
Tivoli® Autonomic Deployment Engine

Autonomic Deployment Engine for Software Package Developers

Version 1.3

���

Tivoli® Autonomic Deployment Engine

Autonomic Deployment Engine for Software Package Developers

Version 1.3

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 123.

First Edition (June 2006)

This edition applies to Autonomic Deployment Engine, Version 1.3, and to all subsequent releases and modifications

until otherwise indicated.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface v

Who should read this book v

Related documents v

Conventions used in this book vi

Part 1. Introduction 1

Chapter 1. Overview of Deployment

Engine 3

What is Deployment Engine? 3

What can I do with Deployment Engine? 3

What the Deployment Engine technologies do . . 5

More key terms used by Deployment Engine . . . 5

The components of a Deployment Engine

environment 6

How do I implement Deployment Engine? 10

Software deployment models 10

Wrappered software deployment 10

Fully enabled software deployment 10

Software deployment methods 11

Software package types 12

Application packages 13

The contents of a software package 14

Payload files 15

Deployment descriptors 15

Installable unit deployment descriptors . . . 15

Configuration unit deployment descriptors . . 16

Installable units 17

Configuration units 27

Unit hierarchies 31

Optional content 34

Managed resources 38

Backing resources 38

Topologies 38

Requisites 40

Which units are most appropriate for my IU

deployment descriptor? 42

Action descriptors 45

Media descriptor 49

Software life cycle 51

Life cycle states 52

Change requests 52

Change management operations 54

Dependencies 56

Checks 57

Types of dependencies and their corresponding

checks 57

Relationships 61

Relationship types 61

Management of relationships 63

Relationships and integrity checking 64

Variables 64

Variable types 64

Internal variables 66

Chapter 2. The Deployment Engine

run-time environment 69

User mode selection for the run-time environment 69

Deployment Engine user modes 70

Multiuser mode 70

Single-user mode 71

Database access 71

Access restrictions in multiuser mode 71

Access restrictions in single-user mode 72

Installed directories 72

Directories for users of Deployment Engine in

multiuser mode 72

Directories for users of Deployment Engine in

single-user mode 72

Environment variables for the installed

directories 73

Removing Deployment Engine 74

Part 2. Commands 77

Chapter 3. Command summary 79

Chapter 4. Working with commands . . 81

Command authorization 81

Locating and running the commands 82

Command syntax conventions 82

Case sensitivity in commands 82

Specifying a software instance uniquely 83

Retrieving return codes 84

Representing strings that include spaces 84

Chapter 5. Developer commands . . . 85

manageIU 86

validateIUDD 101

Part 3. Problem determination . . . 103

Chapter 6. Locating the Deployment

Engine log files 105

Finding the ACULogger.properties file 105

Finding the logs for components 105

Chapter 7. Message logging 107

Message identifier 107

Message text 108

Message help 108

Message log format 108

Chapter 8. Messages issued by

components 111

Common messages 112

Change manager messages 113

© Copyright IBM Corp. 2006 iii

Dependency checker messages 114

Operating system touchpoint messages 115

Chapter 9. Trace logging 117

Chapter 10. Troubleshooting 119

Part 4. Appendixes 121

Notices 123

Open source license notices 124

Apache Software License, Version 1.1 125

Apache Software License, Version 2.0 126

W3C Software Notice and License 128

Trademarks 129

Index 131

iv Autonomic Deployment Engine for Software Package Developers

Preface

This book describes commands that you can use for software package testing,

explains related concepts, and provides problem determination

information—including messages—for software package developers who use the

IBM® Autonomic Deployment Engine technology.

Who should read this book

This book is for developers of Deployment Engine software packages; that is,

software packages that use Deployment Engine to install them. The software

packages typically comprise a Deployment Engine–enabled application or some

follow-on maintenance for that application. A Deployment Engine–enabled application

is a software application whose installation and maintenance depends on the

presence of a Deployment Engine run-time environment on the application's

computer. Such software applications are prepackaged for installation and

maintenance using Deployment Engine technology and packaging conventions.

The software packages for the Deployment Engine–enabled application can be

prepared manually or with the help of tooling that may include this book as part

of its documentation.

Software package developers include developers of base software packages,—which

make up the original, or base, application—and developers of maintenance software

packages, which modify the base application with either full updates, incremental

updates, or fixes. This book provides some supplemental information for these

developers, including Deployment Engine commands, related concepts, and

problem determination information, to help facilitate their software package

testing.

This book addresses the following tasks, which a software package developer can

perform on the computer where the software package is to be deployed and tested:

v Validate a deployment, action, or media descriptor in an application's software

package

v Test the software package with its associated life cycle operations to determine if

the application deploys as intended

v Remove the Deployment Engine run-time environment

v Access message and trace log files for troubleshooting purposes

Related documents

In addition to Autonomic Deployment Engine for Software Package Developers,

Deployment Engine provides the following related documents:

v IBM Autonomic Deployment Engine: Autonomic Deployment Engine for

Administrators

Provides commands for administering applications that were deployed with the

Autonomic Deployment Engine technology. This book also includes some

additional commands for administering Deployment Engine itself. And it

provides concepts related to the administration commands, as well as problem

determination information, including messages.

v IBM Autonomic Deployment Engine: Autonomic Deployment Engine Glossary

Defines the terminology used in Deployment Engine documentation.

© Copyright IBM Corp. 2006 v

v Touchpoint documentation

Deployment Engine provides the following pre–release 1.3 documents for its

supported touchpoints:

– Solution Install for Autonomic Computing: Operating System Touchpoint Guide and

Reference

Describes the operating system touchpoint, its available actions, and the

schema used to create these actions.

– Solution Install for Autonomic Computing: WebSphere Touchpoint Guide and

Reference

Describes the WebSphere® touchpoint, its available actions, and the schema

used to create these actions.
v Autonomic Computing Architecture Board (ACAB) documentation

Deployment Engine provides the following schema documents, which were

prepared by the Autonomic Computing Architecture Board:

– IBM Autonomic Computing: Installable Unit Deployment Descriptor Specification

(ACAB.BO0402)

Defines the schema for XML documents (IU deployment descriptors and CU

deployment descriptors) that describe the characteristics of installable units

and configuration units of software. These characteristics are relevant to the

identity, deployment, configuration, and maintenance of the software.

– IBM Autonomic Computing: Installable Unit Package Format Specification

(ACAB.BO0404)

Defines the schema of an XML document (a media descriptor) that describes

the binding information (physical locations) of the files in the software

package. This document also describes the package format and related design,

including the package structure, physical packages, security model, the

relationship with existing install technologies and package standards, and

tooling.

Conventions used in this book

This book uses the following typeface conventions:

Bold

v Commands names that are difficult to distinguish from surrounding text

v Keywords and parameters in text

v Interface controls

Italic

v Words and phrases that are emphasized

v New terms

v Variables and values that you must provide

Monospace

v Examples and code examples

v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text

v Message text, including user prompts

v User input

v Values for arguments or command options

vi Autonomic Deployment Engine for Software Package Developers

This book uses UNIX® conventions for specifying environment variables, directory

names, or directory paths:

v When using the Microsoft® Windows® command line, replace $variable with

%variable% for environment variables or directory names, and replace each

forward slash (/) with a backslash (\) in any Windows directory paths that

include forward slashes.

v When using the bash shell on Windows operating systems, use the UNIX

conventions.

Preface vii

viii Autonomic Deployment Engine for Software Package Developers

Part 1. Introduction

© Copyright IBM Corp. 2006 1

2 Autonomic Deployment Engine for Software Package Developers

Chapter 1. Overview of Deployment Engine

This book is for anyone developing software that includes IBM Autonomic

Deployment Engine (hereafter called Deployment Engine). This chapter introduces the

Deployment Engine approach to software packaging.

A note about the Deployment Engine name: The names and content of

documentation from earlier releases, as well as some specifications, troubleshooting

information, output, files, and the like, refer to Deployment Engine by its previous

name, Solution Install for Autonomic Computing, or Solution Install. Occasionally,

such references may appear in this book. Also, commands, files, APIs, or other

Deployment Engine–related entities might use the characters "si" in their names for

the same reason.

This chapter describes key Deployment Engine components and related resources,

and explains their relationships. Concepts pertinent to developing software

packages that use Deployment Engine to install them are also discussed.

A software package is a collection of files that includes the application files (referred

to as payload files) to be deployed plus all the instructions and data that

Deployment Engine requires to deploy the application files. Deployment Engine

and an installation program—referred to herein as a software deployment program

because it may not only install but also configure, update, or remove

software—both use this software package to deploy all or part of an application in

its target environments. An application can be made up of one or more software

packages. The software package and its files must have a specific package format

and the software package must use designated file-naming conventions.

What is Deployment Engine?

Deployment Engine is a collection of common software packaging, deployment,

and configuration technologies from IBM Tivoli®. Tivoli makes these technologies

available to IBM and its business partners, whose customers in turn may use it to

deploy their applications.

The common technologies provide a standard way for application developers to

package their software for deployment to a number of popular operating system

and application environments. In the customer environment, Deployment Engine

works with the application’s software deployment program to orchestrate the

software deployment. In addition, Deployment Engine can manage subsequent

functionality upgrades, fixes, maintenance, and other change management

operations on the deployed software.

When developers implement Deployment Engine in their software, people who use

that software can consistently and comprehensively plan for and deploy that

software in less time, and use fewer resources to deploy and manage the changes

to that software across complex information technology (IT) environments.

What can I do with Deployment Engine?

Deployment Engine helps developers and packagers of applications, and the

people who use and maintain those applications, achieve the following results:

© Copyright IBM Corp. 2006 3

v Install, configure, upgrade, maintain, and remove software, either interactively,

silently, or both

v Keep track of installed software

v Manage their prerequisite and corequisite software dependencies

v Manage their environmental dependencies

v Reuse or share the installed software

v Remove applied software upgrades, maintenance, or service packs

v Ensure the tolerance of all dependent software before any shared software is

changed or removed

v Create, deploy, and maintain a solution or suite of applications or components

v Handle unsuccessful deployment attempts

To achieve these results, software package developers organize their code into

logical installable entities, called installable units. Installable units are XML

representations of the installable parts of an application, whose physical equivalent

is the application's payload files. The developers then package the installable units,

along with dependency checking and other Deployment Engine infrastructure, to

form the final application they deliver to their customers.

By designing their software to be installed using the Deployment Engine

infrastructure, developers can ensure a more consistent deployment experience for

the people who install and maintain their software. Deployment Engine–based

deployments require less human interaction and less time to perform. Additionally,

the Deployment Engine infrastructure helps reduce the cost and complexity of

building, deploying, and maintaining software, solutions, and suites.

Deployment Engine provides some standardized packaging mechanisms and

common componentry for software package developers to use. Among them:

v Deployment descriptors. Deployment descriptors are XML documents that define

the deployment capabilities and dependencies for a given software package.

Deployment descriptors include some XML elements that describe the installable

units to be deployed, as well as the units that configure them.

v Action descriptors. Action descriptors are XML documents that define the actions

to be performed during software deployment, configuration, upgrading,

maintenance, and removal. Actions include operations like creating or removing

directories, installing or removing application files, and updating registries,

configuration properties, environment variables, paths, and so on.

v Media descriptors. Media descriptors are optional XML documents that define the

location of the deployable software files in specific situations, such as when the

files are to be installed from multiple CDs or from archive files.

v Deployment Engine schema. The Deployment Engine schema is a set of XSD

documents that define the structure, content, and semantics for building the

deployment, action, and media descriptors.

v A dependency checker, change manager, and installation database. These are key

components of the Deployment Engine run-time environment that application

developers package with their software. The components are installed in the

customer environment, where they assist with deploying software and managing

software changes.

4 Autonomic Deployment Engine for Software Package Developers

What the Deployment Engine technologies do

Deployment Engine by itself does not actually install software. Rather, Deployment

Engine works in concert with the application's own software deployment program.

To this end, Deployment Engine does the following things:

v Defines standardized XML documents that describe installable units of software

and their associated requirements, dependencies, and relationships.

v Provides a run-time environment that can consume the standardized XML

documents and enable the software deployment.

v Protects the target environment (the environment intended to host the new

software) by checking how a new software deployment will affect the software

already there. This includes validating the target environment and deployment

plan before making any changes to the target environment.

v Uses a standard Web service interface to communicate with target environments

and carry out change management operations.

v Provides a database and the appropriate interfaces for logging and tracking

deployed software and retaining interdependency and relationship information.

Thus Deployment Engine supplies the enabling technologies—the engine—for

software deployment. These enabling technologies include the standards, facilities,

and tools that enable users or administrators to perform rapid and safe software

deployments.

Deployment Engine itself uses open standards like XML, Java™, and Web services

so that application developers and administrators can create and deploy installable

units which can be managed as elements of their own software application.

More key terms used by Deployment Engine

Before reading the Deployment Engine concepts presented in this chapter, you

should understand how Deployment Engine uses the following key terms. The

terms as defined here are tailored to Deployment Engine. Some definitions for

these terms are further developed later in this book. A complete glossary is

provided in a related document, IBM Autonomic Deployment Engine: Autonomic

Deployment Engine Glossary.

v Software. Software is any computer programming that provides instructions to

the computer hardware to tell it what to do.

v Application. Application is the term Deployment Engine uses to refer to any

software script, component, feature, product, application, application suite,

solution, maintenance, or other software deliverable that can be (or already is)

deployed in an operating environment.

v Instance. A particular occurrence or example of something, such as an instance of

a deployed application or a feature instance in the Deployment Engine

installation database.

v Application package. Different from a software package, as described on page 3,

an application package is all the software that comprises an application, including

any additional application software needed prior to installation or to accomplish

installation. It includes all the software packages for the application. It can

include Deployment Engine itself, if Deployment Engine is not already part of

the operating environment. It can also include other things, such as a Java

runtime environment or a software deployment program that an application

user or administrator runs in order to deploy the software packages.

Chapter 1. Overview of Deployment Engine 5

v Feature. A feature is a set of installable or configuration units that represents

some specific functionality of a larger application, and whose deployment is

optional. Samples, language packs, or even applications in a suite are considered

features.

v Maintenance. Maintenance is the general term for any separately deployable

software package that represents one or more application updates or migration

actions. Fix, incremental update, and full update software packages are specific

forms of maintenance.

v Change request. A change request is an object that is passed by the software

deployment program to Deployment Engine to request some kind of software

change. The change request includes the deployment or configuration operation

to be performed as well as the location of the software package. The change

request supplies values for variables defined in the software package (such as

the value for the installation location). A change request can be associated either

with software deployment or with follow-on configuration of the deployed

software.

As previously mentioned, Deployment Engine provides an infrastructure for

packaging, deploying, and configuring software. Deployment Engine defines these

tasks as follows:

v Packaging. Packaging is the process of reorganizing your application files into a

Deployment Engine–compatible software package. This task is usually

performed by a software package developer.

v Deploying. Deploying is the process of placing files or installing software into an

operating environment and making that software available for use. As used in

this book, deploying software with Deployment Engine specifically refers to all of

the following things, including software removal:

– Installing or removing a software package (where installing also involves any

initial configuration of the software)

– Applying or removing a feature

– Applying or removing maintenance

These tasks are usually performed by an administrator, a general user, a product

administrator, or a system administrator.

v Configuring. Configuring is the process of setting up or customizing software for

a particular use or environment. Unless otherwise stated, configuring with

Deployment Engine refers to the one-time initial setup of an application or to

the subsequent reconfiguration or setup of that application, which can be

repeated. Configuration can be designed or automated by the developer who

creates the software package, and by the developer who writes the software

deployment program. Any real-time configuring is usually performed by the

administrator who is deploying the application.

The components of a Deployment Engine environment

Figure 1 on page 7 shows the key Deployment Engine components (middle of

figure) that application developers provide with their Deployment Engine–enabled

software. These components are installed on the target computer together with the

Deployment Engine–enabled application when that application is installed for the

first time.

Also shown are some resources that are associated with Deployment Engine (on

the right). One or more of these resources are also located on the target computer

where Deployment Engine deploys software. Resources in the target environment

6 Autonomic Deployment Engine for Software Package Developers

that are related to Deployment Engine include managed resources (see page 38)

and touchpoints. Application components (on the left)—components that are

related to but not provided by Deployment Engine—include the software

deployment program, descriptors, and payload files.

The arrows in the figure show how the components developed for the application

itself (on the left) and the resources associated with Deployment Engine (on the

right) communicate with the actual Deployment Engine components (in the

middle). All of the components and resources shown in Figure 1 reside on the

same computer. They are each described in the text that follows the figure.

A brief description of the key components found in a Deployment Engine

operating environment follows. Some components are supplied by Deployment

Engine. Other components, noted parenthetically as “application-defined,” are

defined or supplied by the application that includes Deployment Engine.

Associated resources that are found in the target environments, known as hosting

environments, are also included in the following list. Each associated resource is

noted parenthetically as a “hosting-environment resource.”

Software package (application-defined)

A collection of files that includes the payload files to be deployed plus all

the descriptors that Deployment Engine requires to deploy the payload

files. Deployment Engine and a software deployment program use this

software package to install and configure an application in target

environments. An application can be made up of one or more software

packages.

Descriptors (application-defined)

XML files that contain the instructions and data that Deployment Engine

requires to deploy and configure an application. In Figure 1, “Descriptor”

is a general term that represents any of the following XML descriptor files:

v Installable unit deployment descriptor (IU deployment descriptor). An XML

descriptor file that defines the content of a software package. The file

Figure 1. Deployment Engine operating environment on a single computer

Chapter 1. Overview of Deployment Engine 7

content includes logical installable software entities, called installable

units (or IUs). A software package contains exactly one IU deployment

descriptor.

v Configuration unit deployment descriptor (CU deployment descriptor). An

XML descriptor file that defines a single configuration task, though the

task might include multiple steps. The file content includes the basic

entities of configuration, called configuration units, or CUs. There can be

more than one CU deployment descriptor in a software package.

v Action descriptor. An XML descriptor file that defines specific actions for

deploying installable units or configuring software in a particular

hosting environment. An action is simply a task that needs to be

performed in a hosting environment.

v Media descriptor. An XML descriptor file that identifies the media location

of one or more action descriptors or deployable payload files for a

software package. A media descriptor is optional. When repackaging

software, the media descriptor provides the new media locations for files

that have moved.

Payload files (application-defined)

The files in a software package that are deployable; that is, the application

files. These are the files that Deployment Engine actually installs in the

hosting environment. JAR files, ZIP archives, RPM packages, and

configuration files are among the valid types of payload files. The actual

data content of these payload files is immaterial to Deployment Engine.

Software deployment program (application-defined)

An interactive or silent “installation” program that uses Deployment

Engine APIs to first deploy Deployment Engine (if needed) by running a

bootstrap program and then implement software change requests in one or

more hosting environments. The software deployment program constructs

a software change request and passes it to Deployment Engine for

processing. This processing then initiates the changes to one or more

hosting environments. Developers can code the software deployment

program themselves or use tooling to help generate it. Note that,

differently from an installation program, a software deployment program

not only installs but also configures, updates, or removes software, thereby

handling any type of software deployment described in this book.

Deployment Engine interface

Java application programming interfaces (APIs) that the developers of

software deployment programs use to generate the change requests that

Deployment Engine requires to initiate changes to one or more hosting

environments.

Dependency checker

The Deployment Engine component that determines whether or not

dependencies are met before installing software in a hosting environment.

A dependency is a requirement that one installable unit has on another

installable unit or managed resource (see page 38) to ensure that they

interoperate correctly.

 The dependency checker performs dependency checking by using data from

the following sources to determine whether the dependencies are met:

v The IU deployment descriptor

v The installation database

v The touchpoint for the target hosting environment

8 Autonomic Deployment Engine for Software Package Developers

The dependency checker also makes sure that the dependencies of other

deployed installable units registered in the installation database are not

violated. This function is sometimes referred to as integrity checking.

Change manager

The Deployment Engine component that reads the information in a

deployment descriptor and then coordinates the change request to be

implemented across hosting environments.

Installation database

The Deployment Engine component that retains the information about, and

the IU deployment descriptor for, each installable unit instance deployed

on the local computer. The installation database also contains a relationship

registry that saves information about the relationships and

interdependencies among deployed installable units. The installation

database provided with Deployment Engine is IBM Cloudscape™.

Deployment Engine administrators can manage the installation database by

using the commands described in the book IBM Autonomic Deployment

Engine: Autonomic Deployment Engine for Administrators.

Web service interface

Represents all Web service communications between the Deployment

Engine components and the hosting environments.

Hosting environments

Any environments where Deployment Engine can deploy software (for

example, the target operating system or the target J2EE server).

Deployment Engine communicates with a hosting environment though its

touchpoint.

Hosted resources (hosting-environment resource)

Any resources that are present in the hosting environment and accessible

through a touchpoint.

Touchpoints (hosting-environment resource)

Web services that interface with hosting environments; for example, with

an operating system hosting environment or with a WebSphere hosting

environment. A hosting environment has one touchpoint. The touchpoint

enables management operations—in this case, operations or processes

related to software deployment—to be performed on the hosting

environment and on any of its hosted resources.

 More about the operating system touchpoint: An operating system

touchpoint uses scanners and collectors (collectively called sensors) on the

target computer to gather information about it. For example, the

touchpoint can scan for an application that was installed outside of

Deployment Engine, which might satisfy a new application's software

requirements. Or the touchpoint can scan for a Deployment

Engine–installed application so that Deployment Engine can update it.

 The operating system touchpoint can also read deployment actions that

originate from an action descriptor in a software package and then use its

effectors to process the actions in the hosting environment. Actions include

creating or removing directories, installing or removing application files,

and updating registries, configuration properties, environment variables,

paths, and the like.

Chapter 1. Overview of Deployment Engine 9

How do I implement Deployment Engine?

The following sections explain the basic approaches available to software package

developers who are implementing Deployment Engine in their applications.

Software deployment models

You can follow one of two software deployment models to make your application

Deployment Engine–compliant. These models, which describe several alternatives

for developing an application package, are described in the sections that follow.

Wrappered software deployment

Wrappered software deployment is an entry-level Deployment Engine deployment.

Using this model, you make your application Deployment Engine–compliant by

designing a Deployment Engine–based application package that reuses your

current installation program and application files without modifying them. This

model requires the least amount of development effort.

In short, you enclose your current installation program and payload files in a

single Deployment Engine–compliant software package that you create for your

application. The existing installation program is “wrapped” in the IU deployment

descriptor for the software package (see “Deployment descriptors” on page 15).

In the simplest case, the IU deployment descriptor includes one root IU with one

smallest IU that defines one action descriptor (see “Action descriptors” on page

45). The action descriptor includes one action, and that action calls your current

installation program “as is” and installs your application files. Your case might be

more complex, but the general idea is to provide an IU deployment descriptor

with the a minimum number of elements needed to wrap your existing

application.

Some benefits of a wrappered Deployment Engine–based software deployment:

v You retain the original packaging structure and installation program for your

application. You can use your Deployment Engine–compliant software package

(with its wrapped installation program) in environments where Deployment

Engine is the preferred software deployment mechanism. Or you can use your

original packaging structure and installation program in environments that have

not adopted Deployment Engine.

v Your application gets registered in a Deployment Engine database, where other

applications can be made aware if it.

v Your software deployment can take advantage of the Deployment Engine

dependency and integrity checking functions.

Fully enabled software deployment

Fully enabled software deployment is a fully implemented Deployment Engine

deployment. Using this model, you make your application Deployment

Engine–compliant by designing a compliant application package from the start.

