTML report will only be displayed correct in the internet browsers and
versions, which are shown at report startup.

Note: The table of contents will only be shown in a HTML report. To display the table
of contents Java must be installed. In case these requirements are not fulfilled,
please select another export file format like Microsoft Word.

The first page gives an overview about the loaded model and the contained text contexts.
This page is reachable from the highest entry of the table of contents.

Conceptual this report lists all TestContexts of the specified TestPackage(s) during
creation. For each TestContext you will find information about

• the system under test

• the TestComponentInstances

• the TestContext diagrams

• the TestCases and their execution status

Each TestContext and the sub-items are reachable by clicking on the corresponding item in
the table of content. Click on the plus to extend the tree structure.

Using the Test Requirement Coverage Report
Execute the test requirement coverage template (TestRequirementCoverage.tpl)
to get a statement about the relation between a requirement and the corresponding
TestCases, which cover a requirement in the model. The testing profile defines the
stereotype <<TestObjective>> which shall be used to setup a relation between a
TestCase and a requirement, which it covers. In general a test objective is a stereotyped
dependency, which can link on every element in the model.

This requirement coverage report focus especially on the dependency between a
requirement and a TestCase. The test requirement coverage report gives another view on
the model.

In opposite to the view “All Requirements”, the report also shows a table with “All
TestCases” of the model. The “All TestCases” view is assistant to check, whether a
TestCase has a test objective.

103

Some items in HTML report e.g. requirements, TestCases test results etc. are linked, so the
user can easily browse to more detailed information pages.

Customizing the Test Report
The test report template is customizable to fit specific users requirements. Follow the
Rhapsody ReporterPLUS documentation how to adapt it to your needs.

Generating Test Reports with Rational Publishing
Engine

(see also TestConductor Tutorials:

• TestConductor_Tutorial_C.pdf

• TestConductor_Tutorial_Cpp.pdf

)

Rational Publishing Engine (RPE) is a tool that can be used to automate the generation of
documents. The user is able to customize the content and style of a RPE report by
specifying a template. Rhapsody TestConductor currently delivers a test requirement
coverage report template (TestRequirementCoverage.dta), which will be
installed in the folder “Share\RPE\Templates\TestConductor” in your
Rhapsody installation.

Creating the Test Report
• Choose from the menu Tools > Rational Publishing Engine > Generate report…

• Select the RPE template which should be used for report generation. The template
“TestRequirementCoverage.dta” must be selected to create a requirement
coverage report.

• Specify which types of output files should be created and where they should be
saved.

• Then RPE automatically creates the selected reports.

Test Requirement Coverage Report
A test requirement coverage report gives an overview about the requirements and
TestCases specified in the model and how the requirements are covered by TestCases.

The testing profile defines the stereotype <<TestObjective>> which shall be used to
setup a relation between a TestCase and a requirement.

All requirements specified in the model are listed and it is shown which requirement is
covered by which TestCase. Detailed information are also available for each requirement.

The TestCases specified in the model are listed, too. Again detailed information are
available for each TestCase.

104

Creating Report Templates
How report templates can be created using Rational Publishing Engine Document Studio
is described in the RPE documentation. An XML schema file of the testing profile
(testingprofile.xsd)which can be used for template creation can be found in the
folder “Share\RRE\Schemas” of your Rhapsody installation.

Using the TestConductor API
(see also TestingCookbook:

• “How can I automate test execution using the TestConductor API?”

)

Similar to Rhapsody, TestConductor provides an API that can be used to access
TestConductor functionality from

 Programs using the Rhapsody COM API

 Programs using the Rhapsody Java API

In order to use the TestConductor API the Rhapsody API function
“IRPApplication::runHelper(String)” must be used. In order to apply this function
correctly, one has to provide as an argument a valid TestConductor command.
Additionally, before the “runHelper” function can be executed, an appropriate model
element (e.g. a TestCase) must be selected by using the Rhapsody API.

The sample “CppSamples/TestConductor/TestingCookbook/CppTestAutomationSample”
shows how to use the Java API in order to automate your testing work flows..

Available TestConductor API Commands
The following TestConductor API commands are available and can be called by using the
“runHelper” Rhapsody API function:

Applicable to TestCase elements:

 “Edit TestCase SDInstances”

 “Update TestCase”

 “Build TestCase”

 “Execute TestCase”

o Performs asynchronous TestCase execution, i.e., the function returns
immediately and the execution of the TestCase is performed in a
separate thread. The API script has to ensure itself (e.g. by waiting a
specified amount of time) that the TestCase execution has finished
before additional TestConductor API commands can be executed.

105

 “Execute TestCase Sync”

o Performs synchronous TestCase execution, i.e., the function returns
only after the execution of the TestCase has finished. This ensures that
subsequent TestConductor API commands are only performed after
the TestCase execution has finished. This is the preferred way of
executing TestCases via the TestConductor API.

Applicable to TestContext elements

 “Create SD TestCase”

 “Create Flowchart TestCase”

 “Create Code TestCase”

 “Update TestContext”

 “Build TestContext”

 “Execute TestContext”

o Performs asynchronous TestContext execution, i.e., the function
returns immediately and the execution of the TestContext is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestContext
execution has finished before additional TestConductor API
commands can be executed.

 “Execute TestContext Sync”

o Performs synchronous TestContext execution, i.e., the function
returns only after the execution of the TestContext has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestContexts via the TestConductor API.

 “Execute TestPackage”

 “Update TestArchitecture”

Applicable to TestPackage elements

 “Create TestContext”

 “Update TestPackage”

 “Clean TestPackage”

 “Build TestPackage”

 “Execute TestPackage”

o Performs asynchronous TestPackage execution, i.e., the function
returns immediately and the execution of the TestPackage is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestPackage

106

execution has finished before additional TestConductor API
commands can be executed.

 “Execute TestPackage Sync”

o Performs synchronous TestPackage execution, i.e., the function
returns only after the execution of the TestPackage has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestPackages via the TestConductor API.

Applicable to Class elements

 “Create TestArchitecture”

Defining Callbacks for TestConductor functions
In addition to using the TestConductor API directly, one can also execute automated
scripts after certain Rhapsody actions like e.g. 'After Add Element' or 'Before Code
Generation'. For instance, to specify that 'After Add Element’s certain helper should be
activated automatically, one has to do the following steps:

 Define a helper with the Helper Trigger “After Add Element”. The helper can
be implemented e.g. using a Java plug in or by an external program that uses
the Rhapsody API.

 Now, whenever an element has been added the specified helper is invoked
automatically. Hence, the helper itself has to decide whether certain things
have to be done or the helper shall return without performing anything.

If, for example, the helper is designed to perform some action after creating a
new TestArchitecture, then the helper has to decide whether the triggering
action was TestArchitecture creation or any other model element creation.

Helpers with helper trigger “After Add Element” are invoked automatically for all actions
that create new elements, like e.g. “Create Code TestCase”, “Create TestArchitecture”,
e.t.c. pp. (cf. Rhapsody Extensibility Samples and IBM Knowledge Center “Creating
Helpers”).

107

Specifying Requirements
with Sequence Diagrams

Sequence diagrams play a dominant role in the TestConductor test process. They are a key
means for the graphical specification of tests, and enable TestConductor to visualize
design flaws.

Supported Diagram Elements in TestScenarios

• Life-Line:

A life-line represents an object, i.e.

◦ an instance of a class, block or actor or

◦ an implicit object or

◦ a file or

◦ the environment/system border, i.e. objects not explicitly represented in the
TestScenario.

An object represented by a life-line is determined by their name and their
realization. The realization refers to a classifier in the model (cf. mapping for
replacements on page and dependencies for navigation on page).

The name refers to a unique access path to the object. It is a path -separated by
dots- from a global object to the represented instance according to the instantiation
hierarchy in the TestArchitecture. If necessary w.r.t. multiplicities of objects along
the instantiation path, indices can be used in the access path.

Life-line names of are navigation expressions referring to instances of the
respective classifiers in the TestArchitecture. TestConductor makes use of these
navigation expressions e.g. for identifying suitable links when generating driver
operations.

• asynchronous Message – Event:

◦ Stereotype <<RTC_MsgInfo>> on Messages

• synchronous Message

◦ Operation:

◦ Triggered Operation:

◦ Stereotype <<RTC_MsgInfo>> on Messages

108

• dataflow Message:

◦ Stereotype <<RTC_MsgInfo>> on Messages

• Condition:

◦ <check> Condition. Deprecated (cf. section Using <check> Conditions /
TestConditionpage 127). Replaced by TestCondition.

◦ <precond> Condition. SysML HarmonySE only and deprecated ((cf. page
127). Replaced by TestAssignment

• TestAction:

◦ general TestAction: see. section (general) TestActions, TestAssignments and
TestConditions page 125.

◦ Message-related TestAction: see section Influencing DriverOperation and
Stub generation using TestActions in TestScenarios on page 122.

▪ <InitAction>

▪ <PreCallAction>

▪ <CallAction>

▪ <PostCallAction>

▪ <StubAction>

• TestCondition: see pages 127 and 125.

• TestAssignment: see page 125.

• Time-Interval on TestComponent- or TestContext life-line

• InteractionOccurrence: see page 117.

• InteractionOperator: (see section Using Interaction Operators in SD TestCases
on page 129)

◦ opt : optional/conditional sub-scenario.

◦ alt : alternative sub-scenarios, depending on conditions.

◦ consider : consideration of only dedicated occurrence of a message. Other
not specified occurrences of the message are ignored instead of interpreting
them as unexpected occurrences.

◦ parallel : sub-sequences are considered parallel or interleaving,
respectively. Only order within the particular sub-sequence is relevant,
parallel sub sequences aren't ordered w.r.t. each other.

◦ loop : iterated sub-sequence. Loop depends on a condition like a while-loop.

◦ break : operator to leave a sub-sequence conditional.

◦ Stereotype <<RTC_OperatorInfo>> on InteractionOperators (see section
Using Interaction Operators in SD TestCases on page 129)

109

Limitations of design elements (sequence diagrams)
Currently, TestConductor does not support the following sequence diagram features:

• Create arrow

• Destroy arrow

• Reply message

• Timeout

• Canceled timeouts

• Constraints

• Language for condition marks

Condition marks must obey the same syntax as activation conditions. Currently, simple
expressions with equality or inequality are not yet allowed in activation conditions and
condition marks.

Note: TestConductor will ignore condition marks during test execution.

If you use these unsupported features in a sequence diagram, TestConductor ignores them
during test execution.

Message Realization
(See also TestConductor Tutorial for Rhapsody in C and Rhapsody in C++.)

For specification of a TestScenario, messages can be drawn among the life-lines.
Messages have to be realized for being considered by TestConductor. Realization of a
message means formally establishing a reference to an interface item of the receiving life
line in a sequence diagram. Messages can be realized either using the context menu item
'Select Message' or by opening the features dialog and selecting the realization on the
general tab of the features dialog. On 'Update TestCase/TestContext/TestPackage'
TestConductor treats unspecified realizations of messages as specification flaws and issues
a warning for each message which has not been realized.

In witness TestScenarios messages with unspecified realization appear blue, since
TestConductor does not regard such messages in execution.

Ignoring Unrealized Messages
Messages with stereotype <<Unrealized>> are filtered out and ignored in the test
execution.

On 'Update TestCase/TestContext/TestPackage' TestConductor treats <<Unrealized>>
messages as intentionally unrealized and ignores such messages without issuing a warning
for such messages.

In contrast to explicitly unrealizing a message, leaving a message unspecified (or selecting
<Unspecified> as realization in the features dialog) is treated as 'not intended' and
leads to a warning when updating the TestCase/TestContext/TestPackage.

110

Virtual Call vs Nonvirtual Call (Rhapsody in C++)
If the receiving life line of a message represents a class that virtually inherits from other
classes, then the 'Select Message' context menu item offers different possible realizations
for the implementations along the inheritance hierarchy.

In a TestScenario specifying communication among class_C and class_2, 'Select Message'
for a message to a life line representing class_C offers call_x(),
class_B::call_x(), class_A::call_x() (among others):

111

Figure 22: Example relations with
inheritance

Figure 23: Select Message with virtually inherited operations

And accordingly, for a message to a life line representing class_2:

By default, TestConductor treats the possible realizations different dependent on the
message context:

• if a DriverOperation will be generated from the message - as it is the case in figure
23, where the message is send by a TestComponent life line and received by a
SUT life line – selection of base implementation class_A::call_x() will
yield a non-virtual call in the DriverOperation, whereas selection of call_x()
will yield a virtual call in the DriverOperation.
This behavior can be overridden by stereotyping the message
<<call_virtual>>. This will yield a virtual call, regardless of selecting
call_x() or class_A::call_x() as realization.

• if a StubOperation will be generated from the message – as it is the case in figure
24, where the message is send by a SUT life line and received by a
TestComponent life line – TestConductor will by default always generate a
StubOperation in the most specialized TestComponent (as if
<<call_virtual>> was set).
This behavior can be overridden by stereotyping the message
<<call_nonvirtual>>. This will generate the StubOperation in the TestComponent
for class_2 if x() is selected as realization and will attempt to generate the
StubOperation in the TestComponent for class_0, if class_0::x() is
selected as realization.
Note that by default TestArchitecture creation will only create a replacement
TestComponent for class_0 if class_0 has non-virtual operations. Hence, a
non-virtual call of a StubOperation in class_0 is only possible if x() can be
stubbed in class_0 – which requires a replacement TestComponent for
class_0.
If there is no replacement TestComponent for class_0, an appropriate warning
will be issued during 'Update TestCase/TestContext/TestPackage'. In this case the
TestArchitecture has to be adapted manually to the needs of the TestCase.

112

Figure 24: Select Message and Inheritance

Self-Messages in BlackBox and GreyBox Testing
(cf. TestingCookbook:

• “How can I observe the communication between parts of a greybox SUT?”

)

In BlackBox testing self-messages of SUT life lines are not observable, since the SUT can
not be instrumented for observation (cf. section Black Box Testing on page 39). Therefore
self-messages are ignored by TestConductor and appear blue in witness TestScenarios.

In GreyBox testing (cf. section Grey Box Testing on page 40 and GreyBox
TestArchitectures for classes and objects on page 35) self-messages of SUT life lines are
observable in principle, since the TestArchitecture instantiates copies of the SUT elements
as scope replacements (cf. section Replacements on page 24). These replacements can be
instrumented with assertions for observation purposes without affecting the original model
elements.
This way operations invoked by a SUT element on itself or events sent to itself become
feasible in GreyBox specifications. Note, that this only regards member operations of the
SUT element itself and events received by its own statechart or activity diagram, but does
not automatically involve also messages to parts of the SUT or among parts of the SUT.

