
IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 1/8

Prototype release guide

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On Version 2.8.4

BTC Embedded Systems AG
Gerhard-Stalling-Straße 19
26135 Oldenburg
+49 441 969738 0 (voice)
+49 441 969738 64 (fax)

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 2/8

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated

into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,

optical, chemical, manual or otherwise, without the prior written permission of the copyright owner, BTC

Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed

or implied, are made regarding Rhapsody software including documentation and its fitness for any

particular purpose.

Trademarks

IBM® Engineering Systems Design Rhapsody®, IBM® Engineering Systems Design Rhapsody® ‐

Automatic Test Generation Add On, and IBM® Engineering Systems Design Rhapsody® ‐

TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of

their respective owners.

© Copyright 2000-2022 BTC Embedded Systems AG. All rights reserved.

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 3/8

Table of Contents
1 Introduction.. 4
2 Integration with Rhapsody 9.0.1...4

2.1 Installation... 4
2.2 SysML profile... 4
2.3 Rhapsody for Java..5
2.4 TestConductor adapter for Engineering Test Management, used version of log4j.........................5

3 Verification of invariants enhancement prototype...5
3.1 Defining and using invariant check functions...6
3.2 Helpers provided by the invariant check profile...6

4 Other new features and enhancements...7
4.1 Test Sets... 7
4.2 Assertion based testing for Java..7
4.3 Browser views and property perspectives...8
4.4 ATG support for Cygwin 64 bit GNU g++...8
4.5 Enhancements from the ifix2 release..8
4.6 Enhancements from the ifix1 release..8

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 4/8

1 Introduction

This release of Rhapsody ATG and TestConductor provides updates of the ATG and TestConductor

Add Ons for the Rhapsody 9.0.1 release. Included are some enhancements, bug fixes and a prototype

of a new feature (support for verification of invariants). This document gives a brief overview about the

new capabilities of this release. Additional information can be found in the release notes and in the user

guide for ATG or TestConductor located in the folders Rhapsody\Doc\pdf_docs and Rhapsody\Doc\

html_docs.

2 Integration with Rhapsody 9.0.1

2.1 Installation
This update release of ATG and TestConductor is for the Rhapsody 9.0.1 release, Rhapsody 9.0.1

ifix1, Rhapsody 9.0.1 ifix2 or Rhapsody 9.0.1 ifix3 version. Rhapsody must be installed before installing

the update installer(s). The Rhapsody client must not be running while installing the updates of ATG or

TestConductor otherwise the installation might fail or be incomplete. The update installers contain the

complete Add Ons, including documentation and samples.

When using Rhapsody ATG and TestConductor then both Add Ons must be updated to this release

otherwise they will not work correctly. The installers of this update must be uninstalled separately, they

are not uninstalled automatically when uninstalling Rhapsody.

When contacting support regarding issues or questions please make sure to include the build number

of ATG and/or TestConductor. The build number of ATG can be found in the details of the file

Rhapsody\Atg\install\RhapATG.dll or in the text file Rhapsody\Atg\ATGBuildNo.txt. The build number of

TestConductor can be found in the details of the file Rhapsody\TestConductor\TestConductor.dll or in

the text file Rhapsody\TestConductor\RTCBuildNo.txt.

To switch back to the original release versions of ATG and TestConductor after installing the updates

both the updates and Rhapsody must be uninstalled. Then Rhapsody can be installed again including

the integrated release version of the Add Ons.

If after installing the updates a previously released ifix for Rhapsody 9.0.1 is installed then the ifix will

overwrite ATG or TestConductor files with older versions. In this case the update installers of ATG and

TestConductor should be uninstalled before installing the Rhapsody ifix and then the update installers

should be installed again.

2.2 SysML profile
The Rhapsody SysML profile modifies the menu structure of the context menu in the Rhapsody

browser. The SysML profile from the Rhapsody 9.0.1 installation does not contain menu entries for

some elements newly added to the Testing Profile of this prototype release, for example for test sets or

for invariant check functions.

An updated file for the SysML profile is part of this prototype release. To make use of it either copy the

file SysML.sbs from folder Share\Profiles\InvariantCheckProfile to folder Share\Profiles\SysML\

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 5/8

SysMLProfile_rpy (replacing the original one) or compare the two versions of the file in a diff tool and

apply the needed changes to the version located in Share\Profiles\SysML\SysMLProfile_rpy.