Among the things typically included in the application package are one or more

Deployment Engine–compliant software packages, with their descriptors and

payload files, and a software deployment program to install the files. This model

requires more development effort—sometimes substantially more than the

wrappered software deployment model.

For an existing application, this could mean decomposing and then recomposing

the basic elements of your current application into Deployment Engine–compliant

10 Autonomic Deployment Engine for Software Package Developers

software packages. For a new application, this means designing and creating

software packages to be Deployment Engine–compliant from the ground up.

Unlike wrappered software deployment where the original software packaging and

installation program of an existing application is preserved, fully enabled software

deployment yields a Deployment Engine–based design that, when implemented,

becomes your sole deployment mechanism.

Some benefits of a fully enabled Deployment Engine–based software deployment:

v You only have to maintain one software deployment program.

v You could have less software deployment code to maintain than you would

without using Deployment Engine, because most of the code belongs to

Deployment Engine.

v Your application gets registered in a Deployment Engine database, where other

applications can be made aware if it.

v Your software deployment can take advantage of the Deployment Engine

dependency and integrity checking functions, as well as the ability of

Deployment Engine to initiate installation and configuration actions in a number

of operating system and application environments.

Software deployment methods

A software package is a collection of files that includes the application files to be

deployed plus the instructions and data that Deployment Engine requires to

deploy the application files. Deployment Engine and a software deployment

program use this software package to install and configure all or part of an

application in its target environments.

An application can be made up of one or more software packages. The software

packages and their files must have a specific structure and each software package

must comply with designated file-naming conventions.

You can deploy a single software package, as you might with a standalone

application, or you can deploy multiple software packages together, as with a

solution or suite. When deploying multiple software packages, you can deploy

them hierarchically, in a software package tree (the preferred method), or

separately, in a hybrid manner:

Single software package

A single software package is the most elementary deployment method. The

software package is processed using a single change request.

Software package tree

A software package tree is a hierarchy of software packages that make up a

single application or solution, and that are processed together as one

software deployment. A software package includes one, and only one, IU

deployment descriptor (see “Deployment descriptors” on page 15).

 In a software package tree, the IU deployment descriptor of one software

package (the parent software package) references the IU deployment

descriptor of one or more other software packages (child software packages).

 You accomplish this deployment method by defining in the IU deployment

descriptor of parent software packages some contained IUs, contained

container IUs, requisites, or a combination of these elements. These

Chapter 1. Overview of Deployment Engine 11

elements are specifically designed to reference (and therefore associate

hierarchically) another IU deployment descriptor whose software package

is a child software package.

Software package set

A software package set is a collection of software packages (or software

package trees) that make up a single application, solution, or suite, which,

for whatever reason, cannot be organized into one unified software

package tree.

 You might have to use this implementation if, as part of your software

deployment, you have to first install some prerequisite software before

installing your application. Rather than deploy the software packages

together as a tree, your software deployment program must call separate

change requests in order to deploy each software package in the proper

order. (Such software deployment programs are sometimes referred to as

hybrid installation programs.)

 In this case, your software deployment program must do some handling

that Deployment Engine would otherwise do if you were using one unified

software package tree. For example, your software deployment program

might have to handle decisions about what order to install certain software

packages in.

Software package types

Software deployment places application payload files in a hosting environment.

The payload files are part of a software package which also includes the

descriptors that Deployment Engine requires to deploy the payload files.

A deployable application has at least one, and often more than one, software

package. But software packages have different functions. Their function depends

on whether the payload files to be deployed are part of the initial version of the

application or, alternatively, are some form of application maintenance. Recall that

maintenance-related software packages represent one or more application updates

in the form of fixes, incremental updates, or full updates.

Therefore, a software package always represents one of the following (either in

total or in part):

v The original version of an application

v An full application update

v An incremental application update

v An application fix

As a result, software packages are identified as one of these corresponding types:

Base A software package that contains the original version of an application,

called the base application. Use a base software package to deploy an

application for the first time. A software deployment that installs an

application for the first time is referred to as a fresh installation.

Full update

A software package that contains a major upgrade to an application, such

as a manufacturing refresh. There are two ways to deploy a full update

software package: as a fresh installation or as an upgrade.

 The software deployment program queries Deployment Engine to

determine whether the application is already present in the hosting

12 Autonomic Deployment Engine for Software Package Developers

environment. If the application is already present, the software deployment

program can instruct Deployment Engine to deploy the software package

as an upgrade. If the application is not present, the software deployment

program instructs Deployment Engine to deploy the software package as a

fresh installation. Either deployment yields the same result: a full update of

the application to the latest version. A full update software package

increases the version number (version, release, modification, or level

number) of the application that it updates.

Incremental update

A software package that contains an application upgrade, such as a refresh

pack or fix pack. Unlike a full update software package, you cannot deploy

an incremental update software package as a fresh installation, because the

software package contains software updates only. Instead, you can only

deploy it as an upgrade. Use an incremental update software package to

upgrade a currently deployed application. An incremental update software

package increases the version number (version, release, modification, or

level number) of the application that it updates.

Fix A software package that contains critical software changes or corrections

(such as an interim fix or test fix) that need to be deployed sooner than the

next full update or incremental update, which, as a rule, eventually

incorporates the same changes provided by the fix. A fix software package

is used to deploy only the changed or corrective software and apply it to a

currently deployed application.

 A fix software package has no impact on the version number of the

application that it fixes.

Specific XML elements in the IU deployment descriptor are used to identify these

software package types. The identity or fixIdentity elements for the root IU

characterize the type of software package overall. As a rule, each subordinate

unit—any installable unit or configuration unit that can be defined within another

installable unit—must have identity information for the software package type that

matches its root IU. (A full update, however, is the exception; its installable units

can have one of two software package types—base or full update.)

In terms of descriptor processing, then, Deployment Engine determines software

package types at the installable unit level, in order to deploy the installable units

of the software package correctly and efficiently. Ultimately this means that

payload files are either installed anew, installed over existing files, or sometimes

not installed at all, depending on the software package types associated with their

corresponding installable units. (For details on how to define a software package

type using XML elements in the IU deployment descriptor, see the related

document, IBM Autonomic Computing: Installable Unit Deployment Descriptor

Specification.)

Application packages

An application package is all the software packaged as part of the application. It

includes all the software packages for the application. It always includes

Deployment Engine itself, if Deployment Engine is not, or might not, be part of the

operating environment where the application will be deployed. An application

package can also include other things, such as a Java runtime environment or a

software deployment program that a user runs in order to deploy the software

packages.

Chapter 1. Overview of Deployment Engine 13

The software deployment program developer must prepare an application package

that typically contains the following things:

v All the software packages for the application. The software packages can be

either base, full update, incremental update, or fix software packages, as

described in “Software package types” on page 12.

v The Deployment Engine run-time environment. To enable users or

administrators to deploy your application, the run-time environment must first

be installed in the operating environment. However, its inclusion in the

application package is not a requirement when the appropriate version of

Deployment Engine is known to be present in the operating environment.

v A software deployment program. To deploy your application, a user runs this

program in concert with the Deployment Engine run-time environment.

v Any other necessary software. For example, an application might require its own

Java runtime environment (JRE).

After the application package has been assembled, tested, and delivered, an

administrator or user must deploy the application.

In the operating environment of the target computer that will host the application,

an administrator or user typically:

1. Accesses the application package

2. Runs the software deployment program

3. Supplies any inputs required by the program and initiates the software

deployment

Unless already present, the software deployment program installs Deployment

Engine before anything else. Deployment Engine then uses the information and

instructions from the software deployment program, provided in the form of

change requests, to deploy the software packages for the application on a target

computer. When deployment completes, Deployment Engine registers all the

successfully deployed installable units in its installation database.

The contents of a software package

A software package is a collection of files that includes the application files to be

deployed, called payload files, plus some descriptors. Descriptor is a general term for

the three types of XML documents used by Deployment Engine for software

change management:

v Deployment descriptors

v Action descriptors

v Media descriptors

A software package has one deployment descriptor and at least one action

descriptor. A media descriptor is typical but optional.

Deployment Engine and a software deployment program work with the contents

of one or more software packages when deploying and configuring an application

in target hosting environments. Each software package and its descriptors must

conform to the file-naming conventions provided by Deployment Engine.

Each descriptor in a software package is an XML document that you structure

according to Deployment Engine schemas. Descriptors provide XML elements for

defining installable units and configuration units, of which there are several types.

14 Autonomic Deployment Engine for Software Package Developers

The sections that follow describe the payload files; the types of descriptors,

installable units, and configuration units; and their purpose in the software

package.

Payload files

Payload files are the files in a software package that are deployable; that is, the

application files. These are the files that Deployment Engine actually installs in the

hosting environment. Payload files can be executable files, binary files, library files,

and so on. The payload may also include nonfunctional files such as readme files,

installation instructions, and other informational files. JAR files, ZIP archives, and

RPM packages are valid delivery mechanisms for payload files.

An XML files element that you supply in the IU or CU deployment descriptor

instructs Deployment Engine where to find the payload files. These file locations

can be superseded by new locations provided in a media descriptor, which is

sometimes used when an application is repackaged or for other special

circumstances. The actual data content of the payload files does not matter to

Deployment Engine.

Sometimes temporary files, files that are neither descriptors nor payload files (like

JVM files), are used by the software deployment program during deployment.

These files are not specified in any descriptor. They are included in the application

package to make it self-contained, so that it can work without any additional

prerequisites.

Deployment descriptors

Deployment descriptor is a general term for an XML document that contains

instructions and data that Deployment Engine requires to deploy or configure an

application.

Deployment Engine works with the following deployment descriptors, which are

described later in this section:

v Installable unit deployment descriptors

v Configuration unit deployment descriptors

In general, a deployment descriptor defines the deployment capabilities and

dependencies for a given software package, or defines a single configuration task.

Deployment descriptors include some XML elements for the installable units to be

deployed, as well as for the units that configure them.

Installable unit deployment descriptors

An installable unit deployment descriptor, or IU deployment descriptor, is an XML

document that defines the content and deployment characteristics of a software

package. The IU deployment descriptor is provided as input to the components of

the Deployment Engine run-time environment.

The IU deployment descriptor includes XML elements that represent basic

installable software entities, called installable units (or IUs), and optionally, basic

entities of configuration, called configuration units (or CUs). The IU deployment

descriptor also includes other elements and attributes that describe the deployment

capabilities and dependencies of the software package.

A software package contains exactly one IU deployment descriptor, but can

reference others. An application that has multiple software packages must have

multiple IU deployment descriptors—one for each software package.

Chapter 1. Overview of Deployment Engine 15

An IU deployment descriptor can refer to additional IU deployment descriptors in

other software packages (see the sections that describe the two types of contained

installable units on pages 23 and 24). In this way you can “link” IU deployment

descriptors together in order to, for example, reuse the contents of existing

software packages or integrate individual applications into solutions or suites. This

linkage of software packages is hierarchical, and the linked packages are referred

to as a software package tree, which is described on page 11.

IU deployment descriptors help reduce the complexity of packaging, deploying,

and maintaining complex software solutions and help decrease failures that result

from dependency mismatches.

The following installable units and configuration units can be defined by XML

elements in the IU deployment descriptor:

v “Root installable units” on page 18

v “Smallest installable units” on page 20

v “Container installable units” on page 22

v “Contained installable units” on page 23

v “Contained container installable units” on page 24

v “Solution modules” on page 25

v “Smallest configuration units” on page 29

Figure 2 on page 18 shows a sample IU deployment descriptor. It includes one

smallest installable unit (the SIU element).

Configuration unit deployment descriptors

A configuration unit deployment descriptor, or CU deployment descriptor, is an XML

document that defines a single configuration task. This task can include multiple

steps. The CU deployment descriptor is provided as input to the components of

the Deployment Engine run-time environment.

The CU deployment descriptor includes XML elements for configuration units, the

basic entities of configuration. The CU deployment descriptor also includes other

elements and attributes that describe the application, managed resource (see page

38), or hosting environment to be configured.

There can be more than one CU deployment descriptor in a software package. For

example, there can be one CU deployment descriptor for adding a database user

and password, another for setting the port, and yet another for changing the trace

level.

Only previously installed applications, managed resources, and hosting

environments can be configured using a CU deployment descriptor. The

recommended and safest use of this descriptor, however, is to perform follow-on

configuration or setup of an application that you previously deployed. Unlike the

initial configuration of an application that occurs one time, during software

deployment, follow-on configurations that use the CU deployment descriptor are

repeatable.

The following configuration units can be defined by XML elements in the CU

deployment descriptor:

v “Root configuration units” on page 28

v “Smallest configuration units” on page 29

16 Autonomic Deployment Engine for Software Package Developers

Installable units

Installable unit, or IU, is a general term for the entities in an IU deployment

descriptor that describe or represent the installable parts of an application. Using

Deployment Engine, you can deploy various types of installable units to a hosting

environment in order to create new capabilities in that environment.

One type of installable unit, called the root installable unit, or root IU, is not

deployed but acts as a container for defining all the other types, or subordinate

units. Subordinate unit is a general term for any installable unit or configuration

unit that can be defined within another installable unit.

To define any type of installable unit, you specify a set of XML elements and

attributes in the IU deployment descriptor. This deployment descriptor is an XML

document that you create in accordance with the supplied Deployment Engine

schemas.

In an IU deployment descriptor, you include XML elements that define one root

installable unit and one or more of its subordinate units. Briefly, these units do the

following things (note that some units are designed to target their activities to the

same hosting environment, while others target their activities to the hosting

environments specified by their subordinate units—in other words, to one or more

hosting environments):

v Root installable unit (root IU). Defines deployment data about the software

package, each subordinate unit of the root IU, and the media location where

Deployment Engine can find the descriptors and payload files for the software

package.

v Smallest installable unit (smallest IU). References the action descriptors that

describe how to deploy a particular group of payload files in the same hosting

environment.

v Container installable unit (container IU). Encapsulates some combination of

installable units, configuration units, or other container IUs whose payload files

are to be deployed in the same hosting environment.

v Contained installable unit (contained IU). References the root IU of another IU

deployment descriptor, causing its software to be deployed on behalf of the

current IU deployment descriptor into one or more hosting environments.

v Contained container installable unit (contained container IU). References the

root IU of another IU deployment descriptor, causing its software to be deployed

on behalf of the current IU deployment descriptor into a single hosting

environment.

v Solution module. Encapsulates some combination of installable units,

configuration units, or other solution modules whose payload files are to be

deployed in one or more hosting environments. Each encapsulated unit in the

solution module targets its payload files to its own hosting environment or

environments, which might be different from the other encapsulated units.

Note: Although the term solution module has no IU in its name, a solution

module is considered to be an installable unit because it is an entity in an IU

deployment descriptor that describes or represents some installable part of an

application.

v Smallest configuration unit (smallest CU). Defines the action descriptors that

describe how to initially configure a newly installed software package in a single

hosting environment.

Chapter 1. Overview of Deployment Engine 17

Within the IU deployment descriptor of a single software package, a simple

application might be wholly defined using a root IU with a single, smallest IU.

Complex applications are more likely to be defined using multiple software

packages, or using a single software package whose root IU includes various types

of installable units. Multiple installable units provide greater flexibility for software

deployment. For example, they permit certain application features to be deployed

independently from one another. Some installable units might even require other

installable units as corequisites (for example, to install feature B, you are also

required to install feature A).

For convenience, you can organize the XML elements for the various installable

units hierarchically in the IU deployment descriptor. The valid hierarchical

structures are described in “Unit hierarchies” on page 31. A Deployment Engine

schema governs how, and in what combinations, these various installable units can

be organized in an IU deployment descriptor in order to deploy software.

Root installable units: Every IU deployment descriptor must have one, and only

one, root installable unit. A root installable unit, or root IU, defines the software

package to be deployed.

The root installable unit is the top-level XML element in an IU deployment

descriptor. Every other descriptor element, including elements for the installable

units and configuration units, is included in the root IU. The XML elements in the

root IU define the following kinds of information:

v The identity (name, UUID, and version) of the application

v Required or optional subordinate units (that is, installable units and smallest

configuration units)

v Features and installation groups (optional content) of the application

v The XML schema (location and version) that this root IU conforms to

v Definitions of any global variables used during software deployment

v Target hosting environments

v The media location of the action descriptors associated with the subordinate

units

v The media location of the payload files associated with the subordinate units

Note: For a complete list of the XML elements and attributes of a root IU, see the

related document, IBM Autonomic Computing: Installable Unit Deployment Descriptor

Specification.

Figure 2 shows a sample IU deployment descriptor. The iudd:rootIU element is the

root IU. The root IU contains all the other XML elements in the IU deployment

descriptor. The root IU in this sample includes a smallest IU, represented (under

the installableUnit element) by the SIU element:

<iudd:rootIU

xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_componentTypes"

Figure 2. Sample IU deployment descriptor with mandatory root IU and one smallest IU (Part

1 of 3)

18 Autonomic Deployment Engine for Software Package Developers

xmlns:J2EERT="http://www.ibm.com/namespaces/autonomic/J2EE_RT"

xmlns:RDBRT="http://www.ibm.com/namespaces/autonomic/RDB_RT"

xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD iudd.xsd"

IUName="JRE_15_Sample_RootIU">

 <identity>

 <name>JRE 1.5 Sample RootIU</name>

 <UUID>991974510ba426fe1f53841402352114</UUID>

 <full>

 <upgradeBase>

 <minVersion>1.1.0</minVersion>

 </upgradeBase>

 </full>

 <version>1.5.0</version>

 </identity>

 <selectableContent>

 <installableUnit targetRef="tOS">

 <SIU IUName="JRE_15_IU" hostingEnvType="OSRT:Operating_System">

 <identity>

 <name>JRE 1.5 IU</name>

 <UUID>991974510ba426fa1f53841402351125</UUID>

 <version>1.5.0</version>

 </identity>

 <requirements>

 <requirement name="Creation_Req" operations="Create">

 <alternative name="JRE_Not_Installed">

 <checkItem checkIdRef="Windows_Check"/>

 <inlineCheck testValue="false">

 <software checkId="JRE_15_SW_Check">

 <name pattern="true">Java 2 Runtime Environment, SE v1.5.0</name>

 </software>

 </inlineCheck>

 </alternative>

 </requirement>

 <requirement name="Deletion_Req" operations="Delete">

 <alternative name="JRE_Installed_SI">

 <checkItem checkIdRef="Windows_Check"/>

 <inlineCheck>

 <iu checkId="JRE_15_IU_Check">

 <UUID>991974510ba426fa1f53841402351125</UUID>

 <name>JRE 1.5 IU</name>

 </iu>

 </inlineCheck>

 </alternative>

 </requirement>

 </requirements>

 <unit>

 <installArtifacts>

 <installArtifact undoable="true">

 <fileIdRef>JRE15InstallArtifact</fileIdRef>

 </installArtifact>

 </installArtifacts>

 </unit>

 </SIU>

 </installableUnit>

 </selectableContent>

 <features>

 <feature featureID="JRE_15_Feature" required="true">

Figure 2. Sample IU deployment descriptor with mandatory root IU and one smallest IU (Part

2 of 3)

Chapter 1. Overview of Deployment Engine 19

Think of a root IU as the sole, top-level node in a hierarchy of multiple

subordinate units. This hierarchy includes the subordinate units as leaf nodes, and

sometimes as intermediate nodes. Therefore the subordinate units are always

nested XML elements under the root installable unit. In a hierarchy of installable

units, the following subordinate units can be defined as child or descendent nodes

of the root installable unit that includes them:

v Smallest installable unit

v Container installable unit

v Contained installable unit

v Contained container installable unit

v Solution module

v Smallest configuration unit

Figure 18 on page 33 illustrates a hierarchy of installable units.

Smallest installable units: A smallest installable unit, or smallest IU, is the most

basic installable unit. The purpose of a smallest installable unit is to deploy all or

part of an application to a single hosting environment. A smallest installable unit

 <identity>

 <name>JRE 1.5 Feature</name>

 </identity>

 <IUNameRef>JRE_15_IU</IUNameRef>

 </feature>

 </features>

 <rootInfo>

 <schemaVersion>1.2.1</schemaVersion>

 <build>42</build>

 <size>1</size>

 </rootInfo>

 <topology>

 <target id="tOS" type="OSRT:Operating_System">

 <checks>

 <property checkId="Windows_Check">

 <propertyName>OSType</propertyName>

 <pattern>Windows.*</pattern>

 </property>

 </checks>

 </target>

 </topology>

 <files>

 <file id="JRE_15_Source">

 <pathname>../FILES/jre-1_5_0-beta2-windows-i586.exe</pathname>

 <length>0</length>

 <checksum type="MD5">abc</checksum>

 </file>

 <file id="JRE15InstallArtifact">

 <pathname>JRE15InstallArtifact.xml</pathname>

 <length>0</length>

 <checksum type="MD5">abc</checksum>

 </file>

 </files>

</iudd:rootIU>

Figure 2. Sample IU deployment descriptor with mandatory root IU and one smallest IU (Part

3 of 3)

20 Autonomic Deployment Engine for Software Package Developers

identifies action descriptors that describe how to deploy its related payload files. A

smallest installable unit delivers the capability of the installable unit itself and its

associated action descriptors.

You specify a smallest installable unit in an IU deployment descriptor, either as

part of a root installable unit, a container installable unit, or a solution module.

Figure 3 shows an IU deployment descriptor whose root IU references one smallest

installable unit. This IU deployment descriptor represents the most elementary

form of software deployment. The software package to be deployed, plus the

media location of all the action descriptor and payload files, are defined in the root

IU. The action descriptors themselves are defined in the smallest installable unit.

Figure 4 shows the structure of a smallest IU represented another way:

The smallest IU contains XML elements that define the following kinds of

information:

v The identity (name, UUID, and version) of the smallest IU

v Constraints for the smallest IU

v Definitions of any variables used during software deployment

v Definitions of checks that compare actual values of a property against a defined

value in the IU deployment descriptor

v Requirements of the smallest IU

v References to theaction descriptors for the smallest IU

Figure 5 on page 22 shows an XML fragment from an IU deployment descriptor.

The XML fragment represents a smallest IU. In an IU deployment descriptor, the

smallest IU (the SIU element) is always a nested element within the top-level

iudd:rootIU element. In Figure 5, the SIU element is highlighted in bold type:

 IU deployment descriptor

 Root node: root IU

 |

 |

 Leaf node: smallest IU

Figure 3. An IU deployment descriptor with mandatory root IU and one smallest IU

smallest IU

IU deployment descriptor
root IU

Figure 4. An IU deployment descriptor with mandatory root IU and one smallest IU

Chapter 1. Overview of Deployment Engine 21

Container installable units: A container installable unit, or container IU, is an

installable unit that encapsulates some combination of other installable and

configuration units whose payload files are to be deployed in a single hosting

environment. The encapsulated units can include smallest IUs, smallest CUs,

contained container IUs, or other container IUs.

The purpose of a container installable unit is to encapsulate a group of installable

units that need to be deployed together on the same hosting environment. Because

all the units are targeted to the same place, you can specify the target hosting

environment as an attribute of the container IU rather than as attributes of each

encapsulated unit. (If you need to target unit payload files to different hosting

environments, you should define a solution module, not a container IU, to

encapsulate the units with different targets.)