SelfMessageRealizationInParts
(cf. Samples:

• TestCase 'SD_tc_gb_observation_record' in
TPkg_Coffeemachine_GB::TCon_Coffeemachine_Architecture::TCon_Coffe
emachine

◦ of Sample
Samples/CppSamples/TestConductor/TestingCookbook/CppCompositeCo
ffeeMachine_RAL

◦ or in
Samples/CppSamples/TestConductor/TestingCookbook/CppCompositeCo
ffeeMachine_wo_ports

)

TestConductor automatically introduces replacements for one decomposition level when
creating a GreyBox TestArchitecture.
This enables support for TestScenario specifications with life lines for the direct parts of
the SUT for which the TestArchitecture has been created. But often it is more desirable to
view the parts of a class or objects as belonging to the same life line a the instantiating
class or object (as in the animation feature enabled in animated sequence diagrams by
Animation.ClassifierRole.MappingPolicy=ObjectAndItsParts).

TestConductor supports this treatment of a life line as representing a composite class or
object and its parts also in TestScenarios: for self-messages of such a life-line the
realization has to be either chosen as member of the composite class or object itself or as
member of one of its parts. To enable offering of message realizations in parts in the
'Select Message' context menu on messages and in the features dialog of messages,
stereotype <<SelfMessageRealizationInParts>> has to be set on the respective
TestScenario.

113

Using Time Interval for Delay Driving from TestContext and
TestComponents

(see also TestingCookbook:

• “How can I specify upper/lower time bounds for responses of the SUT?”

)

TestConductor provides capabilities to automatically drive messages (events, operations or
triggered operations) with a certain delay. Users can specify that TestConductor should
drive messages from a TestComponent or TestContext to the SUT with a certain time
delay. Whenever a message must be driven, users can specify that TestConductor waits for
a certain amount of time (ms, sec, min) in order to delay actual message generation.
This is expressed on the sending life-line (either the system border or a TestComponent)
with the time interval notation of the sequence diagram editor.

Note: TestConductor will regard only time intervals between messages, if driving
messages are defined from a TestComponent or TestContext life-line and the time
interval definition is specified also on a TestComponent or TestContext life-line.
Any Time Interval on a SUT life-line will be ignored.

Time delays will be specified with the time interval notation in sequence diagrams.
TestConductor supports time intervals only if they are drawn on TestComponentlife-lines.
The label of a time interval specifies the time unit (ms, msec, sec, min) and a time
value.

Syntax: relop value unit

relop := <= | < | > | >=

value := integer

unit := ms | msec | sec | min

Time Intervals can be used to specify upper and lower temporal bounds for two successive
observations or events, i.e. the TestScenario element above the start of the Time Interval
and the TestScenario element below the end of the Time Interval. For example, > 3
msec specifies that at least 3 milliseconds have to pass after the first observation before
observing/driving the second one, whereas < 3 msec specifies that at most 3
milliseconds may pass between the two observations.

Specifying Argument Values
(See also TestConductor Tutorial for Rhapsody in C and Rhapsody in C++.)

For messages referring to operations or events with arguments, argument-values have to
be specified. For messages from TestComponents to SUT, TestConductor will generate
appropriate DriverOperations based upon the specified argument values. For messages

114

from SUT to TestComponents, TestConductor will generate appropriate assertions for
checking argument value adherence to the specification. By default22, TestConductor will
display the actual argument value in the witness TestScenario (cf. page 133) for failed
assertions.

The argument value specification has to be in 'named' form, i.e. for a message referring
e.g. to 'void op(int a, int b, bool c)', 'a=42,b=17,c=true' has to be
entered in the 'Arguments'-field of the features dialog for the message, or directly in the
message annotation displayed in the TestScenario. A 'positional' argument specification, as
in '42,17,true' is not supported by TestConductor.

TestConductor will issue a warning on updating TestCase/TestContext/TestPackage for
messages with unspecified argument values.

For individual argument values, also don't care '*' can be used (cf. page 117). For
specifying that some argument value has to be only in a certain range instead of specifying
a particular value, range specifications can be used (cf. page 118). A dedicated syntax
supports specification of input and output value for InOut arguments separately (cf. page
116).

Specifying dataflows
(see also TestingCookbook:

• “How can I specify sequence diagram test cases for SUTs that use flow ports?”

)

dataflows can be used to specify value communication via flow ports or proxy ports.

In the feature dialog of the dataflow message, name of the dataflow has to the name of the
concerned data item on the receiver side and the flowport of the receiver has to be set in
the flowport-entry. Otherwise the dataflow is treated unrealized.

On updating TestCase/TestContext/TestPackage, TestConductor generates driver code for
dataflows from TestComponents to SUT and generates appropriate assertions for checking
the communicated data for dataflows from SUT to TestComponents.

Specifying Return Values
(examples can be found in many of the sample models, e.g.:

• Samples/CppSamples/TestConductor/TestingCookbook/CarRadio

see also TestingCookbook:

• “How can I specify checks on return- or output values of function calls in a
sequence diagram test case?”

)

Users can specify expected return values and output values for operation calls. To specify
a return value for an operation, open features dialog of an operation in a sequence
diagram. Specify the expected return value in the Return Value field.

22TestingConfiguration tag rtc_assert_handling has to be set to by_string

115

Depending on the direction of the message, TestConductor will generate a check of the
return value (message from TestComponent to SUT) or provide a stub returning the
specified return value (message from SUT to TestComponent).

Note: Serialization/deserialization functions will be used in comparison of values of user
defined types, if available/defined (cf. Sample model:
Samples/CppSamples/TestConductor/TestingCookbook/CppListUsage).

For specifying return values, also don't care '*' can be used (cf. page 117). For specifying
that a return value has to be in a certain range instead of specifying a particular value,
range specifications can be used (cf. page 118).

Specification of Out and InOut Argument Values

(see also TestingCookbook:

• “How can I specify checks on return- or output values of function calls in a
sequence diagram test case?”

)

Besides specifying the type of an operation argument, also the direction of the argument
can be defined in the features dialog. Operation arguments can be In, Out or InOut.
Properties23 {Lang_CG}.Type.In, {Lang_CG}.Type.InOut and {Lang_CG}.Type.Out
determine the real type of the operation argument in the generated code. TestConductor
supports not only the resulting code type of the operation argument, but also the model
based view of argument direction.

As example, we consider an operation m(int p1, int p2, int p3, int p4),
where

• p1 and p2 are In arguments and

• p3 is an Out argument, and

• p4 is an InOut argument.

In a sequence diagram users can specify the expected In argument values and the expected
Out and InOut parameter values.

When 'm(p1=1,p2=2,p3=42,p4=17)' is specified in a TestScenario, this specifies
that m() is invoked with arguments

• p1=1 and p2=2 as input values,

• p3 with any input value – since p3 is an Out argument the input value does not
play a role for the call, but it will be checked or assured24 in the stub that p3 equals
42 after the call - and

• p4=17 as input value. The effect of the call on p4 is not specified.

Since p4 is an InOut argument, it is necessary to be able to specify the input and the output
value of p4 separately. Therefore, the syntax for specifying an InOut argument is

23where {Lang_CG} is either C_CG or CPP_CG, depending on the language setting of the model.
24depending on whether the message is drawn from a TestComponent to SUT or the other way round.

116

<parameter> = In:<in_value>;Out:<out_value>

Thus, "m(p1 = 3, p2 = 5, p3 = 7, p4 =In:9;Out:12)" specifies that m() is
called with input “p1=3”, input “p2=5”, input “p4=9”. Message m() returns with
output “p3=7”, and output “p4=12”. TestConductor checks or assures the output values
according to the specification of the message w.r.t. the direction of the message25

Note: Serialization/deserialization functions will be used in comparison of values and for
driving values of user defined types, if available/defined (cf. Sample model:
Samples/CppSamples/TestConductor/TestingCookbook/CppListUsage)

Interaction Occurrence – Reference Sequence Diagram
(see also Sample-model CSamples/TestConductor/CSDOperators)

Specification of message communications in a system often requires long sequences with
lots of messages. TestScenarios can thus grow large and unintuitive. For structuring
TestScenarios and for sharing sub-scenarios among different TestScenarios, Interaction
Occurrences can be used. An Interaction Occurrence is a reference at a certain position in
one TestScenario to another separate TestScenario as if the referenced TestScenario would
be substituted in the referencing position.

For TestConductor, it is logically the same if users specify a scenario within one sequence
diagram or if the scenario is specified with Interaction Occurrences. Whenever an
Interaction Occurrence is reached, then the referenced TestScenario as specified in the
Interaction Occurrence is tested. Test control starts with the main TestScenario, and when
an Interaction Occurrence is reached, the control goes into the referenced TestScenario,
and as the execution of the referenced TestScenario is completed, the control returns back
into the main TestScenario.

TestConductor does not care if:

• referenced TestScenario does not contain the same life lines as surrounded by the
interaction occurrence

• referenced TestScenario contains fewer life lines

• referenced TestScenario contains more life lines

• referenced TestScenario contains other life lines

TestConductor just considers the provided life lines and the specified messages as relevant
TestScenario and expects exactly those messages when the SUT is executed.

For failure analysis for TestScenarios using Interaction Occurrences see section Failure
Analysis for InteractionOccurrences on page 134.

Don't care values
In some cases one might not be interested in checking actual parameter values. If

25a check is performed if the message originates in a testComponent and is invoked on the SUT, otherwise
outvalues are provided by the TestComponent's stub.

117

• Message arguments have values that change whenever the application executes
(sensor values, etc.). TestConductor should not compare the actual values with the
specified values.

• Message argument is a pointer to e.g. a structure. TestConductor does not
automatically compare the actual values in the structures and it doesn't make sense
in general to compare two pointers to structures.

For such cases, message arguments or returns can explicitly be specified as don't care by
using a star '*' as message argument value or for the return value of an operation.

Specifying an argument as don't care means, that the argument will not be driven with a
certain value in a message from TestComponent to SUT or will not be checked for a
certain value in a message from SUT to TestComponent.

Specifying a return as don't care means, that the argument will not be checked for a certain
value in a message from TestComponent to SUT or will not be stubbed with a certain
return value in a message from SUT to TestComponent.

Range Specification
Range specifications allows monitoring and checking whether argument values of
messages are in a given specified range. Checking ranges is required if messages have
arguments that vary literally from run to run. Body temperature may be a good example
for such message argument since it is unlikely that the values are always the same.
Usually temperature is in a certain range, e.g. between 36.5 and 36.9 degree Celsius for
humans. Do, there is a healthy range for body temperature and body temperatures out of
this range have to treated unhealthy.

• A special notation can be used to indicate ranges instead of specific values.
Notation:

[<lower_value> .. <upper_value>]

where lower_value and upper_value have to values of a scalar type like integer,
long, double etc.

Example: for a message m with arguments int p1, char* p2 and float p3, it can
be specified "m(p1=1, p2=*, p3=[1.5 .. 1.7])" to state that p1 must equal '1', p2
is "don't care", p3 must be in the range between '1.5' and '1.7'.
Ranges can be used for message arguments as well as for return values. TestConductor
will treat ranges differently depending on thy appear in messages for which
DriverOperations or Stubs will be generated:

• for a driven message26, i.e. e.g. msg(x=[0..4] TestConductor will choose the
lower_value of the range for driving the message.

• for a driven message, i.e. e.g. [0..4]=msg2()TestConductor will check
whether the returned value is in the specified range.

• for a stubbed message27, i.e. e.g. msg3(x=[0..4])TestConductor will check
whether argument x of the message is in the specified range.

26Message from a TestComponent to SUT with in-argument x.
27Message from SUT to a TestComponent with in-argument x.

118

• for a stubbed message, i.e. e.g. [0..4]=msg4()TestConductor will choose the
lower_value of the specified range as return value of the stub.

Influencing DriverOperation and StubOperation
Generation

For automatic generation of DriverOperations and StubOperations see also section Model
Population – Create Driver Operations and StubOperations on page 48.

Interpretation of messages by TestConductor depends on their source and target life-lines.

The following table gives an overview about the interpretation of messages by
TestConductor:

Recall that tag RTC_Monitor of stereotype <<RTC_MsgInfo>> and of stereotype
<<RTC_InstInfo>> can be used to influence the standard rules for message
interpretation (cf. section Model Population – Create Driver Operations and
StubOperations on page 48).

User Defined DriverOperations
The default implementation of a driver operation generated by TestConductor may be
overwritten and customized by the user. To influence the automatic generation of
DriverOperations from messages in a TestScenario with user-defined code, there are two
alternative techniques available in TestConductor:

• using tags of the <<RTC_MsgInfo>> stereotype on messages

119

Figure 25: Interpretation of Messages by TestConductor

 to
from TestComponent SUT

by default not driven, but monitored on
receiver side, arguments checked, return
value not checked.

relevant tags in <<RTC_MsgInfo>>:
RTC_DriveTestComponentMessage

driven, return value checked if specified.

relevant tags in <<RTC_MsgInfo>>:

RTC_Monitor (greybox-testing only!)

observed, arguments checked,
return value provided by stub if specified.

relevant tags in <<RTC_MsgInfo>>:

RTC_Monitor (greybox-testing only!)

not observable in blackbox testing

in greybox testing: arguments checked,
return not checked in pre 8.1.5, although
specified.

Te
st

C
om

p o
ne

nt
S

U
T

tag TestAction

RTC_DriverInitCode InitAction

RTC_DriverInitCodeAdditional PreCallAction

RTC_DriverCallCode CallAction

RTC_DriverCallCodeAdditional PostCallAction

tag TestAction

RTC_StubBodyCode StubAction

• using <InitAction>, <PreCallAction>, <CallAction> and <PostCallAction>
TestActions referring to the message in the TestScenario.

User Defined StubOperations
The default implementation of a stub operation generated by TestConductor may be
overwritten and customized by the user. To influence the automatic generation of
StubOperations from messages in a TestScenario with user-defined code, there are two
alternative techniques available in TestConductor:

• using tags of the <<RTC_MsgInfo>> stereotype on messages

• using <StubAction > TestActions referring to the message in the TestScenario.

Influencing DriverOperation and Stub generation using
<<RTC_MsgInfo>> tags

Usually, if the user modifies driver or stub operations in the model, these modifications are
lost if the user updates a TestCase. The user can influence the way how TestConductor
automatically generates code for driver operations and StubOperations. Using the tags
TestBehavior::RTC_MsgInfo::RTC_DriverCallCode,
TestBehavior::RTC_MsgInfo::RTC_DriverCallCodeAdditional,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCode,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCodeAdditional,
TestBehavior::RTC_MsgInfo::RTC_StubBodyCode

120

Figure 26: Tags of Stereotype <<RTC_MsgInfo>>

The contents of these tags will not get lost during update of a TestCase.