The invariant check profile provides two versions of the SysML profile file: SysML.sbs is for Rhapsody

9.0.1 and Rhapsody 9.0.1 ifix1 while SysML_9.0.1.ifix2.sbs is for Rhapsody 9.0.1 ifix2 or ifix3 (please

rename it to the original name SysML.sbs before copying it into the Rhapsody installation; when using

Rhapsody 9.0.1 ifix3 please also save the file in the new .sbsx format).

2.3 Rhapsody for Java
To be able to start tested Java applications in assertion based testing mode TestConductor needs to

pass some command line options to the application. This is not supported by Rhapsody in the 9.0.1

release or in the Rhapsody 9.0.1 ifix1 version. To allow passing command line options to a Java

application the file Share/etc/jdkrun.bat needs to be modified. The invariant check profile contains a file

Share\Profiles\InvariantCheckProfile\ChangesFor_jdkrun.bat with the necessary changes.

When using Rhapsody 9.0.1 ifix2 or ifix3 then this change is not necessary (Rhapsody ifix2 and ifix3

already includes this change).

2.4 TestConductor adapter for Engineering Test Management, used
version of log4j

The TestConductor adapter for Engineering Tests Management is using log4j for writing information

into a log file. The version of log4j used in the Rhapsody 9.0.1 release has a security vulnerability

which was fixed in version 2.17 of log4j. With this update release the TestConductor adapter for

Engineering Tests Management installs and uses version 2.17.1 instead of the older, insecure version,

however the installer does not remove the files of the old version of log4j from the Rhapsody

TestConductor installation. The now unused files can be deleted from the folder TestConductor\

ETM_TestConductorAdapter\lib without affecting functionality of the adapter: log4j-slf4j-impl-2.11.2.jar,

log4j-jcl-2.11.2.jar, log4j-core-2.11.2.jar, log4j-1.2.14.jar, log4j-api-2.11.2.jar.

Alternatively you can delete the folder TestConductor\ETM_TestConductorAdapter\lib before installing

the update installer.

When using Rhapsody 9.0.1 ifix3 this is not necessary, the installation contains only file of log4j version

2.17.1.

3 Verification of invariants enhancement prototype

This release provides a prototype of a new functionality of TestConductor: Support for verification of

invariants by using so called invariant check functions which are invoked during the execution of test

cases with a high frequency. This allows verification of conditions which should hold all the time during

a test execution in contrast to standard checks which are performed only at a specific location of a test

sequence.

Verification of invariants is supported for C++, C and Java when using the assertion based testing

mode. Verification of invariants can be enabled by checking the tag “EnableInvariantVerification” on the

code generation configuration used for testing.

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 6/8

3.1 Defining and using invariant check functions
Invariant check functions can be created in a test context by right clicking the test context and then

selecting Add New → Testing Profile → Invariant Check Function. The check can then be implemented

in the body of the function using the language specific TestConductor assert macro or function:

• RTC_ASSERT_NAME for C++ and C

• TestConductor.ASSERT_NAME for Java

These asserts allow defining a string message and an expression. The string message is shown in the

test execution window and in the html test result once for each execution of the assert and allows

identifying the assert and can be used to visualize data from the assert. The expression is evaluated

for the result of the assert.

After defining an invariant check function it can be applied by one or more test cases by adding an

<<AppliedInvariantCheck>> dependency from the invariant check function to the test case.

Alternatively the dependency can be drawn to the test context, meaning the invariant check function is

applied by all test cases of the test context.

The Testing Profiles offers also invariant check matrices or invariant check tables as a convenient way

to manage which invariant check functions are applied by which test cases. Right click on the owning

test package of the test context and select Add New → Testing Profile → Invariant Check Matrix/Table,

then adjust the scope of the created element and open it. The matrix or table shows all invariant check

functions and their <<AppliedInvariantCheck>> dependencies and allow adding or removing

<<AppliedInvariantCheck>> dependencies from invariant check functions to individual test cases or to

the test context.

When executing test cases the results of the executed assert(s) from the applied invariant check

functions is shown in the TestConductor test execution UI and in the html test result. If such an assert

fails then the test case is failed and the test case ends. A witness scenario shows the location of the

failed assert by coloring the preceding message in red, this indicates when the failure happened but it

does not necessarily imply the red message has directly caused the failure: A failed check of an an

invariant could also be caused by internal activity in the SUT not related to the message.

The verification of invariants is based on an instrumentation of the driver and stub operations and of

the code of the SUT, ensuring a high frequency of invocations of the applied invariant check functions

both in the test harness and in the SUT. The instrumentation is performed after the code has been

generated by Rhapsody. When testing code which has been generated outside of Rhapsody then only

the driver and stub operations are instrumented with calls of the applied invariant check functions.