Figure 6 shows an IU deployment descriptor whose root IU includes a container

IU. The container IU encapsulates a smallest IU and another container IU whose

payload files are to be deployed in the same hosting environment:

The container IU contains XML elements that define the following kinds of

information:

v The identity (name, UUID, and version) of the container IU

<iudd:rootIU
<installableUnit>

 <SIU IUName="name" hostingEnvType="type">

 <identity>

 <name>human-readable_name</name>

 <UUID>identifier</UUID>

 <version>version</version>

 </identity>

 <constraints>...</constraints>

 <variables>...</variables>

 <checks>...</checks>

 <requirements>...</requirements>

 <unit>

 <installArtifacts>...</installArtifacts>

 </unit>

 </SIU>

</installableUnit> ...
<\iudd:rootIU>

Figure 5. An XML fragment representing a smallest IU in an IU deployment descriptor

smallest IU

container IU

IU deployment descriptor
root IU

container IU

Figure 6. An IU deployment descriptor that includes a mandatory root IU and a container IU

with encapsulated installable units

22 Autonomic Deployment Engine for Software Package Developers

v Definitions of any variables used during software deployment

v Subordinate units of the container IU

v Constraints for the container IU

v Definitions of checks that compare actual values of a property against a defined

value in the IU deployment descriptor

v Requirements of the container IU

Figure 7 shows an XML fragment from an IU deployment descriptor. The XML

fragment represents a container IU. In an IU deployment descriptor, the container

IU (the CIU element) is always a nested element within the top-level iudd:rootIU

element. In the figure, the container IU encapsulates two smallest IUs and another

container IU. The CIU element is highlighted in bold type:

Contained installable units: A contained installable unit, or contained IU, is an

installable unit that references the root IU of another IU deployment descriptor.

The purpose of the contained installable unit is efficiency. The contained installable

unit reuses another installable unit deployment descriptor. The contained

installable unit causes the installable units in the referenced root installable unit to

be deployed as if they were part of the current root installable unit. The installable

units in the referenced root installable unit are deployed to one or more targeted

hosting environments.

Figure 8 on page 24 shows an IU deployment descriptor whose root IU includes a

contained IU that references another root IU. The payload files of the referenced

root IU are deployed in more than one hosting environment:

<iudd:rootIU
<installableUnit>

 <CIU IUName="name" hostingEnvType="type">

 <identity>...</identity>

 <variables>...</variables>

 <installableUnit>

 <SIU ...>

 ...
 </SIU>

 <installableUnit>

 <installableUnit>

 <SIU ...>

 ...
 </SIU>

 <installableUnit>

 <installableUnit>

 <CIU ...>

 ...
 </CIU>

 <installableUnit>

 </CIU>

</installableUnit> ...
<\iudd:rootIU>

Figure 7. Sample container IU in an IU deployment descriptor

Chapter 1. Overview of Deployment Engine 23

The contained IU contains XML elements that define the following kinds of

information:

v The name of the contained IU

v The identity (UUID, version, and file ID reference) of the referenced root IU

Figure 9 shows an XML fragment from an IU deployment descriptor. The XML

fragment represents a contained IU. In an IU deployment descriptor, the contained

IU (the containedIU element) is always a nested element within the top-level

iudd:rootIU element. In the figure, the contained IU references another root IU.

The containedIU element is highlighted in bold type:

Contained container installable units: A contained container installable unit, or

contained container IU, is an installable unit that references the root IU of another IU

deployment descriptor. Like a contained IU, the purpose of the contained container

IU is efficiency. The contained container IU reuses another installable unit

deployment descriptor. The contained container installable unit causes the

installable units in the referenced root installable unit to be deployed as if they

were part of the current root installable unit. However, unlike a contained IU,

which deploys the installable units to one or more hosting environments, a

contained container IU can deploy the installable units only to a single hosting

environment.

Figure 10 on page 25 shows an IU deployment descriptor whose root IU includes a

contained container IU that references another root IU. The payload files of the

referenced root IU are deployed in only one hosting environment:

contained IU
UUID=UUID of
root_IU_for_multiple_he

IU deployment descriptor
root IU

Figure 8. An IU deployment descriptor that includes a mandatory root IU and a contained IU.

The contained IU references the UUID of another root IU whose payload files are deployed in

multiple hosting environments.

<iudd:rootIU
 <installableUnit targetRef="tOS">

 <containedIU IUName="Component_IU">

 <UUID>991974510ba426fe1f53841402350020</UUID>

 <version>1.2</version>

 <fileIdRef>ComponentInstall</fileIdRef>

 </containedIU>

 </installableUnit>

 ...
<\iudd:rootIU>

Figure 9. Sample contained IU in an IU deployment descriptor

24 Autonomic Deployment Engine for Software Package Developers

The contained container IU contains XML elements that define the following kinds

of information:

v The name of the contained container IU

v The identity (UUID, version, and file ID reference) of the referenced root IU

Figure 11 shows an XML fragment from an IU deployment descriptor. The XML

fragment represents a contained container IU. In an IU deployment descriptor, the

contained container IU (the containedCIU element) is always a nested element

within the top-level iudd:rootIU element. In the figure, the contained container IU

references another root IU. The containedCIU element is highlighted in bold type:

Solution modules: A solution module is an installable entity that encapsulates

some combination of other installable and configuration units whose payload files

are to be deployed in one or more hosting environments. The encapsulated units

can include any of the following units:

v Smallest IUs

v Container IUs

v Contained IUs

v Contained container IUs

v Other solution modules

v Smallest CUs

Each encapsulated unit in the solution module targets its payload files to its own

hosting environment or environments, which might be different from the other

encapsulated units. (If you need to deploy unit payload files to the same hosting

environment, you should define a container IU, not a solution module, to

encapsulate the units whose targets are the same.) Therefore the purpose of a

contained container IU
UUID=UUID of
root_IU_for_single_he

IU deployment descriptor
root IU

Figure 10. An IU deployment descriptor that includes a mandatory root IU and a contained

container IU. The contained container IU references the UUID of another root IU whose

payload files are deployed in a single hosting environment.

<iudd:rootIU
 <installableUnit targetRef="tOS">

 <containedCIU IUName="Component_IU">

 <UUID>991974510ba426fe1f53841402350020</UUID>

 <version>1.2</version>

 <fileIdRef>ComponentInstall</fileIdRef>

 </containedCIU>

 </installableUnit> ...
<\iudd:rootIU>

Figure 11. Sample contained container IU in an IU deployment descriptor

Chapter 1. Overview of Deployment Engine 25

solution module is to encapsulate some units in the IU deployment descriptor that

need to be deployed at the same time to target hosting environments that are

different from one another.

Note: Although the term solution module has no IU in its name, a solution module

is considered to be an installable unit because it is an entity in an IU deployment

descriptor that describes or represents some installable part of an application.

Figure 12 shows an IU deployment descriptor whose root IU defines a solution

module that encapsulates two container IUs.

Figure 13 shows an IU deployment descriptor whose root IU also defines a

solution module. This solution module includes a container IU, whose units are all

targeted to the same hosting environment, and another solution module, whose

units are individually targeted to their own hosting environment.

The solution module contains XML elements that define the following kinds of

information:

v The identity (name, UUID, and version) of the solution module

v Definitions of any variables used during software deployment

v Subordinate units of the solution module

Figure 14 on page 27 shows an XML fragment from an IU deployment descriptor.

The XML fragment represents a solution module. In an IU deployment descriptor,

the solution module (the solutionModule element) is always a nested element

within the top-level iudd:rootIU element. In the figure, the solution module

encapsulates a single, smallest IU. The solutionModule element is highlighted in

bold type:

IU deployment descriptor
root IU

container IU

container IU

solution module

Figure 12. An IU deployment descriptor that includes a mandatory root IU and a solution

module with two container IUs

IU deployment descriptor
root IU

solution
module

container IU

solution module

Figure 13. An IU deployment descriptor whose root IU defines a solution module with a

single-target container IU and a multitarget solution module

26 Autonomic Deployment Engine for Software Package Developers

Configuration units

Configuration unit, or CU, is a general term for the entities in an IU or CU

deployment descriptor that describe or define the hosting environments of the

software package to be configured and the steps required to configure that

software package.

In a CU deployment descriptor, one type of configuration unit, called the root

configuration unit (root CU), includes no configuration steps but acts as a

container for defining the other type, the smallest configuration unit (smallest CU).

To define either type of configuration unit, you specify a set of XML elements and

attributes in the deployment descriptor. This deployment descriptor is an XML

document that you create in accordance with supplied Deployment Engine

schemas.

In a CU deployment descriptor, you include XML elements that define one root

configuration unit and one or more smallest configuration units. Briefly, these units

do the following things:

v Root configuration unit (root CU). Defines the hosting environments of the

software package to be configured and the overall configuration task to be

accomplished by the smallest configuration units.

<iudd:rootIU
 <installableUnit targetRef="tOS">

 <solutionModule IUName="SMD_Wrapper">

 <identity>

 <name>SMD Test Wrapper</name>

 <UUID>991974510ba426fe1f53841402350007</UUID>

 <version>1.2.0</version>

 </identity>

 <installableUnit targetRef="tOS">

 <SIU IUName="SMD_IU" hostingEnvType="OSRT:Operating_System">

 <identity>

 <name>SMD Test</name>

 <UUID>991974510ba426fe1f53841402350008</UUID>

 <version>1.2.0</version>

 </identity>

 <unit>

 <installArtifacts>

 <installArtifact>

 <fileIdRef>SMDInstallActions</fileIdRef>

 </installArtifact>

 <uninstallArtifact>

 <fileIdRef>SMDUninstallActions</fileIdRef>

 </uninstallArtifact>

 </installArtifacts>

 </unit>

 </SIU>

 </installableUnit>

 </solutionModule>

 </installableUnit> ...
<\iudd:rootIU>

Figure 14. Sample solution module in an IU deployment descriptor

Chapter 1. Overview of Deployment Engine 27

v Smallest configuration unit (smallest CU). Defines the action descriptors that

describe how to initially configure a newly installed software package, or

perform follow-on configurations, in a single hosting environment.

When used within a CU deployment descriptor, configuration units change the

current configuration of a previously deployed software package. When used

within a IU deployment descriptor, configuration units perform any needed initial

configuration of the subordinate units for the following:

v The current root IU

v A root IU that is referenced by a contained IU, a contained container IU or a

requisite of the current root IU

The XML elements for the two types of configuration units can be organized

hierarchically in an IU or CU deployment descriptor. The valid hierarchical

structures for configuration units are described in “Unit hierarchies” on page 31. A

Deployment Engine schema governs how, and in what combinations, the

configuration units can be organized in a deployment descriptor in order to

configure software.

Root and smallest configuration units are described in the sections that follow.

Root configuration units: Every CU deployment descriptor must have one, and

only one, root configuration unit. A root configuration unit, or root CU, defines the

hosting environments of the software package to be configured and the overall

configuration task to be accomplished by the smallest configuration units. It also

acts as a container for all the smallest configuration units in the CU deployment

descriptor.

The root configuration unit is the top-level XML element in a CU deployment

descriptor. Every smallest configuration unit of a CU deployment descriptor is

included in the root CU. The XML elements in the root CU define the following

kinds of information:

v The identity (name, UUID) of the configuration task

v Smallest configuration units

v The XML schema (location and version) that this root CU conforms to

v Target hosting environments

v The media location of the action descriptors associated with the smallest

configuration units

v The media location of the payload files associated with the smallest

configuration units

Figure 15 on page 29 shows a sample CU deployment descriptor. The iudd:rootCU

element is the root CU. The root CU contains all the other XML elements in the CU

deployment descriptor. The root CU in this sample includes a smallest CU,

represented (under the configurationUnit element) by the SCU element:

28 Autonomic Deployment Engine for Software Package Developers

The root configuration unit is the sole, top-level node in a hierarchy with smallest

configuration units as its leaf nodes. In the CU deployment descriptor, all of the

smallest configuration units are nested XML elements under the root configuration

unit

A hierarchy of configuration units is illustrated in “Configuration unit hierarchies”

on page 33.

Smallest configuration units: A smallest configuration unit, or smallest CU, is a

basic unit for setting up or customizing newly or previously installed software

package for a particular use or environment. A smallest configuration unit

references action descriptors that describe how to configure the software package.

The software being configured is always associated with a single hosting

environment.

<iudd:rootCU

 xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"

 xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_componentTypes"

 CUName="CURoot" targetRef="tOS">

 <identity>

 <name>CURoot</name>

 <UUID>EEFFDDCCBBAA00998877665544332211</UUID>

 </identity>

 <configurationUnit>

 <SCU CUName="SCU_A">

 <unit>

 <configArtifacts>

 <configArtifact>

 <fileIdRef>configArtifact_SCU_A</fileIdRef>

 </configArtifact>

 </configArtifacts>

 </unit>

 </SCU>

 </configurationUnit>

 <rootInfo>

 <schemaVersion>1.2.1</schemaVersion>

 <build>123456</build>

 </rootInfo>

 <topology>

 <target id="tOS" type="OSRT:Operating_System" />

 </topology>

 <files>

 <file id="configArtifact_SCU_A">

 <pathname>scuAconfigArtifact.xml</pathname>

 <length>0</length>

 <checksum>0</checksum>

 </file>

 <file id="SCUFileA">

 <pathname>../FILES/rootcu_scu_A.txt</pathname>

 <length>1</length>

 <checksum />

 </file> </files>

</iudd:rootCU>

Figure 15. Sample CU deployment descriptor with mandatory root CU and one smallest CU

Chapter 1. Overview of Deployment Engine 29

Deployment Engine interfaces only with the touchpoint of a hosting environment.

The touchpoint, in turn, reads the actions which originate in the action descriptor

that is defined by the smallest configuration unit, and configures the hosting

environment or one of its hosted resources accordingly (for details, see page 9).

You specify a smallest configuration unit in a deployment descriptor. In a CU

deployment descriptor, the smallest configuration unit is specified as an element of

the root configuration unit. In an IU deployment descriptor, the smallest

configuration unit is specified as an element of a root installable unit, container

installable unit, or solution module.

Used within a IU deployment descriptor, smallest configuration units initially

configure the software package that the IU deployment descriptor is deploying. An

IU deployment descriptor is processed one time only. You define smallest

configuration units in the IU deployment descriptor when you need to configure

some of its installable units either during installation or migration.

In the IU deployment descriptor, you can define smallest configuration units to

configure subordinate installable units for the following root IUs:

v The root IU of the deployment descriptor itself.

v The root IU of another IU deployment descriptor. This is an external root IU that

is referenced by a contained IU, a contained container IU, or a requisite in the

current deployment descriptor.

Used within a CU deployment descriptor, smallest configuration units change the

current configuration of previously deployed applications. Typically, you would

use the CU deployment descriptor to perform one or more follow-on

configurations to an application that you deployed sometime in the past. A CU

deployment descriptor can be processed repeatedly, as needed, to configure or

reconfigure the application or another target hosted resource in a particular hosting

environment.

A smallest configuration unit consists of a sequence of configuration steps, like a

script. Unlike a smallest installable unit, the smallest configuration unit does not

represent installable software and does not have an install-uninstall life cycle.

Rather, a smallest configuration unit is used in the CU deployment descriptor to

apply required configuration settings to a previously deployed application after the

fact—that is, after any initial configuration. A smallest configuration unit has the

capability to do the same for other hosted resources. These resources can be hosted

resources that are required by applications using Deployment Engine, even though

the resources were not created as part of a Deployment Engine–based deployment.

However, the recommended and safest use is for performing follow-on

configurations of a software package that belongs to your own application.

Figure 16 on page 31 shows a CU deployment descriptor whose root CU references

one smallest configuration unit. This CU deployment descriptor represents the

most elementary form of software configuration. The configuration task, plus the

media location of all the action descriptor and payload files, are defined in the root

CU. The action descriptors themselves are defined in the smallest configuration

unit.

30 Autonomic Deployment Engine for Software Package Developers

For a picture that shows the various ways a smallest configuration unit might

appear when organized hierarchically in an IU deployment descriptor, see

Figure 18 on page 33.

As noted, a smallest configuration unit can be an XML element in either a CU or

IU deployment descriptor. The XML elements and attributes of the smallest

configuration unit define the following kinds of information:

v The identity (name) of the smallest configuration unit

v Definitions of any variables used during software deployment

v Definitions of checks that compare actual values of a property against a defined

value in the IU deployment descriptor

v Requirements of the container IU

v A reference to the action descriptor for the smallest configuration unit

Figure 17 shows an XML fragment from a CU deployment descriptor. The XML

fragment represents a smallest configuration unit. In a CU deployment descriptor,

the smallest configuration unit (the SCU element) is always a nested element

within the top-level iudd:rootCU element. In Figure 17, the SCU element is

highlighted in bold type:

Unit hierarchies

Multiple installable units, when packaged together, must be organized

hierarchically, or nested, in the deployment descriptor under the root IU. The same

is true for multiple configuration units, except that they can also be nested under a

root CU.

smallest CU

CU deployment descriptor
root CU

Figure 16. A CU deployment descriptor with mandatory root CU and one smallest CU

<iudd:rootCU
<configurationUnit>

 <SCU CUName="SCU_A">

 <unit>

 <configArtifacts>

 <configArtifact>

 <fileIdRef>configArtifact_SCU_A</fileIdRef>

 </configArtifact>

 </configArtifacts>

 </unit>

 </SCU>

</configurationUnit> ...
<\iudd:rootCU>

Figure 17. An XML fragment representing a smallest CU in a CU deployment descriptor

Chapter 1. Overview of Deployment Engine 31

Installable unit hierarchies: An installable unit hierarchy, or IU hierarchy, is a

structure of installable units, configuration units, or both, subordinated under one

top-level root IU, that together function as a tree. You create an installable unit

hierarchy whenever you develop an IU deployment descriptor in accordance with

the Deployment Engine schema.

In the IU deployment descriptor, installable units and configuration units are

subordinate to the root IU, and must be represented as nested XML elements

under the root IU. These subordinate units are used by Deployment Engine to

deploy a software package. Any unit in the tree (except a container IU) can be

associated with its own action descriptor and payload files.

The basic units of the tree must be organized as follows:

v One root node, a root IU

v One or more levels of the following intermediate nodes (intermediate nodes

always have nodes both above them and below them in the hierarchy):

– A solution module

– A container IU
v One or more of the following leaf nodes:

– A smallest IU

– A smallest CU

– A contained IU

– A contained container IU

Think of the root IU as the sole, top-level node in a hierarchy of multiple

subordinate units. This hierarchy must include other units as leaf nodes, and

sometimes as intermediate nodes. Either way, the hierarchy always includes a root

installable unit as the topmost, or root, node. In the IU deployment descriptor, all

other installable or configuration units are nested XML elements under the root

installable unit.

Figure 18 on page 33 shows a hierarchy of installable units with four node levels.

The figure illustrates a root node, two levels that contain intermediate nodes (there

can be one or more levels that contain intermediate nodes) and three levels that

contain leaf nodes.

32 Autonomic Deployment Engine for Software Package Developers

Configuration unit hierarchies: A configuration unit hierarchy, or CU hierarchy, is a

structure of smallest configuration units, subordinated under one top-level root

CU, that together function as a tree. You create a configuration unit hierarchy

whenever you develop a CU deployment descriptor in accordance with the

Deployment Engine schema.

In the CU deployment descriptor, smallest configuration units are subordinate to

the root CU, and must be represented as nested XML elements under the root CU.

The subordinate units, or smallest configuration units, are used by Deployment

Engine to configure a previously installed software package.

Figure 19 shows a hierarchy of configuration units with one root node and two leaf

nodes. Note that in a configuration unit hierarchy there are no intermediate nodes:

 IU deployment descriptor

 root IU

 |

 _________________________________|________________________________

 Intermediate nodes | | | | | |

 sm and CIU (level 1): sm CIU SIU SCU cIU ccIU

 | |

 _________________|____________________ _____|_____________

 Intermediate nodes | | | | | | | | | |

 sm and CIU (level 2): sm CIU SIU SCU cIU ccIU CIU SIU SCU ccIU

 | | |

 ________________|___ ____|_______ ___|___________

 | | | | | | | | | |

 SIU SCU cIU ccIU SIU SCU ccIU SIU SCU ccIU

Legend:

sm = solution module

CIU = container IU

SIU = smallest IU

SCU = smallest CU

cIU = contained IU

ccIU = contained container IU

Figure 18. A hierarchy of installable units in an IU deployment descriptor

 CU deployment descriptor

 Root node: root CU

 |

 __|__

 | |

 Leaf nodes: SCU SCU

Legend:

SCU = smallest CU

Figure 19. A hierarchy of configuration units in a CU deployment descriptor

Chapter 1. Overview of Deployment Engine 33

Optional content

Base content indicates which installable units to deploy, independently of what

selections the user makes at deployment time. Base content, in other words, is the

application content that is always meant to be deployed. Optional content, on the

other hand, indicates which installable units to deploy based on what a user does

select when given some choices. Optional content, then, refers to installable units

that are not required to be deployed as the core part of an application but instead

can be deployed at the user’s option; for example, some additional application

functionality, samples, or documentation.

There are two types of optional content: features, and preselected sets of features

called installation groups. If appropriate for your application, you can define

features, installation groups, or both in the IU deployment descriptor of your

software packages. Each feature that you define can specify one or more installable

units for inclusion within that feature. Potential installable units that might be

included in features are defined as selectable content in separate section of the IU

deployment descriptor. The installable units that are actually deployed to the

hosting environment are determined by which features and installation groups the

user chooses during the software deployment process, and which installable units

those features and installation groups include from the selectable content.

You identify the installable units that you want to make available for inclusion by

features under installableUnit elements that are nested under a selectableContent

element of the IU deployment descriptor. The features that can include those

installable units are defined by their own separate elements elsewhere in the

deployment descriptor (see “Features” on page 35 and “Installation groups” on

page 36 for details).

Figure 20 shows an XML fragment from an IU deployment descriptor. The XML

fragment represents two contained IUs defined as selectable content. A feature can

include either or both of these contained IUs simply by referencing them. In an IU

deployment descriptor, the selectable content (the selectableContent element) is

always a nested element within the top-level iudd:rootIU element. In Figure 20, the

selectableContent element is highlighted in bold type:

<iudd:rootIU ...
 <selectableContent>

 <installableUnit>

 <containedIU IUName=contained1>

 <fileIdRef>app1</fileIdRef>

 ...

Figure 20. An XML fragment representing selectable content in an IU deployment descriptor

(Part 1 of 2)

34 Autonomic Deployment Engine for Software Package Developers

Features: A feature is an optional, separately deployable set of installable units

that represent some specific functionality of a larger software application. A feature

is a type of optional content that your application can offer as an installation

choice to users at software deployment time. Samples, language packs,

documentation, or even applications in a suite are considered features. Features

provide the mechanism that enables a user to select some optional installable units

in the root installable unit to deploy. Offering features as part of your application

is not required.

The following things are notable about features:

v Features are pointers to selectable content.

v As such, features map to installable units. For example:

– Feature A maps to IU_1.

– Feature B maps to IU_2, IU_3.

– Feature C maps to IU_4.
v Features can contain other features.

– Feature E:

- Feature E1 maps to IU_5.

- Feature E2 maps to Package Y, Feature S.
v Features can have selection rules based on what the user selects:

– If the user selects this feature, another feature is automatically selected

– If the user selects this feature, another feature is automatically deselected

– If the user deselects this feature, another feature is automatically selected

– If the user deselects this feature, another feature is automatically deselected
v Features can reference the features of other software packages.

– Feature D maps to Package X Feature Q.

– Feature E2 maps to Package Y, Feature S.