The value for RTC_DriverInitCode is taken as the beginning of the driver operation
body containing the initialization of necessary variables, whereas the value for
RTC_DriverCallCode is taken as the trailing part of the driver operation body
containing the call of the function to be driven.

Note that both properties can be overwritten separately by the user. In case the user wants
to customize the initialization section only, only the property RTC_DriverInitCode has
to be overwritten; TestConductor will continue to automatically generate the code for the
driver call section (and vice versa).

The value for RTC_DriverInitCodeAdditional is taken as additional initialization
code that is generated in addition to the initialization code generated by TestConductor.
The content of this tag is generated directly after the auto generated initialization code.
Similarly, the value for RTC_DriverCallCodeAdditional is taken as additional call
code that is generated in addition to the auto generated call code. The content of this tag is
generated directly after the auto generated call code.

RTC_DriverInitCode and RTC_DriverInitCodeAdditional
The user can influence the initialization of arguments before the message is driven using
the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional. To do this
uses have to add the stereotype RTC_MsgInfo to the SD message. This adds automatically
the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional to the
message. The user can fill these tags with code which will be used as initialization code of
the driver operation when the TestCase is updated. Important is that the context of
RTC_DriverInitCode completely replaces the initialization code that would be
generated by TestConductor automatically, whereas the content of
RTC_DriverInitCodeAdditional is simply added to the auto generated initialization
code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver initialization code section and paste it into the tag
RTC_DriverInitCode before starting to implement his own changes.

RTC_DriverCallCode and RTC_DriverCallCodeAdditional
The user can also influence the call of the driven operation using the tags
RTC_DriverCallCode and RTC_DriverCallCodeAdditional. To do this he users have
to add the stereotype RTC_MsgInfo to the sequence diagram message. This adds
automatically the tags RTC_DriverCallCode and RTC_DriverCallCodeAdditional
to the message. The user can fill these tags with code which will be executed after the
initialization of arguments. Important is that the content of RTC_DriverCallCode
completely replaces the code that would be used to invoke the driven operation if
TestConductor generated the code automatically, whereas the content of
RTC_DriverCallCodeAdditional is simply added to the auto generated call code.

Note, in this scenario the user has has the responsibility that the sequence diagram
TestCase is indeed executable after customization. Basically, the specified message of the
sequence diagram TestCase, which now is present as source code, has to be represented in
the user defined code.

121

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver call code section and paste it into the tag
RTC_DriverCallCode before starting to implement his own changes.

RTC_StubBodyCode
Normally, if the user modifies StubOperations in the model, then this information will be
lost on updating TestCase/TestContext/TestPackage. The user can influence the code of the
stub using the tag RTC_StubBodyCode (or using <StubAction> TestAction, cf. page
122). To do the respective message has to be stereotyped <<RTC_MsgInfo>> - the
stereotype adds automatically the tag RTC_StubBodyCode to the message. The value of
this tag will be used as body of the StubOperation when the TestCase is updated. The
content of the tag completely replaces the body that would be generated by TestConductor
automatically.

If an operation is stubbed multiple times in the same TestComponent in the same sequence
diagram instance, then for each occurrence an individual StubOperation is generated.

Deleting <<RTC_MsgInfo>> Tags (User Defined Driver and Stubs)

TestConductor regards the tags RTC_DriverInitCode , RTC_DriverCallCode ,
RTC_DriverCallCodeAdditional , RTC_DriverInitCodeAdditional
and RTC_StubBodyCode of stereotype <<RTC_MsgInfo>> if the tags are
overwritten. To delete the user defined operation call and use the auto generated
operations from TestConductor, it is thus not enough to empty them but the tags have to be
unoverridden. It is thus necessary to reset the tags to return to TestConductor's default
behavior.

Influencing DriverOperation and Stub generation using TestActions
in TestScenarios

(see also sample model:

• Samples/CppSamples/TestConductor/CppTestActions

)

In the previous section, the tags of the <<RTC_MsgInfo>> stereotype have been used
in order to customize the driver code and stub code generation of TestConductor.
Alternatively, the same can be done in a more graphical fashion by using so-called
TestActions. A TestAction is an action that can be placed on one of the TestComponent
life lines in the sequence diagram. The TestAction contains code that is considered by
TestConductor when the model is populated with test code, and it can be used to e.g.

• create (complex) input data

• access e.g. global variables of the TestArchitecture

• create (complex) checks for (complex) output values

• define (complex) behavior of stubs

In order to support the use cases mentioned above, besides a general TestActions,
TestConductor provides a set of message related TestActions.

122

• a general TestAction is a container for a code-block of statements that is executed
by TestConductor if test execution reaches the TestAction. In order to define a
general TestAction, just add a TestAction block to one one the TestComponent
life-lines in the TestScenario. In contrast to the message-related TestActions
described below, a general TestAction is not related to another message in the
TestScenario.

While general TestActions offer the possibility to execute arbitrary user defined code in a
certain position in the TestScenario, i.e. in a certain instant of time during TestCase
execution, message related TestActions only have a meaning in combination with the
message to which they refer. They are used to deviate from the automatic DriverOperation
and StubOperation generation for particular messages. TestConductor supports the
following kinds of message related TestActions:

• <InitAction>: An init action is a TestAction that can be used to initialize test
data. The code contained in the init action is handled as the tag
RTC_DriverInitCode of the stereotype <<RTC_MsgInfo>> (cf. section
“RTC_DriverInitCode and RTC_DriverInitCodeAdditional” on page 121).
<InitAction> TestAction must be placed on sending TestComponent life-line
directly28 before message sending.

• <PreCallAction>: A pre call action is a TestAction that can be used to either
initialize test data or to do some other test related activities before a message is
sent from a TestComponent to a SUT instance. The code contained in the pre call
action is handled as the tag RTC_DriverInitCodeAdditional of
stereotype <<RTC_MsgInfo>> (cf. section “RTC_DriverInitCode and
RTC_DriverInitCodeAdditional” on page 121).
<PreCallAction> TestAction must be placed on sending TestComponent
life-line directly before message sending.

• <CallAction>: A call action is a TestAction that can be used to call a
particular operation or to send a particular event. The code contained in the call
action is handled as the tag RTC_DriverCallCode of stereotype
<<RTC_MsgInfo>> (cf. section “RTC_DriverCallCode and
RTC_DriverCallCodeAdditional” on page 121).
<CallAction> TestAction must be placed on sending TestComponent life-line
directly before message sending.

• <PostCallAction>: A post call action is a TestAction that can be used to
perform any kind of actions after a particular call to an operation or a sending of
an event, e.g. code for checking output values of the called operation. The code
contained in the call action is handled as the tag
RTC_DriverCallCodeAdditional of stereotype <<RTC_MsgInfo>>
(cf. section “RTC_DriverCallCode and RTC_DriverCallCodeAdditional” on page
121).
<PostCallAction> TestAction must be placed on sending TestComponent
life-line directly after message sending.

• <StubAction>: A stub action is a TestAction that can be used to define the
behavior of stubbed operations, e.g. checking arguments of the called operation or
returning specific values. The code contained in the stub action is handled as the

28there must be no other message or general TestAction between message related TestActions and the related
message. If more than one of <InitAction>, <PreCallAction> and <CallAction> are used, they have to be used in
this order.

123

tag "RTC_StubBodyCode" of stereotype <<RTC_MsgInfo>> (cf. section
“RTC_StubBodyCode” on page 122).
<StubAction> TestAction must be placed on receiving TestComponent life-
line directly after message reception.

In order to add a TestAction to a sequence diagram TestCase:

• On the TestScenario toolbar, select the TestAction icon.

• Place the TestAction on the TestComponent life-line next to the affected message
in the TestScenario according to the above positioning rules.

• Write <InitAction> ,<PreCallAction>, <CallAction>,
<PostCallAction> or <StubAction>, respectively, into the first line of
the TestAction according to the intended meaning of the TestAction.

• Write code to be performed in place of the message related TestAction into the
TestAction beginning after the first line.

After adding the TestActions to the TestScenario, the TestCase has to be updated. During
the update, the TestActions are populated into the driver operations and StubOperations in
the model. For instance, the <PostCallAction> in the TestScenario depicted above is
populated to the driver operation for the message “addVal” that is specified directly above
the <PostCallAction>:

124

Figure 27: Using TestActions

After building the TestCase, the TestCase can be executed. The code in the TestActions is
executed when the TestCase reaches the specified TestActions. For instance, the assertion
specified in the <PostCallAction> of the TestScenario depicted above in executed directly
after operation “addVal” was called on the SUT.

Note: When doing “Show as SD”, message related TestActions of kind <InitAction>,
<PreCallAction>, <CallAction>, <PostCallAction> or <StubAction>
will always be colored blue, no matter if assertions in the TestAction have failed or
passed, if the code has been executed or not. Instead, the corresponding message is
colored according to the assertions. Only general TestAction will be colored in green, red
or blue according to the result of assertions defined since general TestAction are not
message related.

Clean TestComponent
Driver and StubOperations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a TestComponent at once.
To clean a TestComponent select the TestComponent and invoke item Clean
TestComponent from the context menu (cf. section Clean TestComponent on page 52).

Clean TestPackage
Driver and StubOperations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all TestComponents of a
TestPackage at once. To clean a TestPackage select the TestPackage and invoke item
Clean TestPackage from the context menu (cf. section Clean TestPackage on page 52).

(general) TestActions, TestAssignments and
TestConditions

(see also TestingCookbook:

• “How can I specify checks on return- or output values of function calls in a
sequence diagram test case?”

• “How can I set or check attribute values in sequence diagram test cases?”

125

Figure 28: Assertion generated from <PostCallAction> TestAction

 see also Sample-Model CppSamples/TestConductor/CppTestActions.

)

While general TestActions can be used on TestComponent and TestContext life-lines to
execute arbitrary code statements in the TestCase – e.g. for assigning variables a value, for
initializing relations, for invoking operations or sending events or for applying explicit
checks using RTC_ASSERT- macros (cf. pg 156) - TestActions can not be placed on SUT
life-lines. On updating a TestCase, a TestContext or a TestPackage, TestConductor
generates a driver-operation in the respective TestComponent or (or in the TestContext,
respectively) to be invoked during test execution. Thus, the expressions in the
TestAction have to be valid expressions in the scope of the respective TestComponent
and have to be specified accordingly – requiring the user to provide appropriate program-
code for the desired effects.

Hence, TestActions provide the user with a powerful and expressive tool to influence the
model execution tailored to the specific TestScenario. On the other hand, programming
skills are required to realize the desired effects of e.g. setting a SUT attribute's value,
establishing dedicated value checks, e.t.c.

TestAssignments and TestConditions aim at easing two important use cases of applying
TestActions to TestScenarios:

TestActions can be placed on TestComponent (and TestContext) instances only, but aren't
restricted w.r.t. permitted expressions. In contrast, TestAssignments (applicable to
TestComponent as well as SUT instances) and TestConditions (limited to SUT instances)
are aimed at supporting value assignments to attributes of the respective SUT instance and
offering support for simple value checks. Due to the dedicated use case of
TestAssignments and TestConditions, the supported syntax of the assignments and check-
conditions can be kept very simple and using TestAssignments and TestConditions hence
doesn't require complicated navigation expression programming:

Syntax of TestAssignment:

assignments ::= assignment {assignment}*

assignment ::= name = value

name ::= identifier | partidentifier.identifier

value will not be interpreted by parser

Syntax of TestCondition:

check ::= name relop value

 | check_op

 | partidentifier.check_op

check_op ::= IS_IN(stateidentifier)

name ::= identifier | partidentifier.identifier

relop ::= == | > | >= | <= | < | !=

126

value will not be interpreted by parser

Preconditions (for SysML/HarmonySE)
For SysML/HarmonySE models, i.e for SysML models that contain the HarmonySE
profile, TestConductor provides a special kind of condition, so-called preconditions. With
preconditions, in SysML/HarmonySE models one can set attributes of SUTs to specified
values. This is useful whenever the behavior of the SUT depends on values of local
attributes. In order to define a precondition in a TestScenario, add a condition on the life
line of the SUT instance that contains the attribute, write “<precond>” into the first line
of the condition's text, and specify the value the attribute should have in the next line:

Figure 29: <precond> Condition (HarmonySE)

In the example depicted above, a precondition is specified that defines value “12” for the
attribute “i1” and value “Peter” for attribute “s1” of block A. When executing the
TestCase, and TestConductor reaches the precondition, it sets the specified values for the
attributes. When the TestCase continues, now the behavior of the SUT reflects the new
values for the attributes. The usage of preconditions is restricted to SysML/HarmonySE
models. If multiple attributes should be set by a precondition, the attribute value
specification must be separated by newlines in the condition mark.

<precond> conditions are deprecated. Instead of <precond> conditions,
TestAssignments (cf. pages 125) should be used. TestAssignments are generally
supported in assertion based testing mode and are not limited to SysML/HarmonySE, but
can also be used in regular C and C++ models.

Using <check> Conditions / TestCondition
For assertion based testing mode, TestConductor supports the use case of testing attribute

values of the
SUT with a
specialized
variant of
TestActions:

127

Figure 30: <check> Condition

A condition with '<check>' mark in its first line followed by expressions of the form
'attributename relop value' – each of the expressions in a single line without
line feeds in the individual expression, can be used to check attributes of the SUT for
particular valuations. TestConductor will check this condition in the scope of the SUT.
The condition is evaluated according to the order of observations specified by the SD. In
particular, TestConductor will not wait unless the condition becomes true. If the condition
is not true at the moment of evaluating it, the TestCase will fail.

In order to use a '<check>' condition, choose “Condition Mark” in the drawing tool for
sequence diagram, write “<check>” into the first line of the condition's text and add the
conditions to be checked to the subsequent lines.

'<check>' conditions are deprecated – TestConditions as specialization of
TestActions have been introduced for the same purpose. The same as '<check>'
conditions, TestConditions aim at checking conditions in the scope of a SUT
instance-line – in particular checking the values of attributes in the SUT.
TestConditions are offered by a dedicated icon in the drawing tool bar of
TestScenarios. The figure above shows an example usage of a TestCondition testing
attribute x of class_0 having the value 1.