3.2 Helpers provided by the invariant check profile
For easier definition the body of invariant check functions this release of TestConductor contains a

helper profile with a Java plugin providing two context menu helpers which are available after adding

the profile to a model. To add the profile to a model select the Rhapsody menu File → Add Profile to

Model…, in the opened dialog navigate to the folder

Share/Profiles/InvariantCheckProfile/InvariantCheckProfile_rpy and select the file

InvariantCheckProfile.sbsx.

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 7/8

The first helper of this profile provides the context menu “Copy Attribute Check” for Attributes and Value

Properties and the context menu “Copy In-State Check” for states of statecharts, actions of activities

and similar elements. When invoking Copy Attribute Check the helper generates an assert to check the

attribute value against a value and puts it into the copy/paste buffer of the system. After this the string

can be pasted into the body of an invariant check function and modified, like editing the information

string of the assert or adjusting the expected value of the attribute.

When invoking “Copy In-State Check” the helper generates an assert to check if the statechart (or

activity) currently is in the state (or action etc.) and puts it into the copy/paste buffer of the system.

After this the string can be pasted into the body of an invariant check function and modified.

The second helper of this profile offers a UI to define an invariant check function. After invoking

“Invariant Check UI” on an invariant check function the UI opens and allows to define the body of the

function in two separate edit fields. Below “Assertion Name” the identifying string for test excution UI

and test result can be entered. Below “Assertion Check Expression” the check expression of the assert

can be entered; when clicking the Get State/Attribute button then the helper generates a check

condition for the selected element and adds it to the Assertion Check Expression at the end of the

current content. Sub-expressions can be combined using boolean operators like &&, ||, ! or (). The UI

does not perform a syntax check of the expression.

The title of the UI shows the name of the currently edited invariant check function and the navigation

expression to it. When clicking on Ok the helper generates the complete body for the invariant check

function including the assert macro/function and writes it to the body of the invariant check function,

overwriting any existing content, and closes the UI. When clicking on Cancel then the UI closes without

changing the invariant check function. When clicking on the Preview Body button the helper generates

the complete body for the invariant check function including the assert macro/function and writes it to

the Generated Body of Invariant Check Function field.

Both helpers compute the navigation expression from the test context to attributes or states according

to the test architecture with the currently active code generation configuration.

4 Other new features and enhancements

4.1 Test Sets
With this release TestConductor supports grouping multiple test cases of the same test context

together into so called test sets. For details please refer to the TestConductor user guide document.

4.2 Assertion based testing for Java
With this release TestConductor supports the assertion based testing mode also for Rhapsody in Java.

New test architectures for Java will be tailored for assertion based testing per default. For details

please refer to the TestConductor user guide document.

InvariantVerificationPrototypeRelease.odt

IBM Engineering Systems Design Rhapsody ‐
TestConductor Add On

Page 8/8

4.3 Browser views and property perspectives
With this release the Testing Profile provides views for the Rhapsody browser allowing to focus the

browser on certain kinds of test artifacts. These views can be selected after clicking on “Entire Model

View” at the top of the Rhapsody browser.

With this release the Testing Profiles provides perspectives for properties shown in the Rhapsody

feature dialog allowing to focus on properties to customize TestConductor options. These property

perspectives can be selected in the filter options of the properties page of the feature dialog of

elements like test packages or test configurations.

4.4 ATG support for Cygwin 64 bit GNU g++
With this release ATG supports also 64 bit GNU g++ when using Cygwin compile environments.

4.5 Enhancements from the ifix2 release
ATG supports Cygwin compile environments with GNU g++ compilers up to version 10.

TestConductor supports computation of code coverage for GNU gcc/g++ compilers up to version 10.

4.6 Enhancements from the ifix1 release
ATG supports Visual Studio version 2017 compile environments.

Support for computation of model coverage when testing via a target proxy.

InvariantVerificationPrototypeRelease.odt

	1 Introduction
	2 Integration with Rhapsody 9.0.1
	2.1 Installation
	2.2 SysML profile
	2.3 Rhapsody for Java
	2.4 TestConductor adapter for Engineering Test Management, used version of log4j

	3 Verification of invariants enhancement prototype
	3.1 Defining and using invariant check functions
	3.2 Helpers provided by the invariant check profile

	4 Other new features and enhancements
	4.1 Test Sets
	4.2 Assertion based testing for Java
	4.3 Browser views and property perspectives
	4.4 ATG support for Cygwin 64 bit GNU g++
	4.5 Enhancements from the ifix2 release
	4.6 Enhancements from the ifix1 release