Features contain XML elements that define the following kinds of information:

v The name of the feature—a unique name that can optionally take the value of

the displayName attribute

v A human-readable descriptive name for the feature (the value of the

displayName attribute)

 </containedIU>

 </installableUnit>

 <installableUnit>

 <containedIU IUName=contained2>

 <fileIdRef>app2</fileIdRef>

 ...
 </containedIU>

 </installableUnit>

 ...
 </selectableContent> ...
</iudd:rootIU>

Figure 20. An XML fragment representing selectable content in an IU deployment descriptor

(Part 2 of 2)

Chapter 1. Overview of Deployment Engine 35

v Nested subfeatures

v Installable units that are selected by an IUNameRef attribute from a top-level

installable unit defined as optional content of the root IU

v References to features in another software package referred to by a contained IU,

contained container IU, or requisite

v Optional selection rules (each selection rule identifies the name of a different

feature within the root installable unit, where the specified feature is the subject

of one of the selection rules noted earlier in this section)

Figure 21 shows an XML fragment from a IU deployment descriptor. The XML

fragment represents two features. In an IU deployment descriptor, the features

appear within the features element, which is always a nested element within the

top-level iudd:rootIU element. In Figure 21, the features element is highlighted in

bold type:

Installation groups: An installation group is a set of application features that are

preselected for the user. An installation group is a type of optional content that

your application can offer users at software deployment time. If a user selects the

installation group, all the features in the installation group are preselected for

deployment. Offering installation groups as part of your application is not

required.

An installation group can provide a set of features based on user roles (developer,

administrator, general user), usage criteria (typical, compact, full, custom), or any

other criteria deemed relevant or beneficial to application users.

The following things are notable about installation groups:

v Installation groups provide alternatives to users.

<iudd:rootIU
<features>

 <feature featureID="BFeature">

 <identity>

 <name>Feature B</name>

 </identity>

 <IUNameRef>MyWorld</IUNameRef>

 <selectionRules>

 <deselectIfSelected>BFeaturePlus</deselectIfSelected>

 </selectionRules>

 </feature>

 <feature featureID="BFeaturePlus">

 <identity>

 <name>Feature B Plus</name>

 </identity>

 <IUNameRef>MyWorld</IUNameRef>

 <IUNameRef>HelloWorld</IUNameRef>

 <selectionRules>

 <deselectIfSelected>BFeature</deselectIfSelected>

 </selectionRules>

 </feature>

</features> ...
<\iudd:rootIU>

Figure 21. An XML fragment representing features in a IU deployment descriptor

36 Autonomic Deployment Engine for Software Package Developers

v One installation group should be selected by default.

v One installation group cannot contain another installation group.

The same feature can appear in one or more installation groups:

v InstallationGroup_1

– Feature A

– Feature B

– Feature C
v InstallationGroup_2

– Feature B

– Feature C

– Feature D

– Feature E

- Feature E1

- Feature E2

Installation groups contain XML elements that define the following kinds of

information:

v The name of the installation group

v An optional, human-readable description

v A list naming the features that should be selected for installation if the group is

selected

Figure 22 shows an XML fragment from a IU deployment descriptor. The XML

fragment represents three installation groups. In an IU deployment descriptor, the

installation groups appear within the groups element, which is always a nested

element within the top-level iudd:rootIU element. In Figure 22, the groups element

is highlighted in bold type:

<iudd:rootIU
<groups>

 <group>

 <groupName>Group1</groupName>

 <feature featureIDRef="Feature_Code_A" selection="selected"/>

 <feature featureIDRef="Feature_Code_B" selection="selected"/>

 <feature featureIDRef="Feature_Documentation_B" selection="selected"/>

 </group>

 <group>

 <groupName>Group2</groupName>

 <feature featureIDRef="Feature_Code_A" selection="selected"/>

 <feature featureIDRef="Feature_Code_B" selection="selected"/>

 </group>

Figure 22. An XML fragment representing installation groups in a IU deployment descriptor

(Part 1 of 2)

Chapter 1. Overview of Deployment Engine 37

Features and installation groups determine which installable units to deploy, but

they do not determine the order in which the installable units should be deployed.

Deployment Engine determines the deployment sequence based on the hierarchy

of the installable units in the deployment descriptor.

Managed resources

A managed resource is an entity that exists in the run-time environment of an IT

system and that can be managed.

Deployment Engine typically views a managed resource as one of the following

things:

v The hosting environment (for example, a target operating system)

v An entity in the hosting environment where Deployment Engine ultimately

deploys the software (for example, a target file system)

v The deployed software itself (when installed in a hosting environment)

v Software (already installed in a hosting environment) that is used in conjunction

with the software to be deployed; for example, installed prerequisite or

corequisite software

The topology (see page 38) is the part of the IU deployment descriptor that defines

the managed resources that are the logical targets to use, for example, when

deploying installable units, checking variables for property queries, or checking

dependencies.

Backing resources

A backing resource is a physical, managed resource in a hosting environment that is

represented in the Deployment Engine installation database by the database entry

for an installable unit. There is a one-to-one correspondence between the backing

resource and the database entry for the installable unit. Deployment Engine

monitors the backing resource to ensure that nothing other than Deployment

Engine itself modifies it. The installable unit and the backing resource it represents

are linked by a Deploys relationship (see page 61) stored in the relationship

registry of the installation database.

In the IU deployment descriptor, a backing_resource element nested within the

identity element of the installable unit allows the touchpoint for the hosting

environment to locate the physical backing resource in the hosting environment.

The backing_resource element does this by referring to a specific hosted resource,

called a resulting resource, within a topology in the IU deployment descriptor.

Topologies

A topology is an XML element in a deployment descriptor that defines, by means of

a collection of target definitions, the required hardware and software environment

 <group>

 <groupName>Group3</groupName>

 <feature featureIDRef="Feature_Documentation_B" selection="selected"/>

 </group>

 <default>Group1</default>

</groups> ...
<\iudd:rootIU>

Figure 22. An XML fragment representing installation groups in a IU deployment descriptor

(Part 2 of 2)

38 Autonomic Deployment Engine for Software Package Developers

of the application to be deployed as well as the hosted resources that are created as

a result of that deployment. (Such resulting hosted resources are considered to be

backing resources, because they physically back up the installable units that get

registered in the Deployment Engine installation database as a result of the

application deployment.)

Each target in a topology typically defines one managed resource that represents a

part of the topology that the application needs in order to function properly. A

target might define a managed resource where installable units can be deployed,

where configuration units must be processed, or where one or more checks (for

example, a property check) should be performed. For an installable unit that uses

(refers to) a particular target, the target can optionally define the resulting hosted

resource that will exist in the hosting environment after an installable unit that

uses the target is deployed.

In the deployment descriptor, XML elements for installable units, configuration

units, or checks include a reference to whichever topology target is pertinent to

them. XML elements for installable units or configuration units that do not

reference or inherit a target are assumed to have multiple targets.

Figure 23 shows two XML fragments within an IU deployment descriptor. The

XML fragments represent an installable unit, FOO_TABLE, plus a topology and

one of its targets, tDB2. The installable unit refers to its target using the

targetRef="tDB2" attribute. The installable unit specifies that it has a backing

resource, FooTbl, as denoted by the backing_resource element. The topology

target, tDB2, includes a hostedResources element. This element defines the

resulting hosted resource, FooTbl, that will exist in the hosting environment after

an installable unit that refers to the target—in this case installable unit

FOO_TABLE—is deployed.

<iudd:rootIU
<installableUnit targetRef="tDB2">

 <SIU IUName="FOO_TABLE">

 <identity>

 <name>Foo Table</name>

 <UUID>991974510ba426fe1f53841402350014</UUID>

 <description>

 <defaultLineText key="ST_01">

 Database table for the Foo Business App

 </defaultLineText>

 </description>

 <version>1.0.0</version>

 <backing_resource>FooTbl</backing_resource>

 </identity>

 <unit>

 <installArtifacts>

 <installArtifact undoable="false">

 <fileIdRef>TableInstall</fileIdRef>

 <type>DDL</type>

 </installArtifact>

 </installArtifacts>

 </unit>

 </SIU>

</installableUnit>

Figure 23. Installable unit representing a resulting hosted resource in an IU deployment

descriptor (Part 1 of 2)

Chapter 1. Overview of Deployment Engine 39

Requisites

Requisites is an XML element in a deployment descriptor that defines, by means of

one or more nested referencedIU elements, any prerequisites that are needed by

the application to be deployed. The “application” in this case can be a base, full

update, incremental update, or fix software package. The needed prerequisites are

sometimes referred to as requisite packages, because they represent additional

software packages that are needed by, and provided with, the software package to

be deployed. A requisite package can be either a base, full update, or incremental

update software package. A requisite package cannot be a fix software package.

The requisite packages are included, together with the software package that needs

them, in a software package tree. In the tree, the dependent software package can

include a check in its deployment descriptor that looks for the needed prerequisite

in the target hosting environment. In the event the check determines that the

needed prerequisite cannot be found in the hosting environment (or you do not

want to use the software instance that is found), the requisite package can readily

be deployed from the software package tree.

Recall that a software package tree is a hierarchy of software packages that make

up a single application, solution, or suite. The hierarchy of software packages is

usually processed together, as one change request and one software deployment. In

a software package tree, the IU deployment descriptor of one, top-level software

package (the parent software package) references the IU deployment descriptor of

one or more other software packages (the child software packages), which are

either requisites, contained IUs, or contained container IUs.

...
<topology>

 <target type="RDBRT:IBMDB2UDB" id="tDB2">

 <hostedResources>

 <resulting id="FooTbl" type="RDBRT:RDB_Table">

 <name>FooTable</name>

 </resulting>

 </hostedResources>

 <selectionRequirements>

 <requirement name="dr1">

 <alternative name="alt_1">

 <inlineCheck>

 <property checkId="IsFooDataBase">

 <propertyName>name</propertyName>

 <value>Foo Database</value>

 </property>

 </inlineCheck>

 </alternative>

 </requirement>

 </selectionRequirements>

 </target>

 ...
</topology> ...
<\iudd:rootIU>

Figure 23. Installable unit representing a resulting hosted resource in an IU deployment

descriptor (Part 2 of 2)

40 Autonomic Deployment Engine for Software Package Developers

In the case of contained IUs (or contained container IUs), these are integral parts of

the software package tree and must be processed together with the parent software

package. The parent is always responsible for the installation, maintenance, and

removal of all its software packages, including any required software supplied as

child software packages. Other applications on the computer cannot share the

required software without retaining the entire software package tree—since its

parent and child software packages are fully integrated and cannot be separated.

Deployment Engine cannot remove the parent software if another application is

sharing any of its child software.

As an alternative to using contained IUs (or contained container IUs), a software

package tree can use requisites to deploy a child software package. With requisites,

however, the child software package is deployed only when needed, and once it is

deployed, it can be shared and the parent software package has no further

obligation to maintain or remove it. In fact, the child software package is detached

from the parent, such that even if the parent is eventually removed, the child

remains behind and must be removed independently.

The software package developer can add to the deployment descriptor a requisites

section that identifies needed software that the application can deploy, use as a

prerequisite, and share without having to maintain it in the future. The requisites

section consists of one or more nested referencedIU elements—one element for

each prerequisite. They behave similarly to containedIU elements but additionally

include a resultingResource element. This element is linked to a required resource

in the hosted resources section of the deployment descriptor's topology. The

resultingResource element indicates that the requisite package, if installed, will

satisfy the hosted resource requirement and become a resulting resource whose

name and version match the values indicated by the required element of the

hosted resources section.

Figure 24 shows two XML fragments within an IU deployment descriptor. The

XML fragments represent a topology section with a targeted hosted resource that

requires Tomcat application server, and a requisites section with a referencedIU

element that includes a resultingResource element linked to Tomcat, indicating

that, if the referenced IU is installed, will satisfy the hosted resource's application

server requirement.

<iudd:rootIU
 <topology>

 <target id="tOperatingSystem" type="OSRT:Operating_System">

 <hostedResources>

 <required id="tomcat_resource" type="Software">

 <name>Tomcat</name>

 <version>4.0</version>

 </required>

 </hostedResources>

 </target>

 </topology> ...

Figure 24. An IU deployment descriptor whose topology includes a hosted resource that

specifies a prerequisite. The deployable, requisite package that represents the prerequisite is

indicated in a referencedIU element. (Part 1 of 2)

Chapter 1. Overview of Deployment Engine 41

Figure note: The UUID and version elements under the referencedIU element are

included so that it is possible to determine from looking at the top-level (parent)

software package what requisite (child) package is being referred to. The UUID

and version elements are required.

The requisite package specified in the referencedIU element can be used either to

install the prerequisite or to update an existing instance of the prerequisite. Either

way, the requisite package will be deployed before the parent software package.

When multiple requisite packages must be deployed, they will be processed in the

order they appear in the requisites section of the IU deployment descriptor.

Which units are most appropriate for my IU deployment

descriptor?

To make your application Deployment Engine–compliant, you must choose a

wrappered or fully enabled approach to your software deployment, as described in

“Software deployment models” on page 10.

If you choose a wrappered software deployment, then you could design a simpler

IU deployment descriptor with a minimum number of elements and installable

units that together act as a wrapper for your current installation program.

If you choose a fully enabled software deployment, as you might if you are

designing a new application or you have decided to rework the installation

program of an existing application, then your IU deployment descriptor design is

probably more complex.

The sections that follow offer some suggestions to help you design and organize

your IU deployment descriptor.

Root IU and smallest IUs: Every IU deployment descriptor must have a root IU.

The root IU sits at the top of the IU hierarchy and subordinates any other units in

the descriptor, including configuration units.

Every IU deployment descriptor must also have one or more smallest IUs that are

the leaf nodes of the IU hierarchy. These smallest IUs are associated with action

descriptors that actually deploy the software to one or more hosting environments.

IUs that reference other applications (optional): If you are providing a solution,

a suite, or need to include some prerequisite software with your application, you

can add contained IUs or contained container IUs as additional leaf nodes in your

 <requisites>

 <referencedIU IUName="Tomcat">

 <UUID>100074510ba426fe1f53841402350001</UUID>

 <version>4.0</version>

 <fileIdRef>ref_to_ref_IUDD</fileIdRef>

 <resultingResource resourceRef ="tomcat_resource">

 </referencedIU>

 </requisites> ...
<\iudd:rootIU>

Figure 24. An IU deployment descriptor whose topology includes a hosted resource that

specifies a prerequisite. The deployable, requisite package that represents the prerequisite is

indicated in a referencedIU element. (Part 2 of 2)

42 Autonomic Deployment Engine for Software Package Developers

descriptor. Use these installable units when you want to deploy the software from

another IU deployment descriptor as part of your own application deployment.

Contained IUs and contained container IUs are functionally the same. They cause

the software represented by another IU deployment descriptor (that is, another

root IU) to be deployed as if it were part of the current IU deployment descriptor

(your application). The only difference between a contained IU and contained

container IU is that a contained container IU deploys all of its referenced software

(all the subordinate installable units from the other IU deployment descriptor) to

one target hosting environment. A contained IU deploys its referenced software to

whatever hosting environment each individual IU from the other IU deployment

descriptor specifically targets. So use a contained container IU when the target of

your deployment is a single hosting environment and use a contained IU when the

target may be multiple hosting environments.

IUs that organize other IUs (optional): You must also decide if any intermediate

nodes are required for your application. In this case you would be adding

container IUs or solution modules to organize your leaf nodes (see Figure 18 on

page 33). Container IUs and solution modules encapsulate other units in your IU

deployment descriptor that must be acted upon together (deployed together,

configured together, removed together) or targeted to the same hosting

environment.

Container IUs and solution modules are functionally the same. The only difference

between them is that the former deploys all of its subordinate installable units to

the same hosting environment and the latter deploys its subordinate installable

units to whatever hosting environment each individual installable unit specifically

targets—which may be more than one hosting environment. So use a container IU

when the target of its encapsulated units is the same hosting environment and use

a solution module when the encapsulated units have target hosting environments

that are different from one another.

Smallest CUs that initiate one-time configuration (optional): Include one or

more smallest CUs as leaf nodes if any installable units in your application require

one-time configuration. The action descriptor associated with the smallest CU can

initially configure either a newly installed base software package or a previously

installed update software package in a single hosting environment. The processing

of a smallest CU can be subject to a certain set of conditions. Therefore design your

IU hierarchy accordingly, so that a smallest CU is at the same node level as

installable units to be processed in the same hosting environment or under the

same conditions. If necessary, you can create intermediate nodes with container IUs

and solution modules that serve as organizing entities for encapsulating a smallest

CU and related installable units. If the intermediate nodes already exist, add the

smallest CU as a leaf node so that it will be processed along with the other leaf or

leaves of the same intermediate node.

With a simpler configuration, you might need just one smallest CU in the IU

deployment descriptor to configure your entire application. Just make the smallest

CU a leaf node of the root IU. To configure another application that your

application is deploying, associate a smallest CU with the contained IU that

references the other application by adding the smallest CU under the same

intermediate node as the contained IU. The smallest CU can then provide one-time

configuration of the referenced application. (The valid locations for smallest

configuration units in an IU hierarchical structure is shown in Figure 18 on page

33.)

Chapter 1. Overview of Deployment Engine 43

Optional content (optional): Decide whether you want to include any optional

content. Optional content consists of features or installation groups whose

deployment depends on what the user selects at install time. For installable units

that you want to include as selectable content for features, enclose their XML

elements within a selectableContent element in the IU deployment descriptor. All

other installable units are considered base content. Base content is deployed

regardless of what features or installation groups the user selects.

If you include features, you need to create a features element in your descriptor.

Under this element you can nest individual feature elements, each of which maps

to all the applicable installable units that comprise the feature (the installable units

must be included in your selectable content). The feature uses an IUNameRef

element to reference each installable unit in the selectable content. If a feature

includes many installable units, you could have a long list of references. You might

want to organize the feature’s installable units under an intermediate node in your

IU deployment descriptor, and then just reference the intermediate node with the

IUNameRef element. This is illustrated in Figure 25, where the referenced

intermediate node would be a solution module. By referencing the intermediate

node, all the installable units below it in the IU hierarchy will be included in the

feature:

 Each feature element also provides a feature name and any displayable text,

selection rules, or other information that describes the feature.

If you include installation groups, you need to create a groups element in your

descriptor with nested group elements that map to the appropriate features you

defined. Each group element also provides a group name and any other

information relevant to the group.

Summary of IU deployment descriptor entities and their uses: To help you

decide which units are most appropriate to implement in your IU deployment

descriptor, review the information in Table 1 on page 45. The table summarizes

how the various entities in the IU deployment descriptor differ from one another,

their primary uses, whether they serve as containers or leaves in an IU hierarchy,

and the target environments they are applicable to. Refer to Figure 18 on page 33

for a picture that shows how these entities can be combined within an IU

hierarchy. For more information on how to code an IU deployment descriptor, and

 IU deployment descriptor

 .

 .

 .

 |

 Intermediate node: sm

 |

 _______|______

 | | | |

 Leaf nodes: SIU SIU SIU SIU

Legend:

sm = solution module

SIU = smallest IU

Figure 25. A solution module can be used to organize some smallest IUs associated with a

feature

44 Autonomic Deployment Engine for Software Package Developers

for additional elements and attributes that can be included in a descriptor, see the

related document, IBM Autonomic Computing: Installable Unit Deployment Descriptor

Specification.

 Table 1. Using entities in the IU deployment descriptor

Entity type Function and uses Node type

Target environment for this

installable entity or its

subordinate units

Root IU Mandatory installable unit; encapsulates all other unit

types.

Top-level

container

Multiple hosting environments

Smallest IU Use as the simplest wrapper for deploying all or some of

an application’s payload files to one target environment.

Use to “wrap” an existing installation program in a single

action descriptor to make the program Deployment

Engine–compliant without further modifications.

Leaf Single hosting environment

Smallest CU Use to do any necessary one-time configuration for the

application that is being deployed.

Because you need one smallest CU for each target

environment, you might want to use a container IU to

process a smallest CU together with the IUs in the

container.

Leaf Single hosting environment

Container IU Use to encapsulate some combination of installable units,

configuration units, or other container IUs whose payload

files have the same target.

A container IU confines its encapsulated units to one target

that is usually different than the target of the units outside

the container IU.

Container Single hosting environment

Contained IU Use to reference the root IU of another IU deployment

descriptor and deploy that descriptor’s software as part of

your own deployment.

Leaf Multiple hosting environments

Contained

container IU

Use to reference the root IU of another IU deployment

descriptor and deploy that descriptor’s software as part of

your own deployment.

Leaf Single hosting environment

Solution module Use to encapsulate some combination of installable units,

configuration units, or other solution modules whose

payload files each have their own target.

Container Multiple environments

Optional content Use if you plan to define features, installation groups, or

both.

In addition, selectable content identifies the installable units

that you want to include in your features. Such features can

then be included in installation groups.

N/A N/A

Features Use to define as optional content a separately deployable

set of installable units that represent some specific

functionality of the larger software application; the user has

the option of whether or not to install the feature.

N/A N/A

Installation groups Use to define as optional content a set of application

features that are already selected for the user.

The set of features can be based on user roles (developer,

administrator, user), usage criteria (typical, compact, full,

custom), or any other criteria deemed relevant or beneficial

to your application users.

N/A N/A

Action descriptors

An action descriptor is an XML document whose XML elements define a series of

actions to be processed by the touchpoint of a particular hosting environment.

Often there are many action descriptors in a single software package.

Chapter 1. Overview of Deployment Engine 45

In an action descriptor, an action is the XML representation of a task that needs to

be processed by the touchpoint. An action descriptor often contains a number of

actions to be performed, like a script. Creating or removing directories, installing

or removing application files, and updating registries, configuration properties,

environment variables, and paths are all types of actions that can be found in an

action descriptor.

The action descriptor defines each action to be performed in order to accomplish a

particular change management operation. Actions are specific to a type of hosting

environment. As a result, actions are documented in the appropriate touchpoint

guide for the hosting environment. For example:

v The book Solution Install for Autonomic Computing: Operating System Touchpoint

Guide and Reference describes the operating system touchpoint and its available

actions

v The book Solution Install for Autonomic Computing: WebSphere Touchpoint Guide and

Reference describes the WebSphere touchpoint and its available actions

Actions are defined in their own descriptors in order to be external from the

deployment descriptor. (The action descriptors are, however, referenced in the

deployment descriptor.) By being external, action descriptors separate their defined

actions from the other installable unit or configuration unit dependency

information found in the deployment descriptor. This separation enables the

deployment descriptor to be interpreted by the Deployment Engine components

and the actions to be interpreted by the appropriate hosting environment—more

specifically, by a touchpoint. Touchpoint owners can define new actions without

affecting the current deployment descriptors of applications that already use the

touchpoint.

In a deployment descriptor, each smallest IU or smallest CU lists the action

descriptors that are associated with it. One action descriptor is listed for each

change management operation (described on page 54) that the smallest IU or

smallest CU is subject to. Only an associated action descriptor can change or

configure software in a hosting environment.

Action descriptors that effect real changes in the hosting environment are either life

cycle–related action descriptors (Install, InitialConfig, Migrate, Uninstall) or the

Configure action descriptor, which does not affect life cycle states (see “Software

life cycle” on page 51 and “Life cycle states” on page 52 for details about life

cycles and states). Yet another kind of action descriptor is used to perform custom

checks on behalf of certain objects in the deployment descriptor—mainly installable

units and topologies. The supported action descriptors are described as follows:

Life cycle–related action descriptors

Action descriptors of this kind are applied to a hosting environment in

order to perform software life cycle–related actions on a smallest IU. Each

smallest IU in an IU deployment descriptor references one or more of these

action descriptors:

v Install action descriptor

An Install action descriptor contains actions that carry out a Create or

Update change management operation:

– A Create change management operation installs software package or

feature files in a hosting environment.