128

Figure 31: TestCondition

Using Interaction Operators in SD TestCases
(see also sample model

• Samples/CSamples/TestConductor/CSDOperators

• Samples/CSamples/TestConductor/CModelCodeCoverage

)

In assertion based testing mode, Interaction Operators can be used in TestScenarios when
specifying a TestCase. TestConductor supports the following Interaction Operators:

 opt
The “opt” Interaction Operator must have exactly one operand. Depending on the
condition of the operand, the scenario within the operand is considered or ignored
during TestCase execution.

 alt
“alt” can have one or more operands. Depending on the conditions of the
operands, at most one of the operands is chosen.

 loop
The “loop” operator must have exactly one operand. The operand is repeated as
long as the condition of the operand is true.

 break
The “break” operator must have exactly one operand. If the condition of the
operand is true, the scenario within the operand is considered and the remainder of
the sequence diagram or the enclosing Interaction Operator (if the “break”
operator is specified within another operator) is ignored.

 consider
“consider” must have exactly one operand. Normally TestConductor considers
all operations/events at least once specified within the sequence diagram. This
operator provides a possibility to specify that operations/events should only be
considered locally. Operations/events which are only specified within the operator,
but not in an enclosing sequence diagram/ Interaction Operator, are ignored
outside of the operator and only considered locally within the operator.

 parallel
The “parallel” Interaction Operator can be used to specify a parallel merge
between scenarios of different operands. The order within each operand must be
adhered to but messages from different operands may be interleaved.
The same message (i.e. messages having the same realization in the same
classifier) must not be specified in different operands. Messages of different
operands must not have the same realization in the same classifier, i.e. they are
realized by different operations or events or the receiving life-lines represent
different classifiers.

The execution semantics of Interaction Operators can be adapted by using the stereotype
<<RTC_OperatorInfo>> and the tag RTC_ImmediateEvaluation. By default it
will be waited until the SUT is idle before operand conditions are evaluated for an
operator. This is for example the desired behavior if the return value of a SUT operation

129

call right before an Interaction Operator is used in the condition of the Interaction
Operator.

But sometimes operand conditions of an operator have to be evaluated immediately
without waiting for some computation to finish before. To support this behavior,
stereotype <<RTC_OperatorInfo>> can be applied on the Interaction Operator and
its tag RTC_ImmediateEvaluation be checked.

Prior to Rhapsody version 8.2, the conditions of SD Interaction Operators were interpreted
directly in the TestCase arbiters, which are generated by 'Update
TestCase/TestContext/TestPackage' from the individual TestScenarios. The drawback of
this representation is that hence the conditions had to be specified relative to the scope of
the respective arbiter – making navigation expressions to e.g. member attributes of SUT or
TestContext more complex than necessary.

For Rhapsody 8.2, the strategy has changed: SD Interaction Operator conditions
conditions are generated to boolean functions in the TestContext and thus interpreted in
the scope of the TestContext. Thus SD Interaction Operator conditions can be specified
from the perspective of the TestContext and hence refer e.g to attributes of SUT or
TestContext quite more directly and with significantly shorter navigation expressions.

In order to keep existing TestCases in pre 8.2 models valid and to preserve their semantics,
the compatibility profile defines property
TestConductor::TestCase::EvaluateSDOperatorInArbiter and sets it
to True on existing TestCases. Overriding this property with False, enables the modified
treatment of SD Interaction Operator condition in the TestContext also for existing
models.

Using Serialize/Unserialize Functions for User
Defined Types

(see also sample model

• Samples/CppSamples/TestConductor/TestingCookbook/CppListUsage

)

Rhapsody can animate (display) the values of simple types and one-dimensional arrays.
However, if you want to animate a more complex type, the type must be converted to a
string (char *) for Rhapsody to display it. This can be done generally in two different
ways, either by using auto-generated serialization/unserialization functions or by using
manually defined serialization/unserialization functions.

Using auto generated serialization/unserialization functions
For enum types and structure types that are explicitly defined in the model, Rhapsody
provides the possibility to use automatically generated serialization/unserialization
functions in order to display values of these types e.g. in animated sequence diagrams. In
order to use the auto generated serialization/unserialization functions for a specific type
that is defined in the model, property
“{Lang_CG}.Type.GenerateSerializationFunctions” must be set to
“SerializationAndUnserialization”.

130

If this property is set to SerializationAndUnserizalization for a user defined
type, automatically generated serialization and unserialization functions can be used for
specifying argument values for message arguments of that type:

Using manually defined serialization/unserialization functions
Besides using the auto generated serialization/unserialization functions of Rhapsody, one
can also manually define serialization/unserialization functions. These functions are global
instrumentation functions, that takes one argument of the type you want to display, and
returns a char *. Further information can be found in the chapter Guidelines for Writing
Serialization Functions of the Rhapsody User Guide. The usage of serialization functions
for Testing is demonstrated by the sample model
“Samples/CppSamples/TestConductor/CppListUsage”. Please note that serialization
functions can only be used for testing purposes if the type that should be serialized is used
as an “existing type” in Rhapsody. If only the type signature is used to specify the type of
an argument type or return type, serialization functions cannot be used for testing.

131

Figure 32: {Lang}_CG.Type.SerializationAndUnserialization

Figure 33: Using Serialization

Failure Analysis
TestConductor detects and reports a failure if a message contained in the message set of a
sequence diagram does not appear in the specified order or if a RTC_ASSERT isn’t
fulfilled during test execution. A message from the message set is specified by its name,
the value(s) of its argument(s), the names of sending and receiving objects.

Failure analysis is an important but sometimes difficult task. This is due to the fact that
industrial-sized models show very complex behavior, with many messages flowing during
test execution.

All possible failures monitored by TestConductor can be caused:

• By errors in the model − the computed model behavior does not meet
requirements specified by a sequence diagram

• By inconsistencies in the test configuration or/and in the requirements

In case of using sequence diagrams for test definitions, the task of model debugging is
simplified by using TestConductor’s graphical failure reports. You can use a combination
of diverse Rhapsody analysis capabilities (for example, statechart animation, sequence
diagram animation, and sequence diagram comparison) with TestConductor to show test
executions as sequence diagrams. The colors and percentage information in the Execute
Test dialog are useful indicators in determining where the failure occurred.

Remember that during model execution TestConductor ignores all messages which are not
specified in the sequence diagram instances of the executed test. TestConductor treats a
test specification as violated

• The real order of message actions during model execution does not correspond to
specifications in sequence diagram instances.

• The real argument values (w.r.t. directions In, Out, InOut) of messages during
model execution do not correspond to those specified in the specification.

• The real return values of messages during model execution do not correspond to
those specified in the specification.

• Not all messages preceding the current message in the corresponding run-time
instance have already occurred.

• Some user defined assertion fails.

• An expected message does not appear and the TestCase is terminated by timeout.

132

Failure Analysis using Witness Scenarios
For TestScenario based TestCases, TestConductor offers with 'Show As SD' a powerful
feature for analyzing failed execution results: A witness TestScenario is created which
illustrates the successful part of the execution and the exact position of the observation
causing the failed result.

The witness TestScenario is a colored copy of the original TestScenario:

• Scenario elements that have already been observed in the executed application
according to the specification are shown in green. In particular, this means for
messages:

◦ argument (and return) values have been observed according to the
specification.

◦ message has been observed in the correct position in the observed sequence.

A green Interaction Occurrence indicates that the referenced TestScenario has
been fully traversed without violation of the test specification.

• Scenario elements that aren't yet observed or were omitted are shown in blue.

◦ note that in Black Box testing self-messages of the SUT are ignored. If self-
messages appeared in the specification, they are colored blue in the witness,
since self-messages of the SUT can't be observed in Black Box testing.

◦ if the TestCase got stuck in execution, all pending TestScenario elements will
be colored blue, since test execution was waiting for their occurrence but
didn't observe them until the TestCase was terminated.

A blue Interaction Occurrence indicates that the referenced TestScenario has not
been fully traversed.

• Scenario elements which were observed contradicting the specification are shown
in red.
If an argument or return value of a message differs from specification, per default
the observed value is shown in the witness scenario.
A red message indicates a failure. In the resulting exported sequence diagram, a
red message is annotated with a short explanation of the failure, which can be one
of the following:

◦ Unexpected occurrence of <msg>
for Event/Operation/dataflow message.

The value change, operation call or event reception was observed too early –
before other still pending observations have been made.

◦ Unexpected additional occurrence of <msg>
for Event/Operation/dataflow message.

A specified message – dataflow, operation call or event reception – was
additionally observed at an instant of time, when it was unexpected.

◦ Check of in value of argument <argument> failed
for Event/Operation/dataflow message.

133

The observed value of an operation input argument, an event parameter or a
dataflow value differs from the specified value or range for this message.

◦ Check of out value of argument <argument> failed
for Operation message.

The observed output value -after operation call – of an operation InOut or
Out argument differs from the specified value or range for this message.

◦ Check of return value failed
for Operation message.

Observed return value differs from specified return value or range.

◦ <Assertion> failed
a user defined assertion failed.

By default, TestConductor will report the actual argument or return value that
causes an argument or return value related assertion to fail in the witness
TestScenario29.

Failure Analysis for InteractionOccurrences
'Show As SD' shows a colored witness TestScenario containing all the original
TestScenario elements which have been monitored (green color) or which were omitted or
pending at the moment of witness creation (blue color), and also failed messages (red
color).

An Interaction Occurrence is colored green in the witness scenario if test execution fully
traversed the referenced TestScenario.

An Interaction Occurrence is colored red in the witness scenario, if the TestCase failed in
the referenced TestScenario.

It is colored blue if the execution omitted the Interaction Occurrence or if test execution
didn't complete the scenario specified by the Interaction Occurrence.

'Show As SD' will also generate a detailed witness for the TestScenario referenced by an
Interaction Occurrence. This witness can be found under the respective TestCase together
with the witness of the referencing TestScenario.

29provided that TestingConfiguration tag rtc_assert_handling is set to by_string.

134

The TestCase shown in figure 34 can be found in sample model
Samples/CppSamples/TestConductor/CppModelCodeCoverage.

Execution of the TestCase failed, 'Show As SD' is invoked:

135

Figure 34: TestScenario with InteractionOccurrence

Figure 35: Invocation of 'Show As SD'

Debugging TestCases
Debugging TestCases using Rhapsody's animation feature can be a powerful tool in failure
analysis when animation is available. See section Debugging TestCases on page 76.

Result Verification
see section Performing result verification for TestCase execution on page 68.

136

Figure 36: Witnesses for referencing and
refererenced TestScenario

Using TestConductor from
Eclipse

As an alternative to the standalone Rhapsody application, Rhapsody can also be used
directly from Eclipse (Rhapsody platform integration with Eclipse, see “Integrating
Rational Rhapsody and Eclipse” in the Rhapsody online documentation in the IBM
knowledge center). Also TestConductor can be used directly from Eclipse when using
Rhapsody platform integration with Eclipse; TestConductor does not support Rhapsody
work flow integration with Eclipse. In general, all TestConductor functionality can be used
when working with Eclipse. Similar to the standalone Rhapsody application, almost all
TestConductor functionality is available in context menus of Rhapsody elements, and this
holds also when working from Eclipse.

However, there are some differences that needs to be considered when using
TestConductor from Eclipse:

 In contrast to executing TestConductor from the standalone Rhapsody
application, the test execution windows of TestConductor are not always in
front of the Eclipse main window. Selecting the Eclipse main window may
hide the TestConductor test execution windows.

 In Eclipse, when creating a new TestArchitecture, TestConductor
automatically creates a new Eclipse configuration instead of a normal
Rhapsody configuration. Additionally, TestConductor automatically launches
the Eclipse New Project Wizard that can be used to create a new Eclipse
project that is connected to the created Eclipse configuration.

 TestConductor does not support Rhapsody work flow integration with Eclipse.

 TestConductor does not support computation of code coverage when using
Rhapsody platform integration with Eclipse.

137

TestConductor Rhapsody
Plugins

TestConductor installs some Rhapsody plugins with additional functionality. The plugins
are integrated in the TestConductor Testing Profile, this means the plugins are available for
Rhapsody projects containing the Testing Profile.

TestConductor Merge Coverage Reports Plugin
The plugin offers the functionality to merge several model coverage reports into one
combined report and to merge several code coverage reports into one combined report.

Note: The plugin supports only merging of model or code coverage reports which have
been created with Rhapsody 8.0.3 or higher. Merging of reports generated with previous
releases of Rhapsody is not supported.

Merging model coverage reports
This function can be invoked using the menu helper 'Merge Model Coverage Reports'. The
helper is available on TestPackages and supports multi selection. After invocation, the
helper collects all model coverage reports inside the selected TestPackage(s) and merges
them into one combined model coverage report which is added to the model. The
combined report contains a list of the merged reports.
If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages are selected the combined report is added to the joint parent
TestPackage of the selected TestPackages (if exist) or to a TestPackage
'MergeModelCoverageResults if the joint parent of the selected TestPackages is the project
itself.

138

Figure 37: Merging ModelCoverage
Results

Merging code coverage reports
This function can be invoked using the menu helper 'Merge Code Coverage Reports'. The
helper is available on TestPackages and on CodeCoverageResults and supports multi
selection. After invocation, the helper collects all code coverage reports inside the selected
TestPackage(s) or the selected CodeCoverageResults and merges them into one combined
code coverage report which is added to the model.
If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or CodeCoverageResults are selected the combined report is added
to the joint parent TestPackage of the selected elements (if exist) or to a TestPackage
'MergeCodeCoverageResults if the joint parent of the selected elements is the project.

Note: Merging of code coverage reports for one source code file is supported only if the
different incarnations of this source code file are the same. If for example operations have
been added or removed or if statecharts have been modified between the generation of the
code coverage reports to be merged, then the combined code coverage report will be
wrong (and the report contains a warning).

Merging requirement coverage reports
This function can be invoked using the menu helper 'Merge Requirement Coverage
Reports'. The helper is available on TestPackages and on RequirementCoverageResults
and supports multi selection. After invocation the helper collects all requirement coverage
reports inside the selected TestPackage(s) or the selected RequirementCoverageResults

139

Figure 38: Merging CodeCoverage Results

and merges them into one combined requirement coverage report which is added to the
model.

If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or RequirementCoverageResults are selected the combined report is
added to the joint parent TestPackage of the selected elements (if exists) or to a
TestPackage 'MergeRequirementCoverageResult' if the joint parent of the selected
elements is the project itself.

Note: Requirement coverage reports can only be merged if the settings the reports have
been generated with (stored in their model based testing tags) are identical. If the settings
of different requirement coverage reports are not compatible only a subset of the selected
requirement coverage reports are merged. Two additional tags, involved_coverage_results
(contains all the reports that are part of the merge result) and ignored_coverage_results
(contains all reports that are omitted from the merge process), are added to a resulting
requirement coverage result to document which reports are included in the merged report.

TestConductor Rhapsody Quality Manager Plugin
TestConductor TestCases can be referenced and executed from Rational Quality Manager.
A detailed description how to integrate Rational Quality Manager and TestConductor can
be found

In the document “RQMTestConductorAdapter_HowTo.pdf” in
<Rhapsody installation>/Doc/pdfbooks.

To improve the integration between TestConductor and RQM, this plugin introduces the
possibility to directly create and link RQM TestScripts while working with Rhapsody and
TestConductor. An additional Helper 'Create RQM TestScript' is available which is
applicable on TestCases, TestContexts and TestPackages.

After running the helper, the user has to specify the RQM server to connect to, user login
and password for the server as well as the ProjectArea where the TestScript should be
created.

140

Figure 39: RQM Connection

After that, a RQM command line TestScript will be created in the specified ProjectArea.
The required fields of the command line TestScript like the path to the used Rhapsody
model or the full model path to the element which should be tested are set automatically. If
additional options should be specified for the test, the necessary adaptions have to be done
manually.

If the model is located on a RDM (Rational Design Manager) Server, the execution
variables SERVER_URL, PROJECT_AREA_NAME, STREAM_NAME, USER_NAME
and PASSWORD are automatically added to the TestScript.

In RQM, the TestScript can now be executed using the TestConductor RQM Adapter as
described in the document “RQMTestConductorAdapter_HowTo.pdf”

Also a Hyperlink to the newly created RQM TestScript is added automatically underneath
the model element for which the helper has been called. Following the Hyperlink, the
RQM TestScript can be opened directly from Rhapsody.

Note: This functionality is not available when using Rhapsody in Eclipse platform
integration.

TestConductor Check Model Plugin
Rhapsody has a checker feature which provides the possibility to perform structural and
behavioral checks of the model. In addition to the predefined internal checks which are
included in Rhapsody, further external checks can be defined and added to the list of
checks.

The model checks can either be performed for the active configuration or for selected
classes (Tools -> Check Model). The TestConductor checks are also automatically invoked
from the code generation.

More information about Rhapsody model checks in general can be found in the Rhapsody
User Guide in the chapter 'Checks'.

If the TestingProfile is loaded, the external TestConductor model checks are available. For
these checks TestConductor is set as its domain.

The following TestConductor checks are currently available:

 Class needs to be 'Public': Check '{Lang}_CG.Class.Visibility' (Warning)

141

 For top-level TestPackages, the property 'CG.Class.GenerateImplicitConstructors'
needs to be true. (Warning)

 Getter Methods for Relations are not generated automatically. Check
'CG.Relation.GetGenerate' (Warning)

 In assertion based mode, configuration needs <<TestingConfiguration>>
stereotype (Warning)

 Relations are not initialized automatically. Check
'CG.Class.InitCleanUpRelations'.

 TestScenario contains unspecified life-lines (Warning)

 TestScenario contains unspecified messages (Warning)

 TestScenario contains unsupported interaction operator (Warning)

 There is user-defined function initRelations() that is not called automatically.
Check 'CG.Class.CallUserInitrelations'. (Warning)

142

Appendix
Definitions of the Rhapsody Testing Profile

Structure Overview
The Rhapsody Testing Profile is prearranged in four major packages with additional sub-
packages and the TestingProfile stereotype.

• Rhapsody Testing Profile (UML20TP) – contains the adaption of the basic
definitions taken from the UML TestingProfile. Detailed information on page 143

1. TestArchitecture

2. TestBehavior

• Rhapsody TestConductor (RTC) – detailed information on page 145

1. TestArchitecture

1. CppUnit

2. CUnit

3. Diagrams

4. SDReuse

5. TestRT

2. TestBehavior

3. TestDocumentation

• Automatic Test Generation (ATG)

1. Documentation

• Rhapsody Formal Testing (FormalTesting)

1. Architecture

UML Testing Profile (UML20TP) Package
The UML20TP package contains stereotypes and new terms derived from the official
UML Testing Profile. It consists of two major packages:

• TestArchitecture and

• TestBehavior

143

TestArchitecture Package
The TestArchitecture package consists of the stereotypes

• SUT
The system under test (SUT) is the component being tested. A SUT can consist of
several objects. The SUT is exercised via its public interface operations and events
by the TestComponents, the TestContext or the system environment (ENV).

• TestComponent
A TestComponent is a class of a test system. The TestComponent objects
(TestComponentInstances) realizes partially the behavior of a TestCase. An
instance of a TestComponent may have a set of interfaces which are used to
communicate via connections with other TestComponent instances or with SUT
objects. It also may have operations, so called driver operations (DriverOperations)
that can drive SUT operations or call events of the SUT and so called
StubOperations (StubOperations) which are able to generate necessary “stub”
return values.

• TestConfiguration
The TestConfiguration is a dependency to a code generation configuration.
Depending on this configuration the code for the complete TestContext including
its TestCases can be generated, built and executed.

• TestContext
A TestContext describes the context in which TestCases are executed. A
TestContext is responsible for defining the structure of the test system, i.e., which
TestComponent instances and which SUT objects exists and how they are
interconnected. The TestComponent instances and SUT objects are normally parts
of a TestContext. Since TestCases are operations of a TestContext, a TestCase can
access both the TestComponent instances and also the SUT objects.

TestBehavior Package
The TestBehavior package contains two stereotypes named

• TestCase
A TestCase is a specification of one case to test the system under test including
what to test. It defines the input stimuli and the expected results to be observed. It
implements a test objective. A TestCase is an operation of a TestContext (described
above).

• TestObjective
A TestObjective is a named element describing what should be tested. It is
associated to a TestCase.

144

TestConductor (RTC) Package

E.g. the term 'TestComponent' is defined in the UML TestingProfile 1.2
(http://www.omg.org/spec/UTP/1.2) as part of the test environment and is meant to be an
extension of class. For practical purposes TestConductor extends this terms also to
TestFiles (Rhapsody in C) and to TestComponentInstances (objects of TestComponents
instantiated as part of the TestContext) and TestComponentObjects (global objects of
TestComponents instantiated outside the TestContext). Such extensions of the UML
TestingProfile for practical purposes are collected in RTC::TestArchitecture and
RTC::TestBehavior instead of the UML20TP package and its sub packages).

The TestConductor (RTC) package consists of the packages

• TestArchitecture (page 145)
The TestArchitecture package contains further sub packages:

• TestRT – stereotypes and types for using Rational Test Realtime with
TestConductor – support for TestRT integration with TestConductor is
deprecated,

• CppUnit – definitions for integration of the CppUnit testing framework with
TestConductor (relevant for animation based testing mode only)

• Diagrams – in this sub package only the new term
<<TestContextDiagram>> (on structure diagram) is defined.

• CUnit – definitions for integration of the CUnit testing framework with
TestConductor (relevant for animation based testing mode only)

• SDReuse – see section Creating Sequence Diagram TestCases from existing
Scenarios using an explicit instance mapping on page 55 ff for a detailed
explanation of the new terms defined in this sub package.

• TestBehavior (page 150)

• TestDocumentation (page 154)

TestArchitecture Package
The TestArchitecture package contains the stereotypes:

• Sub package CppUnit – CppUnit-Testing is supported only in animation based
testing mode.
Sub packages CppUnit and CUnit contain stereotypes for the integration of
CppUnit and CUnit testing with Rhapsody.

 CppUnitConfig
Stereotype <<CppUnitConfig>> can be applied to a configuration and
provides a set of tags for customization of the CppUnit testing integration
with Rhapsody.

 CppUnitContext
Stereotype <<CppUnitContext>> can be applied to a class and sets
some properties for CppUnit testing integration. A TestContext can be

145

http://www.omg.org/spec/UTP/1.2

'changed to' CppUnitContext – and vice versa – by right-clicking a
TestContext and selecting “Change to > CppUnitContext”.

• Sub package CUnit - CUnit-Testing is supported only in animation based testing
mode.
Sub packages CppUnit and CUnit contain stereotypes for the integration of
CppUnit and CUnit testing with Rhapsody.

 CUnitConfig
Stereotype <<CUnitConfig>> can be applied to a configuration and
provides a set of tags for customization of the CUnit testing integration
with Rhapsody.

 CUnitContext
Stereotype <<CUnitContext>> can be applied to a class and sets some
properties for CUnit testing integration. A TestContext can be 'changed to'
CUnitContext – and vice versa – by right-clicking a TestContext and
selecting “Change to > CUnitContext”.

• Sub package Diagrams

 TestContextDiagram
A TestContext diagram (TestContextDiagram) is a structure diagram that
contains the SUT instances, the TestComponent instances and their
interconnections. It is used to define the structure of the TestContext
graphically.

The TestContext diagram is generated during the TestArchitecture
generation inside the TestContext.

• Sub package SDReuse

 ActiveSDMapping
Only one SDMapping can be active at any instant of time. The active
SDMapping is selected by setting this stereotype.

 maporigin
Stereotype on dependency. TestConductor adds such stereotyped
dependency on the respective source TestScenario or SequenceDiagram to
mapped TestScenarios.

 SDInstanceRealizationMapPair
New term on constraint. Simple mappings of individual classifiers to
classifiers, SDInstanceRealizationMapPair has two tags
'Origin' and 'Target' of type ModelElement. life-lines referring to
'Origin' shall be mapped to 'Target'.

 SDInstanceRealizationMerge
New term on constraint. Defines merging life-lines of a set of classifiers to
one life-line of a particular classifier.
SDInstanceRealizationMerge has a tag 'Target' denoting the
classifier for which the origins will be merged and arbitrary many
SDInstanceRealizationMergeOrigin elements

 SDInstanceRealizationMergeOrigin
New term on constraint. Defines tag 'Origin'. The set of

146

SDInstanceRealizationMergeOrigin elements belonging to a
SDInstanceRealizationMerge define the set of elements for
which the referring life-lines shall be merged to a life-line referring to
'Target' classifier.

 SDInstanceRealizationSplit
New term on constraint. Defines splitting life-lines of into a set of life-
lines of particular classifiers. SDInstanceRealizationSplit has
tag 'Origin' for defining, which Classifier shall be split and can have
arbitrary many SDInstanceRealizationSplitTargets

 SDInstanceRealizationSplitTarget
New term on constraint. Defines tag 'Target'. The set of
SDInstanceRealizationSplitTarget elements belonging to a
SDInstanceRealizationSplit define the set of classifiers to
which the life-lines referring to 'Origin' classifier shall be split.

 SDMapping
New term on constraint. The top level element of each mapping is an
SDMapping

 SDMappingTable
new term on Table View with layout SDMappingTable as defined in sub
package SDReuse.

• AUTOSAR_RTE

• AUTOSAR_RTEInstance

• Arbiter
Stereotype Arbiter is used by TestConductor for auto generated TestComponents
that control the execution of a SD TestCase.

• ArbiterInstance
Stereotype ArbiterInstance is used by TestConductor for TestComponent instances
that are instances of Arbiter TestComponents.

• ControlArbiter
Stereotype ControlArbiter is used by TestConductor to mark a dependency of a SD
TestCase on an Arbiter TestComponent that controls the SD TestCase.

• instantiated
Stereotype instantiated is used to label associations that are always instantiated
with a valid link during runtime. TestConductor interprets associations labeled with
this stereotype like links. <<instantiated>> associations are expected to own
a stereotyped dependency on the object to which the association will be initialized
at run time. This dependency will be stereotyped <<usedSUTObject>> if the
association points to an object used as SUT. It will be stereotyped
<<UsedTestComponentObject>> if the associations points to a
TestComponentObject.

• usedSUTObject
see <<instantiated>> stereotype on association ends.

• usedTestComponentObject
see <<instantiated>> stereotype on association ends.

147

• NoConsoleApp
Stereotype <<NoConsoleApp>> can be applied to configurations in order to
suppress opening a console when running the application. This stereotype has no
effect on <<TestingConfiguration>> code generation configurations and is
used only in animation based testing mode. In assertion based testing mode, a
NoConsoleApp tag of <<TestingConfiguration>> stereotype can be
used to suppress consoles for execution.

• ParameterTable
Stereotype <<ParameterTable>> is used to mark a controlled file as a
parameter table definition that contains values for all external test parameters of a
TestContext.

• replacement
Stereotype <<replacement>> is used to mark a dependency of a
TestComponent on the original class that is replaced by the TestComponent in the
TestArchitecture.

• greyboxreplacement
Stereotype <<greyboxreplacement>> is used to mark a dependency of a
<<TestSUT>> on the original class that is replaced by the <<TestSUT>> in the
TestArchitecture (for Grey Box Testing).

• greyboxinstancereplacement
Stereotype <<greyboxinstancereplacement>> is used to mark a
dependency of a SUT greybox object (implicit object) on the implicit object that is
replaced by the greybox SUT object in the TestArchitecture.

• instancereplacement
Stereotype <<instancereplacement>> is used to mark a dependency of a
TestComponentObject (implicit object) on the implicit object that is replaced by
the TestComponentObject in the TestArchitecture.

• filereplacement
Stereotype <<filereplacement>> is used to mark a dependency of a test file
on the original file that is replaced by the test file in the TestArchitecture
(Rhapsody in C).

• scheduled
Stereotype <<scheduled>> is used to mark a dependency of a TestContext on a
Scheduler TestComponent that controls the starting and stopping of TestCases of
the TestContext.

• Scheduler
Stereotype <<Scheduler>> is used to mark an auto generated TestComponent
that is used to control the activation and termination of TestCases.

• SCTCInstance
Stereotype <<SCTCInstance>> is used to mark a TestComponentInstance to be
an instance of a statechart TestCase TestComponent.

• stubbed
Stereotype <<stubbed>> is used to mark an operation of a TestComponent to be
stubbed, i.e., that the behavior of the operation has been changed for testing
purposes.

148

• Stub
Stereotype <<Stub>> prevents model elements in TestComponent,
TestComponentObject, TestFile, TestSUT, and TestSUTObject from being
modified by TestArchitecture update. TestArchitecture update will omit updating
model elements stereotyped <<Stub>>.

• TestActor
New term <<TestActor>> is used for TestComponents that have the role of an
actor in the TestArchitecture. Test actors replace actors for testing purposes.

• TestFile
New term <<TestFile>> is used for test files in the TestArchitecture. TestFiles
replace files of the design for testing purposes.

• TestComponentInstance
New term <<TestComponentInstance>> is used to specify instances of
TestComponents.

• TestComponentObject
New term <<TestComponentObject>> is used to stereotype copies of
implicit objects in the role of TestComponents.

• TestingConfiguration
Stereotype <<TestingConfiguration>> is used to mark a configuration that
is used for testing purposes. The stereotype <<TestingConfiguration>>
provides several tags that can be used in order to define specific settings for the
generated testing code (cf section Tags of the <<TestingConfiguration>>
Stereotype on 60)

• TestPackage
New term <<TestPackage>> represents a package that contains testing related
model elements, e.g. other TestPackages, TestContexts or TestCases. It allows
grouping of multiple test related elements into one package, and it can be used to
separate testing related elements from design related elements.

• TestParameter
Stereotype <<TestParameter>> is used to mark an attribute of a TestContext
to be a parameter that can be controlled by a TestingConfiguration by using a
<<ParameterTable>> controlled file.