– An Update change management operation installs maintenance files

(fixes, incremental updates, full updates) in a hosting environment.

46 Autonomic Deployment Engine for Software Package Developers

For file installation purposes, an Install action descriptor can reference

both payload files bundled in the software package media and files

already deployed on the local computer.

An Install action descriptor processed in reverse equates to an Undo

change management operation. An Undo change management operation

removes applied maintenance files (fixes, incremental updates, full

updates) from a hosting environment and restores previous states.

In the absence of an Uninstall action descriptor, an Install action

descriptor is processed in reverse. This equates to a Delete change

management operation. A Delete change management operation removes

software package or feature files from a hosting environment.

v InitialConfig action descriptor

An InitialConfig action descriptor contains actions that carry out an

InitialConfig change management operation. An InitialConfig change

management operation performs the initial, one-time setup of a software

package during software deployment. For first-time setups, an

InitialConfig action descriptor can only reference files already deployed

on the local computer.

v Migrate action descriptor

A Migrate action descriptor contains actions that carry out a Migrate

change management operation. A Migrate change management operation

performs the initial, one-time configuration of software immediately

following an update. For the one-time configuration of updated

software, a Migrate action descriptor can only reference files already

deployed on the local computer.

v Uninstall action descriptor

An Uninstall action descriptor contains actions that carry out a Delete

change management operation. A Delete change management operation

removes software package or feature files from a hosting environment.

For file removal purposes, an Uninstall action descriptor can only

reference files already deployed on the local computer.

When these life cycle–related action descriptors are used by a smallest IU

in some combination, they are called an action descriptor set. Each smallest

IU in an IU deployment descriptor references a life cycle–related action

descriptor or action descriptor set to indicate which action descriptors can

be used with the smallest IU (and therefore which change management

operations can be performed on it).

Configure action descriptor

A Configure action descriptor is used to process smallest CUs. Smallest CUs

can be found in a CU deployment descriptor or in an IU deployment

descriptor.

 A Configure action descriptor in a CU deployment descriptor contains

actions that carry out a Configure change management operation. A

Configure change management operation performs follow-on (repeatable)

configuration of software. This follow-on configuration does not affect the

life cycle state of the software it configures. Each smallest CU in a CU

deployment descriptor references a Configure action descriptor to indicate

that the action descriptor can be used to process the smallest CU.

 A Configure action descriptor in an IU deployment descriptor contains

actions that carry out InitialConfig and Migrate change management

operations:

Chapter 1. Overview of Deployment Engine 47

v An InitialConfig change management operation performs the initial,

one-time setup of a software package during software deployment

v A Migrate change management operation performs the initial, one-time

setup of software immediately following an update

Custom-check action descriptors

 Action descriptors of this kind are applied to a hosting environment in

order to determine if the environment satisfies some specified

requirements. A Custom-check action descriptor is any action descriptor

created to perform custom dependency checking. It is especially designed

to check one or more dependencies that are not defined in the Deployment

Engine schema (see page 57 for information about the defined checks).

Actions in a Custom-check action descriptor usually require the processing

of some custom code that the developer provides to perform the checks.

 Unlike life cycle–related or Configure action descriptors, which apply only

to smallest IUs or CUs and are intended to effect changes in the hosting

environment, the Custom-check action descriptor can apply to any

subordinate unit of a root IU or root CU and do not change the hosting

environment. Almost any object in the deployment descriptor that might

have its own unique requirements could make use of a Custom-check

action descriptor. In other words, a smallest IU could require a custom

check, but so could a topology, a contained IU, or any other type of

installable unit.

Figure 26 shows an XML fragment from an IU deployment descriptor whose

smallest IU lists four different action descriptors—an action descriptor set—that

can be used with it. The action descriptors are life cycle–related, so the list of

action descriptors is defined in an installArtifacts element. The installArtifacts

element is defined in the unit element. (The media location of each action

descriptor is specified elsewhere in the IU deployment descriptor.)

Figure 27 on page 49, on the other hand, shows a sample action descriptor. The

action:artifact element contains all the other XML elements in the action descriptor.

The action descriptor in this sample includes several installation actions, the

addDirectory and addFile elements, that are defined as an action group.

<unit>

 <installArtifacts>

 <installArtifact>

 <fileIdRef>Install_action_descriptor</fileIdRef>

 </installArtifact>

 <initialConfigArtifact>

 <fileIdRef>InitialConfig_action_descriptor</fileIdRef>

 </initialConfigArtifact>

 <uninstallArtifact>

 <fileIdRef>Uninstall_action_descriptor</fileIdRef>

 </uninstallArtifact>

 <migrateArtifact>

 <fileIdRef>Migrate_action_descriptor</fileIdRef>

 </migrateArtifact>

 </installArtifacts>

</unit>

Figure 26. An XML fragment from an IU deployment descriptor that lists the action descriptor

set associated with a smallest IU

48 Autonomic Deployment Engine for Software Package Developers

Keep in mind that the name of the action descriptor must be referenced in the unit

element of the deployment descriptor. Also, the location of each action descriptor

needs to be specified in a file element in the deployment descriptor. See Figure 2

on page 18 for examples of these elements in an IU the deployment descriptor.

Media descriptor

A media descriptor is an optional XML document whose elements identify the media

location of one or more of the descriptors or deployable payload files in a software

package. A software package can have only one media descriptor.

When the location of a file is supplied in a media descriptor, it overrides the

original location of that file as defined in the deployment descriptor. If a file

location changes due to repackaging, a media descriptor can be used to indicate

<action:artifact xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"

xmlns:osac="http://www.ibm.com/namespaces/autonomic/solutioninstall/OsActions"

xmlns:action="http://www.ibm.com/namespaces/autonomic/solutioninstall/action"

xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"

xmlns:command="http://www.ibm.com/namespaces/autonomic/solutioninstall/command"

xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes"

xmlns:sigt="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures"

xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall -

 /OsActions osActions.xsd">

 <artifactType>Install</artifactType>

 <artifactSchemaVersion>1.2.1</artifactSchemaVersion>

 <variables>

 <variable name="INSTALL_LOC">

 <parameter defaultValue="siu_test"/>

 </variable>

 <variable name="INSTALL_DIR">

 <parameter defaultValue="$(INSTALL_BASE)/$(INSTALL_LOC)" />

 </variable>

 </variables>

 <builtInVariables>

 <variable xsi:type="osac:OsBuiltInVariable" name="INSTALL_BASE">

 <javaPropertyValue javaPropName="bvt.workdir" />

 </variable>

 </builtInVariables>

 <actionGroup xsi:type="osac:OsActionGroup">

 <actions>

 <addDirectory actionId="AddDir">

 <directory>

 <location>$(INSTALL_BASE)</location>

 <name>$(INSTALL_LOC)</name>

 </directory>

 </addDirectory>

 <addFile actionId="AddFile">

 <file>

 <location>$(INSTALL_DIR)</location>

 <name>siu_test.txt</name>

 <source>

 <fileIdRef>SIUFile1</fileIdRef>

 </source>

 </file>

 </addFile>

 </actions>

 </actionGroup>

</action:artifact>

Figure 27. Sample installation action descriptor with addDirectory and addFile actions

Chapter 1. Overview of Deployment Engine 49

the new location without having to update the deployment descriptor. In addition,

a media descriptor has the capability to describe file locations that the deployment

descriptor cannot; for example, when the application's files—or even individual

large files—must be packaged for delivery on multiple volumes of removable

media such as CDs, or in archive files. For these locations, a media descriptor must

be used.

A media descriptor is optional because the IU or CU deployment descriptor for a

software package already identifies the media location of its own files. Thus when

no media descriptor present, all files specified in the deployment descriptor are

assumed to have paths relative to the location of the deployment descriptor in the

package. However, using a media descriptor to separate the media location from

the deployment descriptor often has advantages.

For instance, using media descriptors, a common IU deployment descriptor can be

reused in different software packages, even though their media locations differ. In

this case, each software package has its own media descriptor that describes its

own particular binding information for the action descriptors and deployable

payload files. The binding information in each media descriptor overrides the

media location supplied in the common IU deployment descriptor.

An example of this is an application that has several alternative media locations.

Perhaps the application can be installed from one or more CDs, from a network

file server, from the Internet, or from some other media. In this case you can create

multiple software packages that have the same IU deployment descriptor but a

different media descriptor for specifying each alternative media location.

Another possibility: if you are reorganizing the file locations for a collection of

applications being pulled together into a suite or solution, you can create media

descriptors that provide the new media locations for these application files by

overriding the original locations specified in the various IU deployment descriptors

of each application in the suite. Deployment Engine detects the presence of the

media descriptor and uses its location information, rather than the locations

specified in the IU deployment descriptor, to find the files.

Sometimes use of a media descriptor is mandatory; for example, if your

application image is provided on CD-ROM media and is large enough to require

multiple CDs. Because all your descriptors should be packaged on the first CD if

possible (as a rule, application content is packaged in the order it is used during

software deployment), some applications might not have enough room to include

the payload files on the same CD. Whenever additional volumes of removable

media—in this example, additional CDs—are needed, you must use a media

descriptor. Similarly, a media descriptor is required when placing application

content in ZIP files or other extractable archive files, because the media descriptor

has capabilities that a deployment descriptor does not.

In addition to using a media descriptor for an application that spans several

volumes of removable media, such as several CDs, a media descriptor must also be

used when any one file is so large that it needs to be segmented and its file

segments packaged on separate media volumes. In Deployment Engine, a file that

has been segmented in this way is referred to as a multivolume file. A multivolume

file is still addressable by means of a single file reference. When a software

deployment program or other component in the Deployment Engine run-time

environment accesses a multivolume file, the file appears exactly the same (within

physical limitations such as the time and interaction required to effect

disc-swapping) as if it had been read contiguously from a single volume.

50 Autonomic Deployment Engine for Software Package Developers

A software package can include no more than one media descriptor. If the software

package is aggregated into another software package, any media descriptor in the

aggregated software package is used by the aggregating software package.

The media descriptor defines the following information:

v The path name of the deployment descriptor relative to the media descriptor

v A default logical source that can be applied to files that are not explicitly bound

in the media descriptor

v The physical location of the action descriptors or deployable payload files in the

software package

v The location of all the file segments that make up a multivolume file

v Any overrides to file paths for specific files, a function that can be used to map

common files that are shared by multiple installable units

Figure 28 shows an XML fragment from a media descriptor. The media:binding

element contains all the other XML elements in the media descriptor. The media

descriptor in this sample includes a deploymentDescriptor element that specifies

the physical path of its associated deployment descriptor (relative to the location of

the media descriptor), a defaultLogicalSource element that specifies the default

physical location of any files whose locations are not specified in their own a

fileSource element, and one or more fileSource elements that specify the file ID

and location of a particular action descriptor or deployable payload file.

Software life cycle

A software life cycle is an end-to-end series of states that characterize the condition

of a software entity in a hosting environment.

An installable unit has a software life cycle. Its life cycle begins when the

installable unit is deployed and ends when it is removed. Throughout the life cycle

of an installable unit, change request results can affect its state. Deployment Engine

saves relevant state information about installable units in its installation database.

States used by Deployment Engine include Created, Usable, and Updated, as

described in “Life cycle states” on page 52.

<media:binding ...>

 <deploymentDescriptor>

 ...
 </deploymentDescriptor>

 <defaultLogicalSource>

 ...
 </defaultLogicalSource>

 <fileSource>

 ...
 <pathname>... </pathname>

 </fileSource>

 <fileSource>... </fileSource>

</media:binding>

Figure 28. Sample XML from a media descriptor

Chapter 1. Overview of Deployment Engine 51

A configuration unit does not have a software life cycle because it is not a software

entity. A configuration unit is used to apply configuration settings to a software

entity.

Life cycle states

Because only installable units have a software life cycle, only installable units have

states. Life cycle states are phases in a life cycle. Throughout the life cycle of an

installable unit, its current state can be affected by the change management

operations that result from change request processing. (Table 2 on page 55

describes the various types of change requests and their corresponding change

management operations.) Deployment Engine saves relevant state information

about installable units in its installation database.

Deployment Engine supports the following life cycle states for installable units:

Created state

The state of a newly deployed installable unit following a Create operation

and prior to any required InitialConfig operation. An InitialConfig

operation applies the first-time configuration to an installable unit that is

already in the Created state. If no InitialConfig operation is required, the

newly deployed installable unit directly enters the Usable state following

the Create operation. Otherwise, it remains in the Created state until an

InitialConfig operation brings it to the Usable state.

Updated state

The state of an installable unit following an Update operation and prior to

any required Migrate operation. A Migrate operation applies configuration

to an installable unit that is already in the Updated state. If no Migrate

operation is required, the updated installable unit directly enters the

Usable state following the Update operation. Otherwise, it remains in the

Updated state until a Migrate operation brings it to the Usable state.

Note: An Update operation, if undoable, does not overwrite or delete the

original installable unit that is being updated. The payload files of the

original installable unit are saved by the touchpoint in a local repository,

and the records of the original installable unit are retained in the

installation database. Thus all the original files and data are preserved, in

the event the update should need to be undone and the original installable

unit restored.

Usable state

The state of the following installable units:

v A newly deployed installable unit after its initial configuration

v A newly deployed installable unit that requires no subsequent initial

configuration

v A newly updated installable unit after its migration

v A newly updated installable unit that requires no subsequent migration

Change requests

A change request is an object that is constructed by a software deployment program

and passed to Deployment Engine to request some kind of software change

operation. A change request can be associated either with software deployment or

with follow-on configuration of the deployed software. Some commands (see the

command “manageIU” on page 86) refer to a change request as a life cycle operation.

52 Autonomic Deployment Engine for Software Package Developers

Deployment Engine processes the following kinds of change requests:

Configure change request

A request to perform a follow-on software configuration operation

supplied in a change request. Configure in this sense is independent from

a one-time initial configuration.

Create change request

A request to place or install software package files in a hosting

environment. This process can include additional actions like adding

directories, updating registries, setting properties, and updating paths.

Create Feature change request

A request to place or install feature files in a hosting environment. This

process can include additional actions like adding directories, updating

registries, setting properties, and updating paths.

Delete change request

A request to remove a software package from a hosting environment.

Delete is the reverse of Create. The Delete process can include additional

actions like removing directories, updating registries, setting properties,

and restoring objects.

Delete Feature change request

A request to remove an applied feature from a hosting environment. Delete

Feature is the reverse of Create Feature. The Delete Feature process can

include additional actions like removing directories, updating registries,

setting properties, and restoring objects.

Initial Configure change request

A request to perform the initial, one-time setup of a software package

following a Create change request or of a feature following a Create

Feature change request.

Migrate change request

A request to perform a software configuration operation following an

Update change request (migrate applies to full and incremental updates,

but not to fixes).

Reapply Update change request

A request to reapply a previous incremental update or fix to an

application. This change request becomes necessary when an incremental

update or fix is applied to a base software package, and then one or more

features are later added that generate an UpdatesNeedToBeReapplied

warning. The Reapply Update process updates the newly added features.

Software fixes and incremental updates are types of maintenance.

Undo change request

A request to remove applied maintenance files (fixes and incremental

updates only) from a hosting environment and restore previous states.

Undo is the reverse of Update. The Undo process can include additional

actions like removing directories, updating registries, setting properties,

and restoring objects.

Update change request

A request to place or install maintenance files in a hosting environment.

This process can include additional actions like creating directories and

updating registries, properties files, and paths. Software fixes, incremental

updates, and full updates are types of maintenance.

Chapter 1. Overview of Deployment Engine 53

Change management operations

A change management operation is an object that the change manager component of

Deployment Engine constructs from an incoming change request. The change

request identifies a deployment descriptor for the application that needs to be

changed. Change manager constructs one change management operation for each

installable unit and configuration unit that it finds in the deployment descriptor,

regardless of whether the unit requires a change or processing in the hosting

environment. (Only smallest IUs and smallest CUs can actually be changed or

processed in the hosting environment; the change management operations for the

other units are required in order to update information about them in the

installation database.) These change management operations collectively form a

change plan. Change manager builds the change plan to either deploy installable

units or to process configuration units.

There are several types of change management operations. They have a direct

correspondence to the types of change requests described in “Change requests” on

page 52. Consider this scenario: A software deployment program issues a change

request. The change request addresses a particular IU deployment descriptor. Each

smallest IU in that IU deployment descriptor references action descriptors that

indicate to change manager which types of change management operations the

smallest IU is subject to. Change manager can implement a change plan only for

the smallest IUs that are subject to the change management operation that is

compatible with the change request.

In other words, an Initial Configure change request is applicable only to smallest

IUs that are subject to InitialConfig operations, a Migrate change request is

applicable only to smallest IUs that are subject to Migrate operations, and so on.

Thus, if the original change request is an Initial Configure request, the change

manager component examines the IU deployment descriptor specified in the Initial

Configure change request and identifies all smallest IUs subject to an InitialConfig

operation. Each of those smallest IUs has its own dedicated action descriptor for

InitialConfig operations. Therefore, when change manager has completed all its

checks and is ready to process the smallest IUs, it locates each of their action

descriptors for InitialConfig operations and continues on with the deployment.

Note: Unlike an InitialConfig operation, which does not necessarily apply to every

smallest IU in a deployment descriptor, a Create operation does apply to every

smallest IU—otherwise a smallest IU could never be deployed. Therefore every

smallest IU in the deployment descriptor must reference an action descriptor that

indicates to change manager that the smallest IU is subject to a Create operation.

Table 2 on page 55 and Table 3 on page 56 show the change request types and

which change management operations and action descriptors are compatible with

them. Table 2 on page 55 shows only the action descriptors that can be used on

installable units. Table 3 on page 56 shows only the action descriptors that can be

used on configuration units.

54 Autonomic Deployment Engine for Software Package Developers

Table 2. The correspondence between change requests, change management operations,

and action descriptors for IUs, by function

Change

request type

Change

management

operation type

Action descriptor

that can be used

on IUs Function

Create Create Install Place or install software package files

in a hosting environment.

Create

Feature

Create Install Place or install feature files in a

hosting environment.

Delete Delete Uninstall1 Remove a software package from a

hosting environment.

Delete

Feature

Delete Uninstall1 Remove an applied feature from a

hosting environment.

Initial

Configure

InitialConfig2 InitialConfig Perform the initial, one-time setup of

a software package during software

deployment.

Migrate Migrate3 Migrate Perform initial, one-time

configuration to software

immediately following an update.

Undo Undo Install4 Remove applied maintenance files

(fixes, incremental updates, full

updates) from a hosting environment

and restore previous states.

Update Create Install Place or install software package files

in a hosting environment.

Update Update Install Place or install maintenance files

(fixes, incremental updates, full

updates) in a hosting environment.

Reapply

Update

Update Install Place or install maintenance files

(fixes and incremental updates only)

in a hosting environment.

1 If no Uninstall action descriptor is specified, Deployment Engine processes the Install

action descriptor in reverse to remove the software package, applied feature, or applied

maintenance.

2 InitialConfig differs from Configure (described in Table 3 on page 56). InitialConfig (like

Migrate) changes the life cycle state of the software it configures. InitialConfig changes

the state from Created state to Usable state. Configure, on the other hand, acts upon

software already in Usable state, and the state of that software remains unaltered.

Configure is also repeatable, not just a initial, one-time setup like InitialConfig.

3 Migrate differs from Configure (Configure is described in Table 3 on page 56). Migrate

(like InitialConfig) changes the life cycle state of the software it configures. Migrate

changes the state from Updated state to Usable state. Configure, on the other hand, acts

upon software already in Usable state, and the state of that software remains unaltered.

4 Processed in reverse.

Table 3 on page 56 shows the change request types and which change management

operations and action descriptors used by configuration units are compatible with

the change requests:

Chapter 1. Overview of Deployment Engine 55

Table 3. The correspondence between change requests, change management operations,

and action descriptors for CUs, by function

Change

request type

Change

management

operation type

Action descriptor

that can be used

on CUs Function

Configure Configure1 Configure Perform follow-on (repeatable)

software configuration.

Initial

Configure

InitialConfig Configure Perform the initial, one-time setup of

a software package during software

deployment.

Migrate Migrate Configure Perform initial, one-time

configuration to updated software.

1 Configure differs from Migrate and InitialConfig (InitialConfig is described in Table 2 on

page 55). Migrate and InitialConfig both change the life cycle state of the software they

configure, bringing their states (from Created or Updated) to Usable state. Configure, on

the other hand, acts upon software already in Usable state, and the state of that software

remains unaltered. Configure is also repeatable, not just a initial, one-time setup like

InitialConfig.

Dependencies

A dependency is a requirement that an entity in a deployment descriptor has on an

installable unit or on a managed resource to ensure that they interoperate correctly.

The deployment descriptor entities that can have dependencies defined for them

are installable units, configuration units, and topologies. A dependency might

relate to a prerequisite or corequisite of one of these entities, or to an exrequisite

whose presence in the hosting environment could cause interoperability problems.

In the deployment descriptor, a check can be performed on behalf of an installable

unit, configuration unit, or topology to determine whether its dependency on

things like computer disk space, processor types, processing capacity, resource

properties, or other installable units or hosted resources is satisfied. Dependency

checker is the Deployment Engine run-time component that determines, before

installing any software in a hosting environment, whether or not dependencies are

met.

Before deploying any installable unit or processing any configuration unit, the

dependency checker component performs dependency checking by using data from

the following sources to determine whether the dependencies are met:

v Dependency information defined in the deployment descriptor

v Persisted information in the installation database

v Properties of the target hosting environment

Dependency checker provides methods for determining whether dependencies for

change management operations on a specific installable unit can be met.

Dependency checker performs the following functions:

v Parses the deployment descriptor

v Evaluates check items

v Evaluates dependencies among software packages

56 Autonomic Deployment Engine for Software Package Developers

Dependency checker also makes sure that the dependencies of other installable

units registered in the installation database are not violated. This function is

sometimes referred to as integrity checking.

Output from dependency checker is used by the change manager component. If

dependency checker runs before change manager is invoked, the results of the

check is passed to change manager. If change manager runs first, then it invokes

dependency checker during the change management operation.

Checks

Dependency checker provides the functionality for performing all the supported

checks. A check is an XML element in an IU or CU deployment descriptor that

defines some property criteria that the installation database or hosting environment

must meet.

For example, you could provide a check to determine if the target hosting

environment is suitable for deploying the installable units defined in the IU

deployment descriptor. A check includes a condition or expression that, when

tested against a targeted property in a hosting environment, evaluates to either

true or false.

A check can be referenced in multiple places in a deployment descriptor. Any

installable unit, configuration unit, or topology with its own dependencies can

define checks that Deployment Engine can use for dependency checking. Checks

are processed independently from one another by Deployment Engine—except

consumption checks, whose requirements are processed cumulatively.

An example check follows. This particular XML fragment shows the deployment

descriptor elements and attributes that represent a capacity check:

<capacity checkId="ProcessorSpeedCheck"" type="minimum">

 <propertyName>processor/currentClockSpeed</propertyName>

 <value>400</value>

</capacity>

Types of dependencies and their corresponding checks

Recall that a dependency is a requirement that an entity in a deployment

descriptor has on an installable unit or on a managed resource to ensure that they

interoperate correctly. The following types of dependencies can be defined as a

check in a deployment descriptor:

Capacity

A dependency that an entity in a deployment descriptor has on the

processing capacity of a hosting environment.