• TestLink
Stereotype <<TestLink>> is a stereotype on links or connectors (SysML).
<<TestLink>> sets a code generation property that forces generation of link
initialization code for link, regardless of its location in the design/TestArchitecture
hierarchical. Normally, a link has to be located at least on the least level containing
the linked instances. Using stereotype <<TestLink>> allows TestConductor
defining the link locally to the TestArchitecture although the link refers to
instances anywhere in the browser hierarchy.

• use_ParameterTable
Stereotype <<use_ParameterTable>> is used to mark a dependency of a
TestingConfiguration on a <<ParameterTable>> controlled file in order to
specify that the TestingConfiguration shall apply the linked parameter table for the
test parameters of the TestContext for which the TestingConfiguration generates
code for.

149

• use_replacement
Stereotype <<use_replacement>> is used to mark a dependency of a
TestComponentInstance on a TestComponent that is a replacement of a design
class for testing purposes.

• use_greyboxreplacement
Stereotype <<use_greyboxreplacement>> is used to mark a dependency of
a SUT instance on a TestSUT – which is a replacement of a SUT class for Grey
Box testing purposes.

• use_greyboxinstancereplacement
Stereotype <<use_greyboxinstancereplacement>> is used to mark a
dependency of the TestContext on a TestSUTObject (i.e. a greybox replacement of
an implicit SUT object).

• use_instancereplacement
Stereotype <<use_instancereplacement>> is used to mark a dependency
of the TestContext on a <<TestComponentObject>> (i.e. a greybox
replacement of an implicit object used in the role of a TestComponent).

• use_filereplacement
Stereotype <<use_filereplacement>> is used to mark a dependency of a
TestContext on a test file indicating that this test file is used by the TestContext for
testing purposes.

• use_superclass
Stereotype <<use_superclass>> is used to mark a dependency of a
replacement on a replacement of its super class. If a replacement for a class with
generalization is introduced, then the generalization of the replacement always
refers to the original super class in the model, regardless of existing replacement
for the super class. A <<use_superclass>> stereotyped dependency is
introduced for navigation from a replacement to the replacement of its super class.

• TestSUT
New term <<TestSUT>> is used to mark a replacement class that is basically a
copy of the original SUT class (used only for Grey Box Testing).

• TestSUTObject
New term <<TestSUTObject>> is used to mark a replacement object (basically
a copy of the original implicit SUT object – used only for Grey Box Testing).

TestBehavior Package
The TestBehavior package is composed of a number of stereotypes like:

• call_virtual

• call_nonvirtual

• consideredTestCase

• CodeCoverageResult
A CodeCoverageResult is a document that reports the code coverage by one or
more TestCases. Code coverage computation is supported only for assertion based
testing mode. Code coverage can be enabled using tag ComputeCodeCoverage
on the TestingConfiguration.

150

• CoverageResult
A CoverageResult is a document that reports which model elements are covered by
one or more TestCases. This stereotype is maintained only for compatibility
reasons.

• CodeCoverageResultRef

• ModelCoverageResult
A ModelCoverageResult is a document that reports which model elements are
covered by one or more TestCases. Model coverage can be enabled using tag
ComputeModelCoverage on the TestingConfiguration for assertion based
testing mode. For animation based testing mode, model coverage is enabled by
property TestConductor.TestCase.ComputeCoverage.

• ModelCoverageResultRef

• RequirementCoverageResult

• RequirementCoverageResultRef

• ExecutedElement

• GeneralResult
Base stereotype of TestResult, ModelCoverageResult,
RequirementCoverageResult, CodeCoverageResult.

• GeneralResultRef
Stereotype on Hyperlink for unique treatment of results (cf.
<<GeneralResult>>).

• DefaultOperation
A DefaultOperation defines the default behavior of an operation of a
TestComponent. A TestCase in which the behavior of this operation is not
explicitly specified uses this default behavior in the current TestCase execution.

• DefaultTriggeredOperation
A DefaultTriggeredOperation defines the default behavior of a triggered operation
of a TestComponent. A TestCase in which the behavior of this triggered operation
is not explicitly specified uses this default behavior in the current TestCase
execution.

• DriverOperation
A DriverOperation is an operation of a TestComponent which is able to inject input
stimuli to the SUT objects. It is generated automatically by TestConductor for the
TestComponent class that calls a message of a SUT object defined in a sequence
diagram. During execution of the TestCase, TestConductor calls the driver
operation, and as a result the TestComponent stimulates the SUT as it is described
in the used sequence diagram.

• RTC_InstInfo
The stereotype RTC_InstInfo contains two tags RTC_IgnoreSCBehavior and
RTC_Monitor. When adding this stereotype to a life-line of a TestScenario, the user
can set these tags. TestConductor uses these tags when executing the test. If the tag
RTC_IgnoreSCBehavior is set, TestConductor ignores the normal statechart
behavior of the tagged instance. If the tag RTC_Monitor is set, TestConductor just
monitors all messages starting from the tagged instance.

151

• RTC_MsgInfo
The stereotype RTC_MsgInfo contains tags RTC_Monitor, RTC_Receiver, etc.
When adding this stereotype to a message in a TestScenario, the user can set these
tags. If the tag RTC_Monitor is set, the tagged message is just monitored by
TestConductor. If the tag RTC_Receiver is set, the tagged value is used as the real
receiver instance of the tagged message. If the tag RTC_DriverCallCode is set,
TestConductor generates the string contained in this tag instead of the standard call
code TestConductor generates for driver operations. If the tag RTC_InitCode is set,
TestConductor generates the string contained in this tag instead of the standard init
code TestConductor generates for driver operations. If the tag RTC_MsgId is set,
the specified string is used to reference the message in macros
RTC_ASSERT_SD_NAME. If the tag RTC_StubBodyCode is used,
TestConductor generates the string contained in this tag instead of the standard stub
code TestConductor generates for StubOperations. For further information please
read the chapter User Defined DriverOperation at page 119.

• RTC_OperatorInfo
Stereotype applicable on InteractionOperator (cf. section Using Interaction
Operators in SD TestCases on page 129 ff).

• RTC_RefInfo
The stereotype RTC_RefInfo is used internally for unique identification of
messages in sequence diagrams which are referenced by other sequence diagrams.

• RemoteRequirementReference

• SDInstance
A sequence diagram instance (SDInstance) represents one instance of a
TestScenario. When using a sequence diagram for testing purposes, several
parameters must be defined that influence the behavior of a TestCase. A
combination of a sequence diagram with such a set of parameters forms a sequence
diagram instance.

• SelfMessageRealizationInParts
Stereotype applicable to SequenceDiagram. If stereotype is set, Rhapsody's SD
Editor offers for message realizations not only the interface items of the classifier
itself that is represented by the receiver life line, but also the receptions and
operations of parts of the respective classifier.
<<SelfMessageRealizationInParts>> is used in GreyBox testing for
specifying scenarios involving also parts in the SUT.

• StatechartTestCase
Stereotype is used to stereotype the dependency of a statechart TestCase on the
TestComponent owning the statechart defining the test.

• StubbedOperation
A stubbed operation is an operation for which at least one TestCase specifies a
behavior that is different from the default behavior. The different behavior is stored
in a stub-operation. The stubbed operation decides at runtime depending on the
executed TestCase if either the default behavior should be executed or a specific
stub-operation.

• StubOperation
A StubOperation is a replacement of an operation of a TestComponent class for an
individual call. It realizes the code for the individual operation call return value

152

specified in the referenced sequence diagram. The code of the StubOperation is
generated automatically by TestConductor.

• TCRequirementCoverageDocument

• considerForCoverage
Normally, the coverage scope is automatically computed w.r.t. to the
CoverageKind tag of the <<TestingConfiguration>> code generation
configuration (cf. Tags of the <<TestingConfiguration>> Stereotype on page 60
and section Choosing the Coverage Kind for Model Coverage on page 81). In order
to force a class, object or file to be considered in coverage scope computation, a
<<considerForCoverage>> dependency on the respective model element
can be added to the TestContext.

• considerNotForCoverage
Normally, the coverage scope is automatically computed w.r.t. to the
CoverageKind tag of the <<TestingConfiguration>> code generation
configuration (cf. Tags of the <<TestingConfiguration>> Stereotype on page 60
and section Choosing the Coverage Kind for Model Coverage on page 81). In order
to disregard a class, object or file that is by default considered in coverage scope
computation, a <<considerNotForCoverage>> dependency on the
respective model element can be added to the TestContext.

• TestAction
A TestAction is an action block that can be placed on life lines in TestScenarios.
There are different kinds of TestActions: <InitAction>, <PreCallAction>,
<CallAction>, <PostCallAction>, <StubAction>. Inside these actions, one can
place e.g. assertions to perform complex checks on output values (return or out
arguments), or one can write code that initializes complex input data.
These kinds of TestActions correspond to the tags of <<RTC_MsgInfo>>

 <InitAction> - RTC_DriverInitCode

 <PreCallAction> - RTC_DriverInitCodeAdditional

 <CallAction> - RTC_DriverCallCode

 <PostCallAction> - RTC_DriverCallCodeAdditional

 <StubAction> - RTC_StubBodyCode

Note, that both specification techniques are mutual exclusive. If such TestActions
are used in order to determine the code populated for the respective message, the
RTC_MsgInfo tags are ignored for this message.
See section (general) TestActions, TestAssignments and TestConditions on page
125 and Influencing DriverOperation and Stub generation using TestActions in
TestScenarios on page 122 for details.

• TestAssignment
A TestAssignment is a special form of a TestAction that can be placed on a SUT
instance line in a TestScenario in order to assign an attribute of the SUT a
particular value during test execution. See section (general) TestActions,
TestAssignments and TestConditions on page 125 for details.

• TestCondition
A TestCondition is a special form of a TestAction that can be placed on a SUT

153

instance line in a TestScenario in order to check the value of an attribute of the
SUT during test execution. See section (general) TestActions, TestAssignments and
TestConditions on page 125 for details.

• TestResult
A test result (TestResult) represents an outcome of an execution of a TestCase. It is
a textual report that contains detailed information about the TestCase execution,
e.g. if the TestCase has passed or failed.

• TestResultref

• TestScenario
The stereotype TestScenario (TestScenario) contains two tags
RTC_ActivationCondition and RTC_SDParameters. When adding this stereotype
to a TestScenario, the user can set these tags. With the tag
RTC_ActivationCondition the user can specify the activation condition of the
sequence diagram. With the tag RTC_SDParameters the user can set the parameters
of the sequence diagram.

• Unrealized
Messages with stereotype Unrealized are filtered out and ignored during test
execution. See also section Message Realization on page 110).

• WitnessScenario
TestScenario witnesses obtained by 'Show as SD' (cf. section Failure Analysis
using Witness Scenarios on page 133) or generated due to
<<TestingConfiguration>> tag
CreateWitnessScenariosForFailedSDTestCase (cf. section Tags of
the <<TestingConfiguration>> Stereotype on page 60) are stereotyped
<<WitnessScenario>>.

• nopublicwrapper
Although a lot of code generation related properties are regarded for generation of
public wrappers for private (and protected) operations, the feature TestConductor
Support for Testing Private Operations in Rhapsody in C and TestConductor
Support for Testing Private and Protected Operations in Rhapsody in C++,
respectively (cf. pages 46 and 47, respectively) may produce not compilable code
under some circumstances. I such cases, stereotype <<nopublicwrapper>>
can be applied on individual functions of the class or object to be tested, in order to
omit public wrapper generation for the respective function.

TestDocumentation Package
The TestDocumentation package contains a Matrix-Layout TestRequirementCoverage and
Table-Layouts TestResultTable and TestCaseResultTable for presenting test relations with
requirements and test execution results in matrix and table notation.

The layouts can be chosen as layout in the features dialog of matrix and table views,
respectively.

The Rhapsody Testing Profile also defines the following new terms to ease the use of these
matrix and table definitions:

• TestRequirementMatrix

154

• TestResultTable

• TestCaseResultTable

For example, a TestRequirementMatrix view can simply be added to a package by using
the context menu item 'Add New->TestingProfile->TestRequirementMatrix' on the
package.

A TestRequirementMatrix shows in an array view if and how requirements are tested by
TestCases. The left hand side of the array shows all existing TestCases. The upper side
shows all the requirements. The cells contain an entry if a TestObjective from the TestCase
to the requirement exists in the model, for instance from TestCase Code_tc_0 to
requirement REQ1.

A TestResultTable shows in a table form the existing TestCases and their current result
values. The left column of the table shows all existing TestCases. The right column shows
the current TestCase results, for instance verdict Passed for TestCase Code_tc_0.

Automatic Test Generation (ATG) Package
The ATG package consists of several stereotypes which are enhancements to the UML
Testing Profile. For more information about the ATG package and its stereotypes please
refer also the Rhapsody Automatic Test Generation (ATG) User Guide.

Formal Testing Package
The FormalTesting package consists of several stereotypes which are enhancements to the
UML Testing Profile to support Formal Testing using the Rhapsody Formal Testing add
on. For more information about the stereotypes of this package please refer to the
documentation of the add on.

155

TestConductor Assert Macros (C/C++)
(see also TestingCookbook:

• “Which assertions can I use in the test case specification?”

)

As described in chapter TestCase Definition with Code on page 42 and in chapter TestCase
Definition with Flow Charts on page 43 and in chapter TestCase Definition with
Statecharts on page 43, pre-defined assertion macros are used to get results from a
TestCase execution.

TestConductor defines several assertion macros (C/C++) listed below. Each macro might
have one up to four arguments with the following notation:

n = Name of the assertion (String, e.g. „Check 1“)
e, e1, e2 = Boolean Expression (e.g. i != 23)
p = text of message printed in the sequence diagram
sd_instance_name = Reference to the instance name of the sequence diagram
msgid = Reference to the message id of a message in the sequence diagram

• RTC_ASSERT (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED.

• RTC_ASSERT_FATAL (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED. If it is
failed, the TestCase is aborted immediately without executing further assertions.

• RTC_ASSERT_NAME (n, e)
Named assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e!=0), otherwise the assertion FAILED.

• RTC_ASSERT_NAME _FATAL(n, e)
Named fatal assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e!=0), otherwise the assertion FAILED. If it is failed, the TestCase is
aborted immediately without executing further assertions.

• RTC_ASSERT_SD (sd_instance_name, msgid, e)
Assertion that can be used in TestScenarios. If such an assertion is used in e.g. a
driver operation or a StubOperation, and sd_instance_name refers to a
sequence diagram instance, and msgid refers to a message id of a message in the
sequence diagram of the sequence diagram instance then the result of evaluating
expression e will be associated with the designated message.