 A capacity check is used to determine if the local computer of the hosting

environment meets the minimum or maximum processing capacity required

by the dependent entity (compare with consumption check, which deals with

resource capacity). The capacity check targets a specific property of the

hosting environment (for example, the property that indicates the processor

speed of the local computer) along with the threshold value that the

targeted property must satisfy.

Consumption

A dependency that an entity in a deployment descriptor has on the

amount of a resource that is available or consumable in a hosting

environment.

Chapter 1. Overview of Deployment Engine 57

A consumption check is used to determine if a resource on the local

computer of the hosting environment has the minimum resource capacity

required by the dependent entity (compare with capacity check, which deals

with processing capacity). The consumption check targets a specific property

of the hosting environment (for example, the property that indicates the

amount of available disk space or memory on the local computer) along

with the threshold value that the targeted property must satisfy.

 The value of the property in the hosting environment must be equal to or

greater than the amount of resource required by all the installable units to

be deployed. Consumption checks are the only checks that are processed

cumulatively. The consumption check sums the requirements for each

installable unit in the deployment descriptor and then tests that sum

against the value of the target property in the hosting environment to

determine if the dependency is met.

Custom

A user-defined dependency that an entity in a deployment descriptor has

on a hosting environment. The dependency is defined by some customized

code.

 A custom check is applied to a hosting environment in order to determine if

that environment satisfies one or more requirements that are not currently

defined by a specific check in the Deployment Engine schema.

 Custom checks involve the processing of a Custom-check action descriptor

(see page 48) that is specifically designed for custom dependency checking.

Actions defined in the Custom-check action descriptor usually require the

processing of some custom code provided to perform the unique checks.

The Custom-check action descriptor is referenced from the installable unit

deployment descriptor.

Hosted resource

A dependency that an entity in a deployment descriptor has on the

availability of a hosted resource in a hosting environment. The hosted

resource is typically a prerequisite or corequisite application that was

deployed by means other than Deployment Engine.

 A hosted resource check is used to determine if the hosted resource that is

needed by the dependent entity is present in, and known to, the hosting

environment (compare with installable unit check, which deals with software

deployed by Deployment Engine). Unlike an installable unit check, which

queries the installation database to determine if the software (the

installable unit, in this case) is present, a hosted resource check queries a

touchpoint in the hosting environment. The target application is identified

by its name, minimum and maximum version, or some combination of

these attributes.

Installable unit

A dependency that an entity in a deployment descriptor has on the

availability of an installable unit that was deployed by Deployment Engine

in a hosting environment. The installable unit typically belongs to a

prerequisite or corequisite application that was deployed by Deployment

Engine.

 A installable unit check is used to determine if an installable unit that is

needed by the dependent entity is present in the hosting environment.

Unlike a hosted resource check (or a software check), which queries a

touchpoint in the hosting environment to determine if the software (the

hosted resource, in this case) is present, an installable unit check queries

58 Autonomic Deployment Engine for Software Package Developers

the Deployment Engine installation database. The installable unit check

targets the UUID or name of the installable unit, and can additionally

target other characteristics such as minimum or maximum version and

features that are deployed as part of the installable unit.

Property

A dependency that an entity in a deployment descriptor has on the value

of a property defined by a particular managed resource. The managed

resource can be a hosted resource such as a file system, or a hosting

environment such as an operating system.

 A property check is used to determine if the managed resource has a

property whose name and value matches the name and value defined in

the property check of the dependent entity. The value is expressed as a

String value.

Relationship

A dependency that a managed resource in a deployment descriptor—in

particular, a target managed resource that is identified in a topology—has

on its relationship with another managed resource. This dependency is

sometimes needed to ensure that the correct hosted resource is matched to

the correct hosting environment (or vice versa) prior to any software

update or configuration. The dependency requires that a Hosts relationship

exists between the hosting environment and the hosted resource, to ensure

that these two managed resources are paired correctly. (This is a Hosts

relationship known only to a hosting environment touchpoint, and is not

the same as a Hosts relationship maintained in the relationship registry of

the Deployment Engine database.)

 A relationship check is used during topology resolution to correctly match a

hosted resource and a hosting environment. Either of these managed

resources can be the target of the software update or configuration. Before

deploying or configuring any software associated with one of these targets,

a relationship check can determine if the correct target has been found.

 This check is useful on a computer where multiple hosting environments

are present (for example, multiple J2EE server hosting environments, such

as WebSphere Application Server) and the target managed resource is:

v A hosting environment (a specific WebSphere Application Server) that

currently hosts a particular hosted resource (a J2EE application), or

v A hosted resource (a J2EE application) that resides in a particular hosting

environment (a particular WebSphere Application Server)

Software

A dependency that an entity in a deployment descriptor has on the

availability of some specific software in an operating system hosting

environment. The software is typically a prerequisite or corequisite

application that was deployed by means other than Deployment Engine.

 A software check is used to determine if the software that is needed by the

dependent entity is present in, and known to, the operating system hosting

environment (compare with installable unit check, which deals with software

that was deployed by Deployment Engine). Unlike an installable unit

check, which queries the installation database to determine if the software

(the installable unit, in this case) is present, a software check queries a

touchpoint in the operating system hosting environment. The target

software is identified by its name, minimum and maximum version, or

some combination of these attributes.

Chapter 1. Overview of Deployment Engine 59

Note: The software check is a deprecated check. A hosted resource check is

the recommended check to use.

Version

A dependency that an entity in a deployment descriptor has on the version

of a particular managed resource. The managed resource can be a hosted

resource such as an application, or a hosting environment such as an

operating system.

 A version check is used to determine if the version of a managed resource

equals the minimum or maximum version number (or falls within that

range of minimum or maximum numbers) required by the dependent

entity. A version check is similar to a property check, but with a version

check the value of the property is always version-related.

Checks verify very specific types of information, such as is DB2 Version 9.1 present?

or is 1 GB of RAM available? There are various ways to organize checks. When

multiple alternatives might satisfy a dependency, checks can be organized into

requirements, as shown in Figure 29 (note that the checkItem elements shown in

the figure must point to actual checks located elsewhere in the descriptor):

For example, a product might support several databases, such as DB2 Universal

Database™ and Oracle Database. A check can look for only one of these databases,

either DB2 or Oracle. But you can organize checks into a requirement (in this case,

a database requirement) that can be satisfied by one of multiple alternatives.

A requirement includes a set of alternatives that in turn consist of some checks.

The requirement is met if any one of its alternatives is met. In the database

example, DB2 Universal Database and Oracle Database would be the two

alternatives for the database requirement. If either database is found, the

requirement is satisfied.

Since each alternative can include one or more checks, the alternatives in the

database example could then specify checks for acceptable database versions. A

check for DB2 Universal Database, for example, could look for version 9.1. If DB2

9.1 is found, the check is satisfied.

<iudd:rootIU
 <requirement ...>

 <alternative ...>

 <checkItem .../>

 <checkItem .../>

 </alternative>

 <alternative ...>

 <checkItem .../>

 <checkItem .../>

 </alternative>

 </requirement> ...
<\iudd:rootIU>

Figure 29. XML fragment from an IU deployment descriptor that illustrates a requirement

consisting of two alternatives and their associated checks

60 Autonomic Deployment Engine for Software Package Developers

The requirement itself is met if any one of its alternatives is met. If one check in an

alternative fails, the whole alternative fails. Only one alternative needs to succeed

to satisfy the original requirement, but if all of the alternatives fail, the requirement

itself fails.

Some checks are going to have different values on different types of resources.

Operating systems are a typical example. An application might require 512 MB of

RAM on one particular operating system and 1 GB of RAM on another. As before,

you can use requirements with alternatives to address these multiple dependencies.

You can put your requirements within installable unit elements, configuration unit

elements, or topology elements in a deployment descriptor. If you put them in a

topology, the requirements are used to select the target hosting environment where

your application will be deployed. If you put them in an installable unit or

configuration unit element, the requirements are used to determine if the IU or CU

can be deployed in the hosting environment that was resolved by the topology

processing. In this case the requirement is processed only for the already-selected

hosting environment. If the requirement is not met, the deployment fails.

So, if you want your requirements to be processed early, before the hosting

environment is chosen, they should be part of the topology. If you want your

requirements to be processed later—for example, when the requirement is only for

an optional, user-selectable feature that might never be installed—then they should

be part of an installable unit or configuration unit, in this case a unit used by the

feature.

Relationships

A relationship is an association that one software entity in a hosting environment

has with another; for example, a relationship that a host has with a hosted

resource, that one installable unit has with another, that a feature has with an

installable unit.

For Deployment Engine–enabled applications, Deployment Engine saves

relationship information in its installation database and uses this information in

order to correctly install or remove software updates, fixes, maintenance, service

packs, and the like, without adversely affecting other deployed software.

Relationships are established automatically during Create, Update, InitialConfig,

Migrate, and Undo operations (see page 63), which register the relationships in the

relationship registry of the installation database.

Relationship types

Deployment Engine supports the following types of relationships defined in the

relationships.xsd schema: Deploys, Federates, Fixes, HasComponents, Hosts,

Supersedes, and Uses. (The relationships.xsd schema also defines other relationship

types that Deployment Engine does not currently support, such as HasMember,

ImplementedBy, and Virtualizes.)

When initially deploying a software entity such as an installable unit, Deployment

Engine registers the relationships of that entity in the relationship registry of the

installation database, where Deployment Engine maintains the relationship

information for future reference. Deployment Engine can register the following

relationship types:

Deploys relationship

Indicates a direct relationship that an installable unit has with a managed

Chapter 1. Overview of Deployment Engine 61

resource (in particular, a backing resource) in its hosting environment. For

example, when an installable unit with a backing resource specification is

deployed to specific hosting environment, that installable unit has a

Deploys relationship with its backing resource.

Federates relationship

Indicates that an installable unit can be shared. Federates indicates a

parent-child relationship among software entities where one parent (a

feature) allows another parent (another feature) to share its child (an

installable unit). Specifically, when a feature is deployed, the feature has a

Federates relationship with its child installable units only (not all

descendents). Because of this Federates relationship, multiple features can

contain the same installable unit and each be a parent of that installable

unit.

 A feature can establish a Federates relationship with installable units that

are already deployed. If the feature requires an installable unit that has not

been deployed, the unit can be deployed together with the feature that

requires it. During uninstallation of a feature, a federated installable unit

can be removed with the feature that federates it, provided no other

deployed feature is in a Federates relationship with it.

Fixes relationship

Indicates that an installable unit in a fix software package has changed or

corrected another installable unit (that is not itself a fix), while leaving its

version, release, modification, and level unaltered. When an installable unit

in a fix software package is deployed, the installable unit has a Fixes

relationship with the installable unit it changes or corrects.

HasComponents relationship

Indicates that a feature or installable unit cannot be shared. HasComponents

indicates a parent-child relationship among software entities where the

parent is the sole parent of its child and allows no other parent to be a

parent of that child.

 When deployed, the parent entity has a HasComponents relationship with

its direct children only (not all descendents), as follows:

v An installable unit in an IU hierarchy has a HasComponents relationship

with each of its child installable units, except when the child installable

unit is a contained IU or a contained container IU.

v Although a contained IU or a contained container IU cannot have a

HasComponents relationship, its parent installable unit does have a

HasComponents relationship with the root IU referenced by the

contained IU or a contained container IU.

v A root IU has a HasComponents relationship with each of its child

features.

v A feature has a HasComponents relationship with each of its child

features.

Hosts relationship

Indicates that a particular hosting environment is a container for, or

presides over, a hosted resource or an installable unit deployed in that

hosting environment. For example, when an installable unit is deployed to

a specific hosting environment, that hosting environment has a Hosts

relationship with the installable unit.

Supersedes relationship

Indicates that a new installable unit replaces all or part of another

62 Autonomic Deployment Engine for Software Package Developers

installable unit. A Supersedes relationship occurs when you replace all or

part of an installable unit by means of an incremental update. In this case,

an installable unit in the incremental update software package has a

Supersedes relationship with the installable unit that it replaces.

 A Supersedes relationship also occurs when you deploy a new fix software

package that includes all of a previously deployed fix software package. In

this case, any installable unit in the new fix software package that replaces

an installable unit in the previously deployed fix software package has a

Supersedes relationship with that replaced installable unit.

Uses relationship

Indicates that one installable unit depends on another installable unit. For

example, a deployed installable unit has a Uses relationship with each of

its prerequisite and corequisite installable units. A Uses relationship can be

established either with installable units that are already deployed or with

installable units deployed as part of a requisite package.

Management of relationships

Table 4 lists change management operations and their handling of relationship

types in the relationship registry of the installation database.

 Table 4. Change management operation handling of relationship types

Change management

operation

Handling of relationship types Relationship types

handled

Create A Create operation places or installs software package

or feature files in a hosting environment and

automatically registers the required relationship types

for the installed units in the relationship registry of the

installation database.

Deploys

Federates

HasComponents

Hosts

Uses

Update An Update operation upgrades a previously deployed

installable unit. If, during the update, the Update

operation deploys any new installable units, it also

automatically registers relationship types for the units

in the relationship registry of the installation database.

Deploys

Federates

Fixes

HasComponents

Hosts

Supersedes

Uses

Undo The Undo operation removes applied maintenance files

(fixes, incremental updates) from a hosting

environment, reinstates all previous relationship types

that were present before that maintenance was first

applied, and deletes any relationship that was added

when that maintenance was first applied.

Deploys

Federates

Fixes

HasComponents

Hosts

Supersedes

Uses

Delete The Delete operation removes software package or

feature files from a hosting environment and deletes the

relationship types for the installable units it removes.

Deploys

Federates

Fixes

HasComponents

Hosts

Supersedes

Uses

InitialConfig The InitialConfig operation performs the initial,

one-time setup of a software package after a Create

operation.

Uses

Configure The Configure operation performs follow-on software

configuration but does not automatically register

relationship types.

Migrate The Migrate operation performs the initial, one-time

configuration of software immediately following an

Update operation.

Uses

Chapter 1. Overview of Deployment Engine 63

Relationships and integrity checking

When the dependency checker component verifies requirements and the change

manager component builds a step-by-step change plan, dependency checker

evaluates the impact that the requested change might have on previously deployed

software. Dependency checker examines relationship and constraint information in

the installation database to ensure that deploying an installable unit will not

violate the dependencies defined by its associated installable units. For each

relationship or constraint, dependency checker evaluates the requested change to

ensure that both software entities in the relationship can support the change and

that the change does not violate any constraints.

Variables

A variable is an XML element in an IU deployment descriptor that represents a

value which can be subsequently obtained or determined at deployment time, from

user input, an expression, a property query, or other sources. The software package

developer names and defines variables in the IU deployment descriptor, and later,

during software deployment, Deployment Engine evaluates the variables and

substitutes any symbolic references to them with their ascertained values.

Variable types

One or more variables, of various types, can each be defined by nesting them

under a variables element within an installable unit section of the deployment

descriptor. Each nested variable is indicated with a variable element. Each variable

element identifies one named variable whose evaluation might be required in order

to deploy the installable unit that includes it. Any variable element must include

at least one subelement for one of the following supported variable types:

parameter variable

Represents a value that is obtained from user input, either by means of a

graphical user interface or a response file, or is obtained from the

parameter map of an installable unit that aggregates (encapsulates) the

installable unit containing the parameter variable. A parameter variable can

include a default value by specifying a defaultValue attribute. The

parameter variable is defined by a parameter element:

 <variables>

 <variable name="installToAllUsers">

 <parameter defaultValue="true"/>

 </variable>

</variables>

In this example, if no overriding value is provided by a user or parameter

map, the variable installToAllUsers resolves to the default value of true.

derived variable

Represents a value that is derived from one or more variable expressions.

Typically multiple expressions are used, and each one must be qualified by

specifying a condition. If the conditions of more than one expression can

be satisfied at a time, a priority attribute must be specified for each

expression. The derived variable is defined by a derivedVariable element:

 <variables>

 <variable name="install_root">

 <derivedVariable>

 <expression condition="$(Windows_Check)">C:\Program Files</expression>

64 Autonomic Deployment Engine for Software Package Developers

<expression condition="$(Linux_Check)">/usr/opt</expression>

 </derivedVariable>

 </variable>

</variables>

In this example, the variable install_root is set to the value C:\Program

Files or to the value /usr/opt, depending on the conditions defined in the

two variable expressions. Here, each condition is either true or false,

depending on the boolean result of a check. The Windows check is true

only if the hosting environment is a Windows operating system; the Linux

check is true only if the hosting environment is a Linux operating

system.Because these two checks cannot simultaneously be true for the

same hosting environment, there is no need to specify a priority.

query property variable

Represents a value that results from a query against a target or a required

hosted resource. The query property variable must include a property

name attribute that specifies the property to be queried. An optional target

reference attribute can be specified if the query is to be performed

elsewhere than on the target hosting environment of the installable unit

containing the query property variable. In spite of its name, the optional

target reference attribute, targetRef, can reference either a topology target or

a required hosted resource. The query property variable is defined by a

queryProperty element:

 <variables>

 <variable name="PROGRAM_FILES_LOC">

 <queryProperty property="programFilesLocation" targetRef="tOS" />

 </variable>

</variables>

In this example, a query property variable is defined to obtain the location

of operating system program files. The example assumes that the topology

target tOS defines a hosting environment that exposes the needed location

by means of the programFilesLocation property.

query IU discriminant variable

Represents a value that results from a query against an instance of an

installable unit in the Deployment Engine installation database, yielding

the instance's discriminant as the value. A discriminant is any unique

identifier that is used to distinguish multiple instances of the same

application or the same installable unit from one another. Deployment

Engine uses an installable unit check (described on page 58) to determine

which installable unit instance to query for the value. An iuCheckRef

attribute is required that refers to the check ID of an installable unit check

(the check is defined elsewhere in the IU deployment descriptor). The

query IU discriminant variable is defined by a queryIUDiscriminant

element:

 <variables>

 <variable name="Linux_JRE_Home">

 <queryIUDiscriminant iuCheckRef="JRE_for_Linux_check" />

 </variable>

</variables>

In this example, the variable Linux_JRE_Home is set to the value of the

installation location (the discriminant in this case) for the installable unit

instance that satisfies the installable unit check JRE_for_Linux_Check.

Chapter 1. Overview of Deployment Engine 65

For more information on variables, expressions, and conditions, see the related

document IBM Autonomic Computing: Installable Unit Deployment Descriptor

Specification.

Internal variables

In addition to the variable types described in the previous section, each of which

must be explicitly defined in the IU deployment descriptor, the Deployment

Engine run-time environment has several internal variables that you should be

aware of:

_discriminant variable

 A discriminant is any unique identifier that is used to distinguish multiple

instances of the same software from one another. Even though a

discriminant can be any string value, it is a good practice to assign a

commonly recognized value for the discriminant, such as “installation

location.” By doing so, if the software instance is being installed, the value

of the discriminant will indicate the target installation location for the

software instance. If the software instance is already installed, the value of

the discriminant will indicate the actual hosting environment location of

the installed software instance.

 During Create operations, Deployment Engine retains a record of each

discriminant value together with its associated software instance—for

Deployment Engine this means its associated installable unit instance—in the

installation database. Afterward, Deployment Engine refers to the saved

discriminant values for any follow-on change requests.

 The Deployment Engine run-time environment must obtain the installable

unit's discriminant value prior to processing a Create change request for

the installable unit. There are several ways Deployment Engine can obtain

the discriminant value initially, at install time:

v From the software deployment program that is deploying the installable

unit

v From a Deployment Engine command

v From a variable defined in a deployment descriptor

On Create change requests, Deployment Engine knows the installable unit

instance it is deploying but needs the discriminant in order to register that

instance with its unique identifier in the installation database. On other

types of change requests, which affect already installed and registered

instances, Deployment Engine needs the discriminant to determine which

installable unit instance in the hosting environment is the correct target of

the change request. Given the discriminant of the target installable unit

instance, Deployment Engine can identify the correct instance by locating

the discriminant in the installation database and obtaining its associated

installable unit instance.

 On Create change requests, Deployment Engine often depends on software

deployment program or user input for the discriminant value, regardless of

whether the deployment descriptor already defines its own variable for

calculating the installation location. That is because Deployment Engine

cannot automatically recognize a developer-named variable for the

installation location as the equivalent of a discriminant. But once

Deployment Engine receives a value that has been clearly identified as the

discriminant—for example, either from a software deployment program or

user—Deployment Engine saves the value in its database along with its

66 Autonomic Deployment Engine for Software Package Developers

associated installable unit instance. During future deployment operations,

the discriminant value can then be used to readily identify the correct

instance to target the change request to.

 Whenever a deployment descriptor defines its own variable for calculating

the installation location, and you intend for the discriminant to resolve to

that same location, it can be to your advantage to set the discriminant

value within the deployment descriptor itself rather than make the

software deployment program or user provide it. This can save the

software deployment program developer some coding time, ensure that

discriminant values are represented consistently when multiple

deployment descriptors are involved, reduce user input errors, and the

like.

 But, as previously mentioned, Deployment Engine does not automatically

recognize a developer-named variable as the equivalent of a discriminant.

Deployment Engine does, however, provide its own internal variable name,

_discriminant, that you can use to identify a variable intended to

represent the discriminant of any root IU included (or referenced) in a

deployment descriptor. On Create operations, Deployment Engine will

recognize a derived variable (or another of the variable types described on

page 64) named _discriminant as the discriminant for the root IU of the

descriptor.

 Deployment Engine only provides the name of the _discriminant variable.

Using this name, you must still define your own variable in the

deployment descriptor by using one of the available variable types

described in “Variable types” on page 64. This makes the descriptor

responsible to for providing Deployment Engine with the value of the

discriminant, which Deployment Engine then uses during software

deployment. If you decide to implement the _discriminant variable and are

preparing a software package tree, be sure to use the name _discriminant

consistently to represent the discriminant value for the root IU of each

deployment descriptor in the tree.

 To define the variable _discriminant, use a variable type described on

page 64. As a typical example, you might define the variable

_discriminant as a derived variable whose value is obtained from another

variable expression:

 <variables>

 <variable name="_discriminant">

 <derivedVariable>

 <expression>$(install_loc)</expression>

 </derivedVariable>

 </variable>

 <variable name="install_loc">

 <parameter defaultValue="C:\my_installation_dir"/>

 </variable>

</variables>

In the preceding example, the first variable, _discriminant, resolves to the

value of the second variable, install_loc, which in this case is the

installation location.

 There is another advantage to using this internal variable. When a software

deployment program installs applications, it installs each root IU in the

software package to the installation locations indicated in the deployment

Chapter 1. Overview of Deployment Engine 67

descriptor. If you are installing a software package tree, you might want

applications in your solution or suite to be installed to different target

locations. An application server, for instance, might be targeted to a

directory path different from the rest of the suite. If you do not use the

_discriminant variable in your deployment descriptors, Deployment Engine

installs each root IU to its targeted installation location but registers in the

installation database the same discriminant value, as provided by the

software deployment program, for every root IU in the software package

tree. Of course this is not desirable or correct, since each installable unit

instance should be registered with its correct installation location.