• RTC_ASSERT_SD_NAME (sd_instance_name, msgid, p, e)
Similar to RTC_ASSERT_SD. The user has to define the string argument p ,(e.g.
p=”Evaluation of my return value” which will be concatenated with the result of

156

the assert macro (PASSED, FAILED etc.) and printed as result message, e.g.
“Evaluation of my return value failed.” 30

• RTC_ASSERT_SD_NAME_ACTUAL(sd_instance_name, msgid, p,
e, a)31

Similar to RTC_ASSERT_SD. The user has to define the string argument p ,(e.g.
p=”Evaluation of my return value” which will be concatenated with the result of
the assert macro (PASSED, FAILED etc.) and printed as result message, e.g.
“Evaluation of my return value (Actual value: a) failed.”, where a is the actual
value provided by argument a of the assertion32.

• RTC_ASSERT_TRUE (n, e)
This assertion with name n is PASSED, if e == TRUE. Otherwise the result of
the assertion is FAILED.

• RTC_ASSERT_FALSE (n, e)
This assertion with name n is PASSED, if e == FALSE. Otherwise the result of
the assertion is FAILED.

• RTC_ASSERT_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if e1 == e2. Otherwise the result of the
assertion is FAILED.

• RTC_ASSERT_NOT_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if e1 != e2. Otherwise the result of the
assertion is FAILED.

• RTC_ASSERT_PTR_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if pointer e1 and pointer e2 are equal (e1
== e2). Otherwise the result of the assertion is FAILED.

30 For an example consider e.g. TestCase SD_tc_0 in
Sample/CppSamples/TestConductor/CppModelCodeCoverage. After updating the TestCase, the assertion will
appear in StubbedOperation TPkg_Calc::TCon_Calc_Architecture::Display::show(double
val).
In order to let the assertion fail, add another 'addVal(val=2.0)' message from the DummyDriver to the SUT
below sending of 'show(val=3.14)'.

31For Rhapsody in C++ only this one assertion macro is sufficient. For Rhapsody in C the similar functionality is
provided by a set of macros:
RTC_ASSERT_SD_NAME_ACTUAL_I(s, m, p, e, a) – for integer a
RTC_ASSERT_SD_NAME_ACTUAL_LI(s, m, p, e, a) – for long a
RTC_ASSERT_SD_NAME_ACTUAL_LLI(s, m, p, e, a) – for long long a
RTC_ASSERT_SD_NAME_ACTUAL_U(s, m, p, e, a) – for unsigned int a
RTC_ASSERT_SD_NAME_ACTUAL_LU(s, m, p, e, a) – for unsigned long a
RTC_ASSERT_SD_NAME_ACTUAL_LLU(s, m, p, e, a) – for unsigned long long a
RTC_ASSERT_SD_NAME_ACTUAL_G(s, m, p, e, a) – for double a
RTC_ASSERT_SD_NAME_ACTUAL_LG(s, m, p, e, a) – for long double a
RTC_ASSERT_SD_NAME_ACTUAL_S(s, m, p, e, a) – for actual value a to be displayed provided by
char* (requires explicit serialization in macro call)

32 For an example consider e.g. TestCase SD_tc_0 in
Sample/CppSamples/TestConductor/CppModelCodeCoverage: modify argument of show-message to display, s.t.
the TestCase will fail. Use e.g. 'show(val=3.145)' instead of 'show(val=3.14)'. After updating the TestCase, the
assertion will appear in StubOperation
TPkg_Calc::TCon_Calc_Architecture::Display::SD_tc_stub_show_1(double val)

157

• RTC_ASSERT_PTR_NOT_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if pointer e1 and pointer e2 not equal (e1
!= e2). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_PTR_NULL (n, e1)
This assertion with name n is PASSED, if the pointer e1 is NULL. Otherwise the
result of the assertion is FAILED.

• RTC_ASSERT_PTR_NOT_NULL (n, e1)
This assertion with name n is PASSED, if the pointer is not NULL. Otherwise the
result of the assertion is FAILED.

• RTC_ASSERT_CPTRSTRING_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if the string compare is equal
(strcmp(e1,e2) == 0). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_CPTRSTRING_NOT_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if the string compare is not equal
(strcmp(e1,e2) != 0). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_STRING_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if the comparison of the strings e1 and e2
is equal (e1 == e2). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_STRING_NOT_EQUAL (n, e1, e2)
This assertion with name n is PASSED, if the comparison of the strings e1 and e2
is not equal (e1 != e2). Otherwise the result of the assertion is FAILED.

Using IntelliVisor for TestConductor Assert Macros
TestConductor supports the usage of the IntelliVisor functionality of Rhapsody. To be able
to use this for the defined TestConductor Assert Macros, you have to prepare Rhapsody’s
site.prp file. Please do the following steps:

• Close Rhapsody if it is open.

• Copy the file rtc.prp from the ..\TestConductor folder to the ..\Share\Properties
folder of your Rhapsody installation.

• Open the site.prp file and add Include "rtc.prp".

• Save the site.prp file and open Rhapsody.

Using Ctrl+Space in a code based TestCase definition (Flowchart TestCase or Code
TestCase) the known IntelliVisor list box opens. With the modifications above you are
able to select one of the defined TestConductor Assert Macros. Selecting one of the
macros also shows a hint that gives you information about the parameters of the macro.

158

Figure 40: IntelliVisor with TestConductor Assert Macros

A double-click on the macro adds this to the code. For example you have chosen the
RTC_ASSERT_NAME macro the following code will be added:

Now you have to replace the string “assertion name” and the expression to that expression
you want to check.

159

Testing AUTOSAR Models

Unit testing of AUTOSAR Software Components
(See also TestingCookbook:

• “How can I test AUTOSAR models?”

)

TestConductor allows unit testing of AUTOSAR Software Components on the host
system, supported are AUTOSAR versions 3.1, 3.2 and 4.0. When applying “Create
TestArchitecture” on a Software Component, TestConductor automatically creates
TestComponents for the ports of the SUT and also a Run Time Environment (Rte)
TestComponent. To be able to generate the Rte matching to the SUT, the model should
contain a corresponding Internal Behavior for the tested Software Component. Otherwise,
it might be needed to manually add functions to the Rte to complete it.

After creating an SD based TestCase, the communication of the SUT can be specified by
drawing messages between the SUT and the TestComponents created for the ports. When
updating the TestCase, TestConductor adds the implementation of the specified behavior
to the Rte TestComponent.

The scope of the code generation component created for testing does not contain the SUT
itself. When generating code, the implementation and specification files of the SUT are
not generated. Because of this, the path to the implementation file of the SUT has to be
entered in the Additional Sources of the code generation component or configuration.
Also, the path to the specification file of the SUT needs to be added as Include Path.

To compile the tested application, some specification files containing definitions from the
AUTOSAR standard are needed. The TestConductor installation contains a set of these
files for compilation on a Windows host. These files are located in the folder
Share/../TestConductor/AUTOSAR_RTE. The path to the AUTOSAR specification files

160

Figure 41: Adding Include Path and Additional
Sources

also needs to be added as Include Path of the code generation configuration or component.
If further self defined data types are used, definitions of these data types must be added
manually, too.

When testing AUTOSAR Software Components, some limitations should be considered:

 For AUTOSAR, animation is not available so TestConductor cannot compute
model coverage.

 Computation of code coverage is not supported.

 Testing of AUTOSAR Software Components is supported only for AssertionBased
testing mode.

As an example of how AUTOSAR Software Components can be tested with
TestConductor, please have a look at the sample “LightsManager” in the folder
“Samples/CSamples/TestConductor/TestingCookbook” (AUTOSAR 3.1).

As mentioned before, TestConductor automatically creates a Rte during TestArchitecture
creation. There are some differences depending on the AUTOSAR version.

AUTOSAR 3.1/3.2 Rte

The following Rte operations are currently created automatically by TestConductor for
AUTOSAR version 3.1/3.2:

 Std_ReturnType
Rte_Send_<port>_<dataElementPrototype>(In data)

If the SUT has a senderPort, such an operation is created for each
DataElementPrototype of the port interface if the tag isQueued of the
DataElementPrototype has the value true.

 Std_ReturnType
Rte_Write_<port>_<dataElementPrototype>(In data)

If the SUT has a senderPort, such an operation is created for each
DataElementPrototype of the port interface if the tag isQueued of the
DataElementPrototype has the value false.

161

Figure 42: Include Path for AUTOSAR_RTE

 Std_ReturnType
Rte_Receive_<port>_<dataElementPrototype>(Out data)

If the SUT has a receiverPort, such an operation is created for each
DataElementPrototype of the port interface if the tag isQueued of the
DataElementPrototype has the value true.

 Std_ReturnType
Rte_Read_<port>_<dataElementPrototype>(Out data)

If the SUT has a receiverPort, such an operation is created for each
DataElementPrototype of the port interface if the tag isQueued of the
DataElementPrototype has the value false.

 Std_ReturnType Rte_Call_<port>_<operation>(param_1,
…,param_n)

If the SUT has a clientPort, such an operation is created for each
OperationPrototype of the port interface.

 <return> Rte_IRead_<runnableEntity>_<port>_<dataElem>()

If a RunnableEntity has DataReadAccess referring to a DataElementPrototype
such an operation is created.

 void Rte_IWrite_<runnableEntity>_<port>_<dataElem>(In
data)

If a RunnableEntity has DataWriteAccess referring to a DataElementPrototype
such an operation is created.

 <return>
Rte_IrvRead_<runnableEntity>_<interRunnableVar>()

If a RunnableEntity is referring to a read InterRunnableVariable and the tag
communicationApproach of the variable has the value explicit, such an operation
is created.

 void Rte_IrvWrite_<runnableEntity>_<interRunnableVar>
(In data)

If a RunnableEntity is referring to a written InterRunnableVariable and the tag
communicationApproach of the variable has the value explicit, such an operation
is created.

 <return>
Rte_IrvIRead_<runnableEntity>_<interRunnableVar>()

If a RunnableEntity is referring to a read InterRunnableVariable and the tag
communicationApproach of the variable has the value implicit, such an operation
is created.

 void Rte_IrvIWrite_<runnableEntity>_<interRunnableVar>
(In data)

162

If a RunnableEntity is referring to a written InterRunnableVariable and the tag
communicationApproach of the variable has the value implicit, such an operation
is created.

 void Rte_Enter_<exclusiveArea>()

Such an operation is created for each ExclusiveArea.

 void Rte_Exit_<exclusiveArea>()

Such an operation is created for each ExclusiveArea.

The following types of Rte operations are currently not created by TestConductor:

 Rte_Ports

 Rte_NPorts

 Rte_Port

 Rte_Switch

 Rte_Invalidate

 Rte_Feedback

 Rte_Result

 Rte_Pim

 Rte_CData

 Rte_Calprm

 Rte_IWriteRef

 Rte_IInvalidate

 Rte_IStatus

 Rte_Mode

If a SUT operation should be called periodically during TestCase execution, a
TimingEvent has to be added to the InternalBehavior. This TimingEvent must refer to a
RunnableEntity and the tag symbol of this RunnableEntity must be set to define the name
of the operation to be called periodically. How often the operation has to be called is
defined by the tag period of the TimingEvent.

AUTOSAR 4.0 Rte

The following Rte operations are currently created automatically by TestConductor for
AUTOSAR version 4.0.

 Std_ReturnType Rte_Send_<port>_<dataElement>(In data)

If the SUT has a dataSenderPort, such an operation is created for each
DataElement of the port interface which has event semantics (the tag
swImplPolicy has the value queued for a SwDataDefPropsVariant of a
SwDataDefProps defined for the DataElement).

163

 Std_ReturnType Rte_Write_<port>_<dataElement>(In data)

If the SUT has a dataSenderPort, such an operation is created for each
DataElement of the port interface which does not have event semantics.

 Std_ReturnType Rte_Receive_<port>_<dataElement>(Out
data)

If the SUT has a dataReceiverPort, such an operation is created for each
DataElement of the port interface which has event semantics (the tag
swImplPolicy has the value queued for a SwDataDefPropsVariant of a
SwDataDefProps defined for the DataElement).

 Std_ReturnType Rte_Read_<port>_<dataElement>(Out data)

If the SUT has a dataReceiverPort, such an operation is created for each
DataElement of the port interface which does not have event semantics.

 Std_ReturnType Rte_Call_<port>_<operation>(param_1,
…,param_n)

If the SUT has a clientPort, such an operation is created for each
ClientServerOperation of the port interface.

 <return> Rte_DRead_<port>_<dataElement>()

If a RunnableEntity is referring to a dataElement with data semantics in the
dataReceivePointByValue role, such an operation is created.

 <return> Rte_IRead_<runnableEntity>_<port>_<dataElem>()

If a RunnableEntity is referring to a dataElement via dataReadAccess, such an
operation is created.

 void Rte_IWrite_<runnableEntity>_<port>_<dataElem>(In
data)

If a RunnableEntity is referring to a dataElement via dataWriteAccess, such an
operation is created.

 <return>
Rte_IrvRead_<runnableEntity>_<interRunnableVar>()

If a RunnableEntity is referring to an explicitInterRunnableVariable as
readLocalVariable, such an operation is created.

 void Rte_IrvWrite_<runnableEntity>_<interRunnableVar>
(In data)

If a RunnableEntity is referring to an explicitInterRunnableVariable as
writtenLocalVariable, such an operation is created.

 <return>
Rte_IrvIRead_<runnableEntity>_<interRunnableVar>()

If a RunnableEntity is referring to an ImplicitInterRunnableVariable as
readLocalVariable, such an operation is created.

164

 void Rte_IrvIWrite_<runnableEntity>_<interRunnableVar>
(In data)

If a RunnableEntity is referring to an ImplicitInterRunnableVariable as
writtenLocalVariable, such an operation is created.

 void Rte_Enter_<exclusiveArea>()

Such an operation is created for each ExclusiveArea.

 void Rte_Exit_<exclusiveArea>()

Such an operation is created for each ExclusiveArea.

The following types of Rte operations are currently not created by TestConductor:

 Rte_Ports

 Rte_NPorts

 Rte_Port

 Rte_Switch

 Rte_Invalidate

 Rte_Feedback

 Rte_SwitchAck

 Rte_Result

 Rte_Pim

 Rte_CData

 Rte_Prm

 Rte_IWriteRef

 Rte_IInvalidate

 Rte_IStatus

 Rte_Mode

 Rte_Trigger

 Rte_IrTrigger

 Rte_IFeedback

 Rte_IsUpdated

If a SUT operation should be called periodically during TestCase execution, a
TimingEvent has to be added to the InternalBehavior. This TimingEvent must refer to a
RunnableEntity and the tag symbol of this RunnableEntity must be set to define the name
of the operation to be called periodically. How often the operation has to be called is
defined by the tag period of the TimingEvent.

165

Migrating animation based TestArchitecture to
assertion based TestArchitecture

There are several differences between an assertion based and an animation based
TestArchitecture, so an animation based TestArchitecture cannot be converted into an
animation based TestArchitecture just by changing the property
“TestConductor.Settings.TestingMode”. Instead, it is recommended to create a new
TestArchitecture and to create new TestCases based on the original ones.