 In cases like this, it is advantageous to use _discriminant variables in your

software package deployment descriptors. That is because when

Deployment Engine registers discriminants in the installation database

during Create operations, the discriminant values from the deployment

descriptors always supersede the single discriminant value provided by the

software deployment program. Thus, if each descriptor in your software

package tree includes a _discriminant variable for its root IU, following

software deployment the installation database will reflect the correct,

intended discriminant value for each installable unit processed during the

Create operation, rather than the same discriminant value for every

installable unit in the tree.

selectedFeatures variable

During software deployment, user input can include some selected

application features. Feature selection enables users to tailor the application

they are installing to their own needs or personal preferences.

 The selectedFeatures variable is an internal Deployment Engine variable

that represents a space-separated list of all selected features for an

application that is to be installed. This full-feature list includes, in addition

to the (partial) list of user-selected features passed to Deployment Engine

from the software deployment program, any related, corequisite features

that are auto-selected by Deployment Engine. If you specify

$(selectedFeature) in the deployment descriptor, the full-feature list

contained in the selectedFeatures variable can, for example, be passed to

an existing, wrappered installation program for its use during software

deployment.

 Because selectedFeature is an internal variable, you cannot use this name

for any other variables in your deployment descriptor.

Also, in addition to the variables described in “Variable types” on page 64, all of

which must be explicitly defined in the IU deployment descriptor, every check,

alternative, and requirement defined in the IU deployment descriptor is considered

to be a boolean variable.

68 Autonomic Deployment Engine for Software Package Developers

Chapter 2. The Deployment Engine run-time environment

When a software package developer initially installs tooling designed to assist with

software package development, the tooling in turn installs the Deployment Engine

run-time environment into the developer's working (development) environment as

part of its own installation. During software package development, you will need

to use the Deployment Engine run-time environment to validate the descriptors

that you include in the software packages (see the command “validateIUDD” on

page 101).

Later, after your Deployment Engine–enabled application is complete and users

proceed to install it on their own computers, the Deployment Engine run-time

environment must be automatically installed first in the target installation

environment. Therefore its inclusion in your application package is required, unless

the appropriate version of the Deployment Engine run-time environment is already

known to be present in the target installation environment (for example, when

deploying maintenance software, the correct version of the Deployment Engine

run-time environment may already be present from the initial software

deployment). Your application's software deployment program should run the

Deployment Engine bootstrap program to check for Deployment Engine in the

installation environment and install it if it is not already there.

This chapter describes the user modes and privileges associated with the

Deployment Engine run-time environment as well as some of the key directories

that Deployment Engine creates when its run-time environment is installed. This

chapter also explains how to remove Deployment Engine from your development

environment.

User mode selection for the run-time environment

At the time the Deployment Engine run-time environment is installed (that is, at

application install time), Deployment Engine examines the user's authorities and

determines which of two user modes to install Deployment Engine in. The

particular user mode is determined prior to Deployment Engine installation and

cannot be changed following that installation.

A privileged user—a user with special authorities like root or administrator—gets

a mode of Deployment Engine (multiuser mode) that provides some extra

functionality. Once a multiuser mode Deployment Engine is installed on the

computer, it is available to all users of that computer and includes additional

capabilities in the areas of scheduling and database access.

A general user—a user with lesser or no special authorities—gets a mode of

Deployment Engine (single-user mode) for personal use only, without the

privileged-user extras.

The selection of the user mode is transparent to the person who is installing

Deployment Engine. But, because the user mode is authority-based, it does affect

who can upgrade the installed run-time environment later, what scheduling and

database capabilities are available, and, in some cases, what Deployment Engine

commands the user can perform.

© Copyright IBM Corp. 2006 69

You can determine the user mode that your copy of Deployment Engine was

installed in by issuing the de_version command, which is described in the book

IBM Autonomic Deployment Engine: Autonomic Deployment Engine for Administrators.

The de_version command displays the Deployment Engine user mode as well as

the version.

Deployment Engine user modes

When Deployment Engine is transparently installed as part of an application

deployment, the authorities of the person performing the installation determine a

user mode that is permanently established for the Deployment Engine run-time

environment. Selection of the user mode is also transparent to the user who is

installing Deployment Engine as part of the new application. During its initial

installation, Deployment Engine determines the user mode based on whether the

deploying user is a root or nonroot user.

The sections that follow describe the Deployment Engine user modes, what

authorities they require, and the subsequent functionality differences for the

run-time environment that are available as a result of those authorities.

Multiuser mode

Multiuser mode is an installation condition where Deployment Engine is installed

on a computer and is available to all users of that computer for the purpose of

deploying other software. Multiuser mode is established whenever the installer of

Deployment Engine has the required authorities for their operating system.

Deployment Engine refers to a user with these required authorities as a root user.

Example root users are:

On Windows operating systems

A root user is a user who has the authority to create a service and write to

the Program Files directory. For example, any member of the

Administrators group is a root user (provided the group’s default

permissions were not changed).

On UNIX-based operating systems

A root user is a user is a user who has a user ID of zero (UID=0).

On OS/400® operating systems

A root user is a user who has all of the following authorities: *ALLOBJ,

*SECADM, *JOBCTL, and *IOSYSCFG.

A system administrator is one typical example of a root user.

A multiuser deployment of the Deployment Engine run-time environment provides

some additional functionality that is made possible by the operating system

authority of the deploying root user. This functionality includes the use of an

operating system service that is registered during the initial deployment to enable

future scheduling of file system scans and database backups (see the commands

for administering Deployment Engine in the related book, IBM Autonomic

Deployment Engine: Autonomic Deployment Engine for Administrators). This

functionality also includes the ability for multiple users to simultaneously access

the installation database. Only one multiuser deployment of the Deployment

Engine run-time environment can reside on the same computer.

70 Autonomic Deployment Engine for Software Package Developers

Single-user mode

Single-user mode is an installation condition where a private copy of Deployment

Engine is installed on a computer for the purpose of deploying other software.

This copy of Deployment Engine in single-user mode is meant for the installer’s

personal use only (although root users can use it also). Single-user mode is

established if the installer of Deployment Engine does not have the required root

user authorities for their operating system. Deployment Engine refers to such a

user as a nonroot user. Example nonroot users are:

On Windows operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system.

On UNIX-based operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system.

On OS/400 operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system, but does have the following authorities: *RSTOBJ,

*STRTCPSVR, *ENDTCPSVR, and *RSTLIB.

A general user or a product administrator are typical examples of a nonroot user.

A single-user deployment of the Deployment Engine run-time environment does

not include the additional scheduling and database functionality provided with a

multiuser deployment, because the installing nonroot user in this case lacked the

operating system authority necessary to provide that functionality. One or more

single-user deployments of the Deployment Engine run-time environment can

reside on the same computer. However, each user of that computer can deploy

only one.

Note: You can have one multiuser and one or more single-user deployments on

the same computer, but the software deployment program will not install a

Deployment Engine run-time environment in single-user mode if a compatible

multiuser deployment already exists.

Database access

The following sections describe the different database access restrictions for

Deployment Engine in multiuser mode and in single-user mode.

Access restrictions in multiuser mode

The Deployment Engine installation database can be concurrently accessed. The

following database restrictions apply to concurrent access:

v Only one change request is allowed at a time. This restriction exists even if it is

different JVMs that are attempting concurrent change requests. If concurrent

change requests are attempted, an exception is thrown.

v Any number of dependency checker operations are allowed at any given time.

Dependency checker results might be invalidated if the change manager

component starts to concurrently process a change request.

v Touchpoints will throw an exception if concurrent action descriptor processing is

attempted.

Chapter 2. The Deployment Engine run-time environment 71

Access restrictions in single-user mode

Because of limitations with the Deployment Engine installation database, there is

no concurrent access to the database in single-user mode. Only one user at a time

can access Deployment Engine and its related data.

Installed directories

Depending on the Deployment Engine mode detected, Deployment Engine files are

written to different directories, as described in the following sections.

Directories for users of Deployment Engine in multiuser mode

For users of Deployment Engine in multiuser mode, which is described in

“Deployment Engine user modes” on page 70, the following operating

system–specific directories are created by default, unless a different directory is

specified at install time:

Installation directory

The default installation directory is one of the following operating

system–specific locations:

Windows operating systems

C:\Program Files\ibm\common\acsi

UNIX-based operating systems

/usr/ibm/common/acsi

OS/400 operating systems

/QOpenSys/QIBM/ProdData/acsi

Note: An installation directory different than the default directory might

have been specified at the time the Deployment Engine run-time

environment was installed. You can determine the location of the directory

where Deployment Engine was installed by querying your operating

system for the value of the SI_PATH environment variable.

Common directory

The common directory is one of the following operating system–specific

locations:

Windows operating systems

C:\Program Files\ibm\common\acsi

UNIX-based operating systems

/var/ibm/common/acsi

OS/400 operating systems

/QOpenSys/QIBM/ProdData/acsi

Directories for users of Deployment Engine in single-user

mode

For users of Deployment Engine in single-user mode, which is described in

“Deployment Engine user modes” on page 70, the following operating

system–specific directories are created by default, unless a different directory is

specified at install time:

Installation directory

The default installation directory is one of the following operating

system–specific locations:

72 Autonomic Deployment Engine for Software Package Developers

Windows operating systems

C:\Documents and Settings\username\acsi_username

UNIX-based operating systems

/home/username/.acsi_username

OS/400 operating systems

/home/username/.acsi_username

Where username is the short name of the current operating system user.

Note: An installation directory different than the default directory might

have been specified at the time the Deployment Engine run-time

environment was installed. You can determine the location of the directory

where Deployment Engine was installed by querying your operating

system for the value of the SI_PATH environment variable.

Common directory

The common directory is one of the following operating system–specific

locations:

Windows operating systems

C:\Documents and Settings\username\acsi_username

UNIX-based operating systems

/home/username/.acsi_username

OS/400 operating systems

/home/username/.acsi_username

Where username is the short name of the current operating system user.

Environment variables for the installed directories

Deployment Engine creates the following environment variables for important

directories. In this book, these variable names are sometimes specified with a

prepended dollar sign ($) to represent the directories when they appear in the

paths of fully qualified file or directory names. For example, $SI_PATH/schema is

used to indicate the schema directory, regardless of operating system.

ACU_COMMON

The ACU_COMMON variable is set to the common directory for

Deployment Engine files. This directory is not user-configurable. This

directory contains the ACUApplication.properties file and the

ACULogger.properties file. To determine the location of the common

directory for Deployment Engine, just query your operating system for the

value of the ACU_COMMON environment variable.

SI_PATH

The SI_PATH variable is set to the directory where Deployment Engine is

installed. The installation directory depends on the command options used

when the Deployment Engine run-time environment was installed. To

determine the location of the installation directory where Deployment

Engine was installed, just query your operating system for the value of the

SI_PATH environment variable. For additional details about the default

installation directories for Deployment Engine on different operating

systems, see “Installed directories” on page 72.

Chapter 2. The Deployment Engine run-time environment 73

Removing Deployment Engine

To remove Deployment Engine from your development environment, perform the

following steps:

1. Remove the Deployment Engine code and installation database by invoking the

si_inst command with the remove (-r) option. A force (-f) option is also

available. These options are described below. The command syntax is as

follows:

si_inst -r [-f]

The available options are:

-r Removes the components of Deployment Engine, including its

installation database.

 In Deployment Engine 1.3, if you have other applications that were

deployed using Deployment Engine, and therefore registered in its

installation database, your si_inst -r command processing will end with

the following warning message:

ACUINI0066W Active IU instances exist in the Deployment Engine IU

Registry. The uninstall request was not processed. You may use the -f

option to force removal of Deployment Engine.

If you are using a version of Deployment Engine earlier than version

1.3 (for example, Solution Install 1.2.1), you will not receive the above

warning message, and Deployment Engine and its installation database

will be deleted, even if other applications were installed by and

registered with Deployment Engine. That is because with earlier

versions, when you specify the -r option, the command is processed

with an implied force, as if you specified the command with the -r and

-f options together.

 Note that after Deployment Engine is deleted, there is no database

information about, or means to track, any applications previously

deployed by Deployment Engine. Further, your uninstallation program

may not be able to remove these applications, because the program can

no longer invoke Deployment Engine. Therefore use the -r option with

care.

-f

 (Option new for Deployment Engine 1.3.) Used together with the -r

option, the -f option forces removal of the Deployment Engine

components, even if Deployment Engine–enabled applications are

currently registered in the database. Such registered applications

indicate that Deployment Engine will be required to uninstall these

applications in the future. If you think you will need Deployment

Engine to remove these applications later, do not force its removal.
When removing Deployment Engine, any backups of the installation database

that are currently located in the default backup directory $SI_PATH/backupDBs

will not be deleted, and you will receive the following warning messages:

ACUINI0077W The backupDBs directory was not removed. Please remove it

manually.

ACUINI0027W Deployment Engine uninstallation could not remove all files

and directories. Please remove them prior to installing Deployment

Engine again. The batch file cannot be found.

74 Autonomic Deployment Engine for Software Package Developers

You should remove the database backups directory, $SI_PATH/backupDBs,

manually before any reinstallation of Deployment Engine.

Note: You must use the si_inst command to remove the Deployment Engine

components. Deployment Engine does not provide an interactive user interface

to remove its components.

2. Check the associated logs for any messages related to the removal of

Deployment Engine.

If problems occur during the removal ofDeployment Engine, several logs are

written to the $SI_PATH/logs/username directory. SI_PATH is an environment

variable that represents the top-level directory where Deployment Engine was

installed. To determine the location of this installation directory, just query your

operating system for the value of the SI_PATH environment variable. Username

is the user ID of the user on the current operating system.

Note that if Deployment Engine removal is successful, all logs in the

$SI_PATH/logs/username directory are deleted.

When removing Deployment Engine, check for the following logs:

DE_Install.log

This log file contains information related to requests from the

Deployment Engine bootstrap program, including uninstallation

requests, installation requests, change-password requests, and the like.

The name of this log file depends on one of the following installation

modes:

v For a multiuser mode Deployment Engine instance, the

DE_Install.log log file is created.

v For single-user mode Deployment Engine instance, the

username_DE_Install.log log file is created, where username is the user

ID of the user on the current operating system.

acu_de.log

This log file contains information related to requests from the

Deployment Engine bootstrap program and other Deployment Engine

functions.

Chapter 2. The Deployment Engine run-time environment 75

76 Autonomic Deployment Engine for Software Package Developers

Part 2. Commands

© Copyright IBM Corp. 2006 77

78 Autonomic Deployment Engine for Software Package Developers

Chapter 3. Command summary

Table 5 summarizes the commands that you can use to test and validate your

Deployment Engine–enabled applications.

 Table 5. Deployment Engine commands

Command Purpose Page

manageIU A software deployment program

“simulator” that can be used to test a

software package and its associated life cycle

operations to determine if the application

deploys as intended.

86

validateIUDD Validates a deployment, action, or media

descriptor in an application's software

package.

101

Code page changes might be required for some languages: For Russian,

Hungarian, Polish, and Czech languages, use the following code pages to correctly

display message output on a Microsoft Windows NT®® or Microsoft Windows

2000® system:

v Code page 1251 for Russian

v Code page 1252 for Hungarian, Polish, and Czech

From a DOS command window you can change the code page by entering one of

the following commands, as appropriate for your language:

chcp 1251

or

chcp 1252

© Copyright IBM Corp. 2006 79

80 Autonomic Deployment Engine for Software Package Developers

Chapter 4. Working with commands

The following sections contain information to be aware of when working with the

commands provided by Deployment Engine.

Command authorization

Use of the commands in this chapter depends on the privileges granted to the

current user. A root user requires some additional special privileges that a nonroot

user does not have. As noted below, even a nonroot user might need some special

privileges to issue commands on some operating systems.

Deployment Engine defines a root user by operating system, as follows:

On Windows operating systems

A root user is a user who has the authority to create a service and write to

the Program Files directory. For example, any member of the

Administrators group is a root user (provided the group’s default

permissions were not changed).

On UNIX-based operating systems

A root user is a user is a user who has a user ID of zero (UID=0).

On OS/400 operating systems

A root user is a user who has all of the following authorities: *ALLOBJ,

*SECADM, *JOBCTL, and *IOSYSCFG.

A software package developer or system administrator is typically a root user.

Deployment Engine defines a nonroot user by operating system, as follows:

On Windows operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system.

On UNIX-based operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system.

On OS/400 operating systems

A nonroot user is a user who does not have all the root user authorities for

their operating system, but does have the following authorities: *RSTOBJ,

*STRTCPSVR, *ENDTCPSVR, and *RSTLIB.

A general user or product administrator is typically a nonroot user.

The "Authorization" section of each command describes the specific privileges that

the command requires.

If you do not know whether the local copy of Deployment Engine was installed in

multiuser mode or single-user mode, you can find out by issuing the de_version

command, described in the book IBM Autonomic Deployment Engine: Autonomic

Deployment Engine for Administrators. The de_version command displays the

Deployment Engine user mode as well as the version.

© Copyright IBM Corp. 2006 81

Locating and running the commands

The Deployment Engine developer command files are installed on the computer in

the following location:

$SI_PATH/bin

where $SI_PATH is the directory where Deployment Engine was installed. To

determine the location of this installation directory, you can query your operating

system for the value of the SI_PATH environment variable. For example, on

Windows operating systems, the default value for SI_PATH is C:\Program

Files\IBM\Common\ASCI.

On Windows operating systems, specifying command_name (along with any desired

command options) from the $SI_PATH/bin directory will run the file

command_name.bat or command_name.cmd (for example, specifying validateIUDD or

validateIUDD -silent will run the command file validateIUDD.cmd). On

UNIX-based and OS/400 operating systems, you must specify command_name.sh to

run the command file command_name.sh.

To run a command from another directory, specify the fully qualified command

name (along with any desired command options):

$SI_PATH\bin\command_name [option_1 option_2 ... option_n]

Command syntax conventions

The command documentation uses the following special characters to define the

command syntax:

[] Identifies optional options. Options not enclosed in brackets are required.

... Indicates that you can specify multiple values for the previous option.

| Indicates mutually exclusive information. You can use the option to the left

of the separator or the option to the right of the separator. You cannot use

both options in a single use of the command.

{ } Delimits a set of mutually exclusive options when one of the options is

required. If the options are optional, they are enclosed in brackets ([]).

\ Indicates that the command line wraps to the next line. It is a continuation

character.

Command options are listed alphabetically in the “Options” section for each

command.

For other conventions used in this book, see page vi.

Case sensitivity in commands

Command names are case sensitive when the operating system is case sensitive

(for example, on UNIX and Linux® operating systems). Command names are not

case sensitive when the operating system is not case sensitive (for example, on

Windows operating systems).

Options are case sensitive.

82 Autonomic Deployment Engine for Software Package Developers

Most values are not case sensitive. However, path values are case sensitive on an

operating system that is case sensitive. For example, /user/path and /user/Path

can refer to different coexisting paths on UNIX or Linux operating systems, so

these strings should be treated as case-sensitive values on these operating systems.

On Windows operating systems, paths are not case sensitive; so these strings can

be treated as such on Windows.

Values (such as discriminant) that are stored in the Deployment Engine installation

database are case sensitive.

The following table shows command syntax elements and their case sensitivity:

 Table 6. Case sensitivity of developer command syntax elements, by operating system.

Command syntax element

Case sensitive on UNIX and

Linux operating systems?

Case sensitive on Windows

operating systems?

Command names Yes No

Options Yes Yes

Values (in general) No No

Values (paths and file names) Yes No

Values that are compared to

strings stored in the

Deployment Engine

installation database

Yes Yes

Specifying a software instance uniquely

Usually, fully identifying a software instance that is the result of a deployed

software package requires specifying two options, such as a discriminant value and

a root IU type identifier value (consisting of a UUID and version). For example, in

Table 7, notice that the software instances require a discriminant–root IU type

identifier pair to specify the software instance uniquely:

 Table 7. Software instances that require both a discriminant and a root IU type identifier for

unique identification.

Deployed software instance Discriminant Root IU type identifier

Software_instance_1 C:Program Files\abc 11111, v1

Software_instance_2 C:Program Files\abc 22222, v1

Software_instance_3 C:Program Files\xyz 22222, v1

With only a discriminant specification, Deployment Engine cannot distinguish

deployed software_instance_1 from software_instance_2, because their discriminant

identifiers are the same. However, by also specifying a root IU type identifier in

your command, Deployment Engine can locate the correct software instance by its

unique combination of discriminant and root IU type identifier (the discriminant in

this example is an installation directory path, but it can be any string). Similarly,

with only a root IU type identifier specification, Deployment Engine cannot

distinguish software_instance_2 from software_instance_3, because their root IU

type identifiers are the same. But by additionally specifying a discriminant in your

command, Deployment Engine can locate the correct software instance by its

unique combination of discriminant and root IU type identifier.

Chapter 4. Working with commands 83

Retrieving return codes

The documentation for each command provides any available return code

information in a "Return values" section. To determine whether the command ran

successfully, retrieve the return code after running a command. To retrieve the

return code, echo the error level environment variable.

For Windows operating systems, run following command:

echo %ERRORLEVEL%

For Linux and UNIX operating systems, run following command:

echo $?

For OS/400, run the following command:

echo $?

Representing strings that include spaces

Strings that are supposed to be treated as a single value, but contain spaces,

should be enclosed in quotation marks (for example, "C:\Program Files\..."). In

this case, single (' ') and double (" ") quotation mark pairs are equivalent.

84 Autonomic Deployment Engine for Software Package Developers

Chapter 5. Developer commands

These commands are provided to test an application to be installed, configured, or

updated using Deployment Engine, and to validate the application's software

package descriptors. You must be a nonroot or root user to use the developer

commands in this chapter. (Additional restrictions may be imposed by the

computer operating system, its applications, or its system administrator.)

© Copyright IBM Corp. 2006 85

manageIU

A software deployment program “simulator” that can be used to test a software

package and its associated life cycle operations to determine if the application

deploys as intended.

Note: The manageIU command is intended for human, not programmatic, use.

The command is intended for software package developers who do not have their

own software deployment program to test with, not for inclusion in any software

deployment program. Because manageIU command output can change from

release to release and is not backward compatible, the output is not suitable

long-term for parsing by other computer programs.

Syntax

manageIU -o operation -r discriminant [-i file_name] -p directory | file_name [-u true |

false] [-v true | false] [-force file_name] [-rerun file_name | all | features]

manageIU -o operation -r discriminant [-i file_name] -d rootIUTypeID [-u true | false]

[-v true | false] [-force file_name] [-rerun file_name | all | features]

manageIU -o operation -r discriminant [-i file_name] -Cfg rootIUTypeID [-u true |

false] [-v true | false] [-force file_name] [-rerun file_name | all | features]

Description

The manageIU command behaves like a software deployment program. The

command can be used to test the life cycle operations that Deployment Engine

performs on a software package by calling many of the Deployment Engine APIs.

The command is for software package developers who do not have their own

software deployment program to test with. By selecting certain command options

and by customizing one or more input files that work in conjunction with the

manageIU command, you can use the manageIU command to determine if your

application's software packages deploy as intended.

Command options are case sensitive; option order does not matter.

When you issue the manageIU command, specify manageIU.sh on UNIX-based

and OS/400 operating systems; the operating system will process the manageIU.sh

command file. On Windows operating systems, specify manageIU; in this case, the

operating system will process the manageIU.bat command file.

Life cycle operations are the equivalent of change requests (such as Configure,

Create, Delete, or Undo), which are described in “Change requests” on page 52.

The manageIU command can perform life cycle operations (operations that are

usually initiated by Java API calls in an application's software deployment

program) on either new software or on previously deployed software.