To manually migrate an animation based into an assertion based TestArchitecture, the
following approach should be applied:

• Make sure the project property “TestConductor.Settings.TestingMode” is set to
“AssertionBased”.

• Create a new TestArchitecture for the class, file or object which was tested by the
animation based TestArchitecture.

• Migrate the TestCases of the original TestArchitecture one after another. For the
different kinds of TestCases, the following migration steps should be applied:

◦ Code based TestCases
A code based TestCase can be copied to the new assertion based
TestArchitecture. It is recommended to inspect the code of the TestCase and
check for references of TestComponents which might have a different name.

◦ Flowchart based TestCases
A flowchart based TestCase can be copied to the new assertion based
TestArchitecture. It is recommended to inspect the code of the TestCase and
check for references of TestComponents which might have a different name.

◦ Statechart based TestCase
A statechart based TestCase should be migrated this way:

▪ Create a new TestCase by applying the helper “Create Statechart
TestCase” on the new TestContext.

▪ Select all elements in the new statechart and delete them

▪ Open the statechart of the original TestCase

▪ Select all elements in the old statechart and copy them into the new
statechart

▪ Adjust the first transition in the statechart (from state “Initial” to state
“state_1”):
For language C++: Select “evTCStart” from the new TestPackage as the
trigger of the transition and remove the line “itsTCon->rtc_init()” from
the Action of the transition.
For language C: Select “evTCStart” from the new TestPackage as the
trigger of the transition and remove the line
“TCon_<name>_rtc_init(me->itsTCon)” from the Action of the transition.

166

▪ Adjust the last transition in the statechart (from state “final” to the
termination state):
For language C++: In the Action of the transition, change line
“itsTCon->rtc_exit()” to “itsTCon->finishTestCase()”.
For language C: In the Action of the transition, change line
“TCon_<name>_rtc_exit(me->itsTCon)” to
“Tcon_<name>_finishTestCase(me->itsTCon)”.

◦ Sequence diagram based TestCase
A sequence diagram based TestCase should be migrated this way:

▪ If the old and the new TestArchitecture have similar TestComponents, the
TestCase wizard can be used to create a new TestCased based on the
TestScenario of the old TestCase. To do this, right click the original
TestScenario and select “Create TestCase...”. In the dialog, the destination
TestContext can be selected: If the new TestContext of the assertion based
TestArchitecture is listed, select the new TestContext and confirm the
creation of a new TestCase by clicking the Ok button. The wizard will
create a new TestCase in the animation based TestArchitecture, based on
the original TestScenario.

▪ If the wizard cannot match the TestComponentInstances of the animation
based TestArchitectures with the TestComponentInstances of the assertion
based TestArchitecture, the sequence diagram based TestCases need to be
migrated manually. To do so, create a new new TestCase by applying the
helper “Create SD TestCase” on the new TestContext. Then add the
messages of the original TestScenario one after another.

Automatic Migration of animation based TestArchitectures to
assertion based Testing mode

When updating a TestContext of an animation based TestArchitecture, TestConductor
checks for applicability of automatic migration to assertion based testing mode. Automatic
migration is applicable to animation based TestArchitecture whose SUT is only connected
to TestComponents via ports or whose SUT only has instantiated associations to
interfaces.
If the TestArchitecture fulfills these applicability criteria, automatic migration is offered to
the user in a dialog. If the user confirms the attempt of migration, a new TestArchitecture
is created from a copy of the animation based architecture. A report of the migration steps
– including warnings and potential problems – is issued on the console and stored
additionally in a comment below the newly created TestContext. After application of
migration or if the user doesn't confirm the attempt to migration, property
TestConductor.TestContext.MigrateToAssertionBasedMode (with value 'False', unchecked
boolean property) is added to the TestContext of the animation based old
TestArchitecture. Automatic migration isn't offered to the user for this TestContext again
unless property TestConductor.TestContext.MigrateToAssertionBasedMode is checked,
i.e.set to 'True'.

In particular SD TestCases may be affected by several limitations of the assertion based
TestingMode:

• assertion based execution only supports linearly ordered SDInstances.

167

• assertion based execution only supports 'driving and monitoring' SDInstances.

• assertion based execution only supports SDTestCases with single SDInstances.

• multiple iteration of SDInstances isn't supported in assertion based execution.

• ordered predecessors aren't supported by assertion based execution.

Potential problems are reported on the console and these migration messages are also
recorded in a comment that is stored below the TestContext in the new TestArchitecture
obtained by automatic migration. Note, that most TestConductor.TestCase properties aren't
regarded in assertion based execution.

Functional Limitations

• TestConductor cannot generate stubs, if the signature of overwritten operations in
an inheritance hierarchy do not syntactically match to the related operation in the
base class (for instance, due to different typedef-types to the same base type)

• The auto-generated code for driver- or stub-operations could be semantically
incorrect, if non-default values for the properties CPP_CG::{Class,
Type}::{In, Out, InOut} are used. Note that incorrectly generated code
could be overwritten by setting the tag RTC_DriverCallCode, RTCDriverInitCode
respectively RTC_StubBodyCode.

• If a TestComponentInstance is linked to a SUT using a qualified association
relation, Rhapsody does not generate code to implement the link. TestConductor
can not generate driver operations for messages, which use such a link.

• Auto created operations are not animated and cannot be used in TestCases: due to
a limitation in the Rhapsody animation, auto generated operations like getter/setter
for class attributes are not animated during execution, they do not appear in
animated sequence diagrams and observers don't get notifications about these
messages (even if the property CG:CGGeneral:GeneratedCodeInBrowser is
set to true).

168

List of Figures
Rhapsody Testing Profile and TestConductor...14
TestArchitecture in Rhapsody Browser...29
Advanced TestArchitecture Creation Dialog...30
TestCase Scheduler Statechart..31
Arbiter of SD TestCase...32
SD TestCases - Stubbing and Observing Operations..51
SD TestCase mapping using TestCase Wizard..54
Test Result Report with Result Verification Information..69
Test Execution Dialog for Code-, Flowchart- and Statechart TestCases...70
Test Execution Dialog for SD TestCases...72
Unmodified TestCase Scheduler Statechart..74
Introducing TestCase Timeout Transition...75
Debugging Button in Test Execution Window..76
Test Execution Window for TestContext Execution..77
Ordering of TestCases...78
Transitivity of Dependencies (Refinement of model elements and requirements)................................84
TestConductor Main Dialog..96
Properties - TestConductor..97
Properties TestConductor.Settings..98
Setting TestingMode...101
Properties TestConductor.TestContext..101
Example relations with inheritance...111
Select Message with virtually inherited operations...111
Select Message and Inheritance..112
Interpretation of Messages by TestConductor...119
Tags of Stereotype <<RTC_MsgInfo>>..120
Using TestActions...124
Assertion generated from <PostCallAction> TestAction..125
<precond> Condition (HarmonySE)...127
<check> Condition..127
TestCondition..128
{Lang}_CG.Type.SerializationAndUnserialization..131
Using Serialization..131
TestScenario with InteractionOccurrence...135
Invocation of 'Show As SD'..135
Witnesses for referencing and refererenced TestScenario...136
Merging ModelCoverage Results...138
Merging CodeCoverage Results...139
RQM Connection..140
IntelliVisor with TestConductor Assert Macros..159
Adding Include Path and Additional Sources..160
Include Path for AUTOSAR_RTE..161

169

	Contents
	Contacting IBM® Rational® Software Support

	About this document
	Preliminary Note
	Introduction
	Rhapsody Testing Profile
	Adding the Testing Profile automatically
	Adding the Testing Profile manually
	Using the Testing Profile
	Refining Testing Profile Stereotypes

	Model-based Unit Test Definition
	TestArchitectures
	Replacements
	Dependencies used for Navigation on Replacements

	Interfaces
	Ports
	VariationPoints and Variants
	Inheritance
	Templates and Template Instances

	Automatic TestArchitecture Generation
	Context Menu 'Create TestArchitecture'
	Test scheduling with <<Scheduler>> TestComponents
	Test arbitration with <<Arbiter>> TestComponents
	Creating test executables with TestingConfigurations
	Generate and Build the TestContext

	Using Classes (UML) and Blocks (SysML)
	Using Objects
	Using Files (Modules)
	Using Parts of composite classes
	GreyBox TestArchitectures for classes and objects
	TestArchitectures with multiple SUT classes or objects
	Updating TestArchitectures
	Up-to-date check for TestArchitectures
	TestArchitectures for MicroC Models
	TestArchitectures for Code centric Models
	Production Code (Black Box) Testing
	Black Box Testing
	Grey Box Testing

	TestCase Definition
	TestCase Definition with Code
	Defining a Code TestCase
	Testing reactive behavior with Code TestCases

	TestCase Definition with Flow Charts
	Defining a Flow Chart TestCase
	Testing reactive behavior with Flow Chart TestCases

	TestCase Definition with Statecharts
	Defining a Statechart TestCase

	TestCase Definition with Sequence Diagrams
	Defining a Sequence Diagram TestCase
	Failure Analysis in Sequence Diagram TestCases

	TestConductor.h, TestConductor_C.h and TestConductor_C.c
	Support for interfacing Files in C using <<CInterfaceFile>> Stereotype
	TestConductor Support for Testing Private Operations in Rhapsody in C
	TestConductor Support for Testing Private and Protected Operations in Rhapsody in C++
	Support for Rhapsody Action Language

	Model Population – Create Driver Operations and StubOperations
	Driver Operations
	StubOperations
	Clean TestComponent
	Clean TestPackage

	Specifying a TestScenario
	Creating TestCases with the TestCase wizard
	Creating Sequence Diagram TestCases from existing Scenarios using an explicit instance mapping
	Definition of mappings for sequence diagram TestCase creation from existing scenarios
	SDMappings for Replacements

	Test Execution
	Overview
	Testing Configuration
	Tags of the <<TestingConfiguration>> Stereotype
	TestConfiguration Dependency
	Execution Results
	Performing result verification for TestCase execution

	TestCase Execution
	Test Execution Dialog for code, flow chart, startechart based tests
	Test Execution Dialog
	Test Information
	Controlling TestCase execution

	Test Execution Dialog for sequence diagram based tests
	Test Execution Dialog
	Test Information
	Displaying Test Results by witness scenarios
	Automatically adding witness scenarios to the model for failed SDInstances

	Abort Test Execution
	Execution Timeout
	Test Execution Report
	Debugging TestCases

	TestContext Execution
	Starting Test Execution
	Stopping Test Execution
	Execution Timeout
	Ordering of TestCases
	Test Execution Report for TestContext

	TestPackage Execution
	Starting Test Execution
	Stopping Execution
	Execution Timeout
	Test Execution Report for TestPackage

	Computing Model Coverage during Test Execution
	Computing Model Coverage for single TestCases
	Coverage Items
	Choosing the Coverage Kind for Model Coverage
	Model Coverage Measurement and Animation Instrumentation
	Traceability of Coverage Items

	Computing Requirement Coverage
	Computing Requirement Coverage for TestCases and TestContexts
	Transitivity of Dependencies (Refinement of model elements and requirements)

	Computing Code Coverage
	TestConductor code coverage criteria

	Command Line Execution
	Command Line Syntax for rhapsody.exe
	Command Line Syntax for rhapsodycl.exe
	Test Execution Report

	TestCase Execution on Targets

	Test Management
	Managing Test Data
	Linking TestCase to Requirements

	TestConductor Dialog
	TestConductor Settings
	General Properties
	TestContext Properties

	Generating Test Reports with Rhapsody ReporterPLUS
	Executing the ReporterPLUS with the Test Report Template
	Using the HTML Test Report
	Using the Test Requirement Coverage Report
	Customizing the Test Report

	Generating Test Reports with Rational Publishing Engine
	Creating the Test Report
	Test Requirement Coverage Report
	Creating Report Templates

	Using the TestConductor API
	Available TestConductor API Commands
	Defining Callbacks for TestConductor functions

	Specifying Requirements with Sequence Diagrams
	Supported Diagram Elements in TestScenarios
	Limitations of design elements (sequence diagrams)
	Message Realization
	Ignoring Unrealized Messages
	Virtual Call vs Nonvirtual Call (Rhapsody in C++)
	Self-Messages in BlackBox and GreyBox Testing
	SelfMessageRealizationInParts

	Using Time Interval for Delay Driving from TestContext and TestComponents
	Specifying Argument Values
	Specifying dataflows
	Specifying Return Values
	Specification of Out and InOut Argument Values
	Interaction Occurrence – Reference Sequence Diagram
	Don't care values
	Range Specification

	Influencing DriverOperation and StubOperation Generation
	User Defined DriverOperations
	User Defined StubOperations
	Influencing DriverOperation and Stub generation using <<RTC_MsgInfo>> tags
	RTC_DriverInitCode and RTC_DriverInitCodeAdditional
	RTC_DriverCallCode and RTC_DriverCallCodeAdditional
	RTC_StubBodyCode
	Deleting <<RTC_MsgInfo>> Tags (User Defined Driver and Stubs)

	Influencing DriverOperation and Stub generation using TestActions in TestScenarios
	Clean TestComponent
	Clean TestPackage

	(general) TestActions, TestAssignments and TestConditions
	Preconditions (for SysML/HarmonySE)
	Using <check> Conditions / TestCondition

	Using Interaction Operators in SD TestCases
	Using Serialize/Unserialize Functions for User Defined Types
	Using auto generated serialization/unserialization functions
	Using manually defined serialization/unserialization functions

	Failure Analysis
	Failure Analysis using Witness Scenarios
	Failure Analysis for InteractionOccurrences

	Debugging TestCases
	Result Verification

	Using TestConductor from Eclipse
	TestConductor Rhapsody Plugins
	TestConductor Merge Coverage Reports Plugin
	Merging model coverage reports
	Merging code coverage reports
	Merging requirement coverage reports

	TestConductor Rhapsody Quality Manager Plugin
	TestConductor Check Model Plugin

	Appendix
	Definitions of the Rhapsody Testing Profile
	Structure Overview
	UML Testing Profile (UML20TP) Package
	TestArchitecture Package
	TestBehavior Package

	TestConductor (RTC) Package
	TestArchitecture Package
	TestBehavior Package
	TestDocumentation Package

	Automatic Test Generation (ATG) Package
	Formal Testing Package

	TestConductor Assert Macros (C/C++)
	Using IntelliVisor for TestConductor Assert Macros

	Testing AUTOSAR Models
	Unit testing of AUTOSAR Software Components

	Migrating animation based TestArchitecture to assertion based TestArchitecture
	Automatic Migration of animation based TestArchitectures to assertion based Testing mode

	Functional Limitations