Along with the command input that you specify directly in your manageIU

command options, you can provide additional command input within a

customized response file. The name of the response file is specified in the -i option

of your command. You use the response file to test specific installation group and

feature selections, as well as new or alternative values for the parameter variables

defined in your application's IU deployment descriptor. Because the manageIU

command uses a response file to initiate a silent software deployment that does not

prompt for user input, you must know exactly what content is necessary to include

manageIU

86 Autonomic Deployment Engine for Software Package Developers

in your response file in order to accurately test your software package deployment.

The -force and -rerun options can be used to indicate additional input files that the

manageIU command should process.

All command options and response file options do not necessarily apply to every

life cycle operation. The options that you specify in your command, and the

options that you include in your -i option's response file, must be appropriate for

the life cycle operations used to deploy the software packages you are testing.

Table 8 shows the valid combinations of command options and life cycle

operations. An entry of Required indicates that the option is required for the life

cycle operation. An entry of Optional indicates that the option applies, but is not

required, for the life cycle operation. The absence of an entry indicates that the

option does not apply to the life cycle operation.

 Table 8. Valid combinations of command options and life cycle operations.

Command options

Create

operation

Delete

operation

Update

operation

Configure

operation

Undo

operation

Create

Feature

operation

Delete

Feature

operation

Initial

Configure

and

Migrate

operations

Reapply

Update

operation

-allowResource-

RequiredBase

true | false

Optional

-Cfg rootIUTypeID Optional

-d rootIUTypeID Optional

(and

recom-

mended)

Optional

(and

recom-

mended)

Optional

(and

recom-

mended)

-force file_name Optional Optional Optional Optional Optional Optional Optional Optional Optional

-i file_name Optional Optional Optional Optional Optional Optional Optional Optional Optional

-p directory |

file_name

Required Optional

(but not

recom-

mended)

Required Required Optional

(but not

recom-

mended)

Required Optional

(but not

recom-

mended)

Optional Required

-r discriminant Required Required Required Required

(but

ignored)

Required Required Required Required Required

-rerun file_name |

all | features

Optional Optional Optional Optional Optional Optional Optional Optional

-u true | false Optional

-v true | false Optional Optional Optional Optional Optional Optional Optional Optional Optional

Table 9 shows the valid combinations of response file options and life cycle

operations. As with Table 8, an entry of Required indicates that the option is

required for the life cycle operation. An entry of Optional indicates that the option

applies, but is not required, for the life cycle operation. The absence of an entry

indicates that the option does not apply to the life cycle operation.

 Table 9. Valid combinations of response file options and life cycle operations.

Response file

options

Create

operation

Delete

operation

Update

operation

Configure

operation

Undo

operation

Create

Feature

operation

Delete

Feature

operation

Initial

Configure

and

Migrate

operations

Reapply

Update

operation

Variable Optional Optional Optional Optional Optional Optional Optional Optional Optional

selectedGroup Optional

manageIU

Chapter 5. Developer commands 87

Table 9. Valid combinations of response file options and life cycle operations. (continued)

Response file

options

Create

operation

Delete

operation

Update

operation

Configure

operation

Undo

operation

Create

Feature

operation

Delete

Feature

operation

Initial

Configure

and

Migrate

operations

Reapply

Update

operation

selectedFeature Optional Required

deleteFeature Required

When processing the response file, the manageIU command first makes sure the

set of selected features is valid. Then manageIU processes requirements based on

the selected features. If the requirements are satisfied, manageIU proceeds on to

action processing. In the Deployment Engine run-time environment, actions in the

action descriptor are processed by the change manager component. During a

Create life cycle operations, change manager automatically registers each newly

deployed installable unit in the Deployment Engine installation database. This

database information can then be referenced and updated by change manager

whenever it performs any subsequent, non-Create life cycle operation, such as

Delete, on a deployed installable unit.

You should note that, although the manageIU command is a useful tool for testing

software package deployment, it is not capable of calling every available

Deployment Engine API. For example, the manageIU command cannot complete

the deployment of a software package that requires a reboot or re-login before

deployment can continue. So, in this case, you need to create some software

deployment code of your own that causes processing to resume after the reboot or

re-login and then finishes deploying your software package.

The manageIU command duplicates some functions that can be accomplished

using the administration commands (documented in the book IBM Autonomic

Deployment Engine: Autonomic Deployment Engine for Administrators), but the

manageIU command and administration commands each include functions that

the other does not. So it is best to test using both the manageIU command and

administration commands, if you are testing administration tasks like installing

maintenance or uninstalling applications, features, or maintenance. For example, it

is recommended that you also use the de_instmaint and de_uninstmaint

commands to test the installation and uninstallation of maintenance, rather than

use the manageIU command alone.

Options

-allowResourceRequiredBase=true | false

Indicates whether an existing resource instance can be used as the required

base software during an Update life cycle operation. Use this option only if

the application to be updated was not originally installed by Deployment

Engine (for example, if the software package that you are currently testing

is intended to update a previously installed IBM DB2® application that

Deployment Engine did not install). This situation is sometimes referred to

as a jump point installation, because from this point forward the application,

which was not formerly maintained by Deployment Engine, will be

maintained by Deployment Engine and tracked in its installation database.

 Specify true to update an existing resource instance, otherwise specify

false. The default value is false. Note that the

-allowResourceRequiredBase option is only valid for the Update life cycle

operation, and that you would only use it if testing an update to an

manageIU

88 Autonomic Deployment Engine for Software Package Developers

existing resource instance that was not originally installed by Deployment

Engine. You would not use this option, for example, if you are testing an

update to an installable unit instance that Deployment Engine already

tracks and maintains.

-Cfg rootIUTypeID

Specifies the root IU type identifier of the IU deployment descriptor

associated with the software instance to be initially configured or migrated.

Although the value for the root IU type identifier is unique for each IU

deployment descriptor, it is not unique for each deployed software

instance. The root IU type identifier, combined with a discriminant

specified with the -r option, uniquely identifies the software instance (see

“Specifying a software instance uniquely” on page 83 for a detailed

explanation). The -Cfg option is only valid on Initial Configure and

Migrate life cycle operations. If you do not specify the -Cfg option, you

must specify the -p option on Initial Configure and Migrate life cycle

operations. The option name -Cfg is case sensitive.

-d rootIUTypeID

Specifies the root IU type identifier of the IU deployment descriptor

associated with the software instance to be deleted or undone. Although

the value for the root IU type identifier is unique for each IU deployment

descriptor, it is not unique for each deployed software instance. The root

IU type identifier, combined with a discriminant specified with the -r

option, uniquely identifies the software instance (see “Specifying a

software instance uniquely” on page 83 for a detailed explanation). The -d

option is only valid on Undo and Delete (includes Delete Feature) life cycle

operations.

-force file_name

 Specifies the name of a file that contains one or more force options which

provide additional input to the manageIU command. Use this option when

you want the manageIU command to force software package processing to

go forward despite the fact that unsatisfied requirements, existing Uses

relationships (see page 61), backward compatibility constraints, or installed

software that is identical to the software you are trying to deploy is

generating a failure during your software package deployment. The file

type for this file must be .properties; for example,

force_options.properties.

 In some circumstances where requirements, relationships, conditions, or

other criteria for a safe and satisfactory deployment are violated or not

met, you have the option to ignore the failures and force change request

processing to go forward anyway. (Change requests, which are described in

“Change requests” on page 52, are the equivalent of life cycle operations.)

These criteria are put in place to ensure a successful deployment, so,

generally speaking, using force processing is not recommended. That said,

Deployment Engine does give you some flexibility by providing a way for

the manageIU command to indicate to change manager that it can ignore

whatever failed criteria you include in the force options file.

 Figure 30 on page 90 shows the format of some entries that might be used

in a force options file for the manageIU command. These entries are

described in greater detail in the text that follows the figure.

manageIU

Chapter 5. Developer commands 89

Ignoring failed requirements. Requirement failures indicate that one or

more system requirements of the application being deployed were not

satisfied. Each requirement is defined within the requirements element of

the application’s IU deployment descriptor. Every requirement includes a

set of alternatives that consist of some checks. The requirement is met if

any one of these alternatives is met. If one check in an alternative fails, the

whole alternative fails. Only one alternative needs to succeed to satisfy the

original requirement, but if all of the alternatives fail, the requirement itself

fails. To force change request processing despite a failed requirement is

risky, because the force processing ignores all the failed alternatives. Using

the -force option allows change request processing to go forward by

ignoring the specified requirements.

 The following example shows the key-value format for the force option

that indicates one or more failed requirements that you want to ignore.

Specify the name of the requirement as the value for the options keyword.

Delimit multiple requirements with commas:

force_options.properties file template for use with manageIU command

--

This file is used to force software package processing to go forward despite

the fact that failed requirements, existing Uses relationships, backward

compatibility constraints, or installed identical software is blocking your

software package processing.

The following example indicates whether or not you want to ignore one or

more failed requirements. To ignore a requirement, specify the name of the

requirement as the value for the options keyword. Delimit multiple

requirements with commas:

options=requirement_name_1,requirement_name_2, ... requirement_name_n

The following example indicates whether or not you want to ignore existing

Uses relationships. For the value of the breakRelationships keyword, specify

"true" to ignore Uses relationships; otherwise specify "false":

breakRelationships=true|false

The following example indicates whether or not you want to overwrite

any identical software that is already deployed. For the value of the

overwriteBackingResource keyword, specify "true" to overwrite identical

software; otherwise specify "false":

overwriteBackingResource=true|false

The following example indicates whether or not you want to ignore backward

compatibility constraints. For the value of the forceUpdateReferencedIU keyword,

specify "true" to ignore backward compatibility constraints when directly

updating a root IU referenced by a contained IU (or contained container IU);

otherwise specify "false":

forceUpdateReferencedIU=true|false

Figure 30. A force options file template for the manageIU command, showing the format of

force option entries.

manageIU

90 Autonomic Deployment Engine for Software Package Developers

options=requirement_name_1,requirement_name_2, ... requirement_name_n

 Ignoring existing Uses relationships (ignoring dependent applications).

One of the things integrity checking does is look at existing relationships to

see if a dependency might prohibit a change request from going forward.

If integrity checking fails for a change request that is removing software,

and the prohibiting relationship is a Uses relationship (where an installable

unit in the hosting environment depends on the installable unit being

removed by the change request), you can force change request processing

to proceed.

 This force option does not typically apply to Create change requests,

because they do not remove installable units. But it can apply to Delete,

Delete Feature, and Undo change requests. Consider a Delete change

request that fails because it would remove from the hosting environment

an installable unit that is currently being used by another one. These two

installable units are linked at present by a Uses relationship in the

relationship registry. (For more on Uses relationships, see page 61.)

 Though risky, you can use the -force option to ignore this relationship. If

you do use the -force option, the Uses relationship that is ignored will be

removed from the installation database and cannot be reestablished. In fact,

all Uses relationships between the deleted installable unit and its

dependent installable units are removed.

 The force allows change request processing to go forward, ignoring all

prohibiting Uses relationships. Note that, by forcing the change request in

the above Delete example, not only will the target installable unit be

deleted and all Uses relationships removed, but following these changes

the installable unit that depended on the now-deleted installable unit may

no longer function properly. So use this force option with caution.

 The following example shows the key-value format for the force option

that determines whether or not to ignore existing Uses relationships. For

the value of the breakRelationships keyword, specify true to ignore Uses

relationships; otherwise specify false:

 breakRelationships=true | false

 Overwriting identical software. Before creating or updating software,

Deployment Engine checks its installation database, and if possible, the

hosting environment, to make sure that the software or software update is

not already deployed. A failure results if Deployment Engine finds

software in either place that is identical to the software it plans to deploy.

 Deployment Engine can check the hosting environment only if the software

to be deployed provides a backing resource specification (BRS) in its IU

deployment descriptor. Think of the BRS as a software signature that

Deployment Engine can send in a query to a touchpoint. Using the BRS,

the touchpoint can find out if the backing resource is already present in the

hosting environment and then inform Deployment Engine. If the

touchpoint responds that the BRS was found, integrity checking fails due

to evidence of identical software in the hosting environment.

 This failure can occur only with a Create or Update change request. You

can choose to ignore the identical software and allow the change request to

manageIU

Chapter 5. Developer commands 91

overwrite it with the backing resource by specifying the -force option. The

option might be used if you know there is a problem with the software

currently deployed on the computer, or if the software was deployed

outside Deployment Engine and you want to overwrite it with a backing

resource that is registered with Deployment Engine. You might also force if

you know that even though the touchpoint located the BRS for the

software, the software itself does not actually exist in the hosting

environment. The force allows change request processing to go forward

and the backing resource to overwrite the identical software already

present in the hosting environment.

 The following example shows the key-value format for the force option

that determines whether or not to overwrite any identical software that is

already deployed. For the value of the overwriteBackingResource

keyword, specify true to overwrite identical software; otherwise specify

false:

 overwriteBackingResource=true | false

 Ignoring backward compatibility constraints. Sometimes, as part of its

own deployment, one application deploys a second application. The

second application is deployed at a particular version level that meets the

needs of the first application. Typically, any future update to the second

application is handled as part of an Update change request to the first

application. This keeps the versions of both applications compatible with

one another.

 However, it is possible that a change request attempt could be made

directly to the second application, without involving the original

application. A direct update that bypasses the original application is called

an independent update. In this case, the version of the application in the

update must be backward compatible with the version that was originally

deployed by the first application. If not, integrity checking for the Update

change request fails.

 In installable unit terms, the second application is a root IU that is

referenced by a contained IU (or contained container IU) of the first

application. And the independent update is an Update change request

targeted directly to that referenced root IU. The new root IU provided in

the independent update must declare its backward compatibility with the

version specified by the contained IU of the original application to prevent

the integrity checking failure.

 A backward-compatibility failure indicates that updating the contained IU’s

referenced root IU could render it unusable by the original application that

deployed it. Though risky, you could ignore the potential backward

compatibility failure by specifying the -force option. This would allow the

independent update to occur even though the root IU in the update is not

backward compatible with the contained IU that references it. The force

allows change request processing to go forward, ignoring the backward

compatibility failure. After the force, however, the original application that

deployed the overwritten application may no longer be able to use it.

 The following example shows the key-value format for the force option

that determines whether or not to ignore backward compatibility

constraints. For the value of the forceUpdateReferencedIU keyword,

manageIU

92 Autonomic Deployment Engine for Software Package Developers

specify true to ignore backward compatibility constraints when directly

updating a root IU referenced by a contained IU (or contained container

IU); otherwise specify false:

 forceUpdateReferencedIU=true | false

 Figure 31 shows a sample force options file:

-i file_name

Specifies the name of a response file that contains deployment descriptor

entities that can be tested using the manageIU command. This response

file is used to test parameter variable values, installation groups, selected

features used during a Create (includes Create Feature) life cycle operation,

and features to be deleted during a Delete (includes Delete Feature) life

cycle operation. The file type for the response file must be .properties; for

example, my_application.properties.

 Figure 32 shows the format of some entries that might be used in a

response file for the manageIU command. These entries are described in

greater detail in the text that follows the figure.

##############################

#Force options

##############################

options=PlatformRequirements

breakRelationships=true

Figure 31. Sample force options file for the manageIU command.

response_file.properties file template for use with manageIU command

--

This file is used to test the value of one or more parameter variables,

to test an installation group, to test one or more selected features, or

to test one or more features that are to be deleted.

The following example shows the format for a parameter variable,

installLocation, and its value:

Variable#RootIUTypeID[32_character_UUID,version]#installLocation=value

Figure 32. A response file template for the manageIU command, showing the format of

parameter variable, installation group, and feature entries. (Part 1 of 2)

manageIU

Chapter 5. Developer commands 93

Testing the values of parameter variables. Each parameter variable

included in the response file must contain the following strings, separated

by pound signs (#):

v The string Variable

v The string RootIUTypeID[UUID, version]

v The string parameter_name=value

If you include a parameter in the response file, the parameter must match

a parameter that is already defined in the deployment descriptor. However,

the value that you define for the parameter in the response file will

override any default value that is specified for the matching parameter in

the deployment descriptor.

 The following example shows the key-value format for a variable named

installLocation:

Variable#RootIUTypeID[32_character_UUID,version]#installLocation=value

Testing an installation group. Each installation group included in the

response file must contain the following strings, separated by pound signs

(#):

v The string selectedGroup appended with a number

v The string RootIUTypeID[UUID, version]

v The string installation_group_name

In the response file, list each installation group from the IU deployment

descriptor that you want to test. Only one installation group can be active

at a time, so comment out all the installation groups with a pound sign (#)

except the active one that you want to test. When specifying an installation

group, you do not need to include the features associated with the

installation group (because they are "preselected" by the installation group).

The following example shows the format for two installation groups,

Developer and End user (only one installation group can be active--

or tested--at one time; spaces must be escaped with a backslash):

selectedGroup1#RootIUTypeID[32_character_UUID,version]#Developer

selectedGroup2#RootIUTypeID[32_character_UUID,version]#End\ user

The following example shows the format for two selected features,

Samples and Documentation, to be deployed:

selectedFeature1#RootIUTypeID[32_character_UUID,version]#Samples

selectedFeature2#RootIUTypeID[32_character_UUID,version]#Documentation

The following example shows the format for two features, Developer

Toolkit and Dictionary, to be deleted (spaces must be escaped with

a backslash):

deleteFeature1#RootIUTypeID[32_character_UUID,version]#Developer\ Toolkit

deleteFeature2#RootIUTypeID[32_character_UUID,version]#Dictionary

Figure 32. A response file template for the manageIU command, showing the format of

parameter variable, installation group, and feature entries. (Part 2 of 2)

manageIU

94 Autonomic Deployment Engine for Software Package Developers

The active installation group specified in the response file overrides any

default installation group defined in the IU deployment descriptor.

 The following example shows the format for two installation groups,

Developer (active) and End user (inactive):

selectedGroup1#RootIUTypeID[32_character_UUID,version]#Developer

#selectedGroup2#RootIUTypeID[32_character_UUID,version]#End\ user

Spaces must be escaped, as with End\ user, above. Because only one

installation group can be active at a time, the End user group is

commented out.

 Note that if you are running the manageIU command with a Create life

cycle operation specified, and you are using the -i option with a

selectedGroup entry activated in the response file, you can deselect a

particular feature from the selected group using a deleteFeature entry. In

this case, the installation group (selectedGroup) will be created, but

without the feature specified in the deleteFeature entry.

 Testing the installation and removal of features. In the response file, list

the feature or feature combination from the IU deployment descriptor that

you want to test. You can test feature installation or feature deletion. To

test feature installation, specify a deployment descriptor feature that is

available during a Create life cycle operation as a selected feature

(selectedFeature). Note that the Create life cycle operation is used to both

create (freshly install) an application and add a feature. To test feature

deletion, specify a deployment descriptor feature that is available during a

Delete life cycle operation as a delete feature (deleteFeature). The Delete

life cycle operation is used to both delete an application and remove a

feature.

 Each selected feature (that is, each feature to be installed) defined in the

response file must contain the following strings, separated by pound signs

(#):

v The string selectedFeature appended with a number

v The string RootIUTypeID[UUID, version]

v The string feature_name

When running the manageIU command with a Create life cycle operation

specified, make sure any deleteFeature entry in the response file is

commented out if you have the same feature activated as a selectedFeature

entry. Of the two entries, selectedFeature and deleteFeature, only the last

activated entry will be processed.

 The following example shows the format for two selected features, Samples

and Documentation:

selectedFeature1#RootIUTypeID[32_character_UUID,version]#Samples

selectedFeature2#RootIUTypeID[32_character_UUID,version]#Documentation

Each delete feature (that is, each feature to be deleted) defined in the

response file must contain the following strings, separated by pound signs

(#):

v The string deleteFeature appended with a number

v The string RootIUTypeID[UUID, version]

v The string feature_name

manageIU

Chapter 5. Developer commands 95

The following example shows the format for two delete features, the

Developer Toolkit and Dictionary:

deleteFeature1#RootIUTypeID[32_character_UUID,version]#Developer\ Toolkit

deleteFeature2#RootIUTypeID[32_character_UUID,version]#Dictionary

Spaces must be escaped, as with Developer\ Toolkit, above.

 Figure 33 shows a sample response file:

###############################

Variable Settings

###############################

The installLocation variable is to be populated with the root directory for the installation

(for example, /usr for UNIX-based operating systems, or #C:/Program Files for Windows operating

systems).

The IUDD assigns platform specfic defaults. You are not required to set this variable but may

override the default set in the IUDD.

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocation=C:/Program\ Files

The IUDD sets reasonable defaults for these variables.

Only uncomment the ones you want to change from the default values.

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationFamily=Family

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationChildren=Children

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationParents=Parents

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationDaughter=Daughter

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationDad=Dad

Variable#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#installLocationMom=Mom

##############################

Group Selections for Create

##############################

Note that if you are using group selections in this sample, it is not necessary

to select features in the feature section. If you want to test different combinations,

just select the features directly and comment out all of the group selections.

selectedGroup1#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Everybody

selectedGroup2#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Parents

selectedGroup3#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Children

Figure 33. Sample response file for the manageIU command. (Part 1 of 2)

manageIU

96 Autonomic Deployment Engine for Software Package Developers

-o operation

Specifies the life cycle operation to perform. Life cycle operations are the

equivalent of change requests (which are described in “Change requests”

on page 52), though the operation names that you specify with the -o

option do differ slightly from the change request names. Also, the Create

life cycle operation (create in the list below) is used to both create (freshly

install) an application and create features, and the Delete life cycle

operation (delete in the list below) is used to both delete an application

and delete features.

 The -o option supports the following values for operation. These values are

not case sensitive:

v apply_updates

v configure

v create

v delete

v init_config

v migrate

v undo

v update

-p directory | file_name

 Specifies a directory or file name value that Deployment Engine can use to

find the software package to be deployed:

################################

Feature Selections for Create

################################

Parents Feature must be selected when initially installing either Mom Feature or Dad

Feature. Once Mom Feature or Dad Feature is installed, then Parents Feature does not

need to be chosen for the other. Also, Parents Feature could be installed without

installing Mom Feature or Dad Feature. Make sure that all of the "deleteFeature" entries

are commented out, if you have any of the "selectedFeature" entries uncommented.

selectedFeature1#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Parents\ Feature

selectedFeature2#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Dad\ Feature

selectedFeature3#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Mom\ Feature

selectedFeature4#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Children\ Feature

################################

Feature Selections for Delete

################################

Choosing Parents Feature for delete will automatically delete Dad Feature and Mom Feature, but it

will leave the root IU. Also, unlike initial create, if you want to delete only Mom Feature or

Dad Feature, you do not have to select Parents Feature. Make sure all of the "selectedFeature"

entries are commented out if you have any of the "deleteFeature" entries uncommented.

deleteFeature1#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Parents\ Feature

deleteFeature2#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Dad\ Feature

deleteFeature3#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Mom\ Feature

deleteFeature4#RootIUTypeID[991974510ba426fe1f53841402351114,1.2.0]#Children\ Feature

Figure 33. Sample response file for the manageIU command. (Part 2 of 2)

manageIU

Chapter 5. Developer commands 97

directory

Specifies the root directory of the software package to be deployed.

The root directory is the directory that contains the /META-INF

and /FILES subdirectories.

file_name

Specifies the file name of one of the following files:

v The archive file that contains the software package to be

deployed.

v The deployment descriptor of the software package to be

deployed.

 On Configure life cycle operations, you must use the -p option to identify

the location of the software package containing the CU deployment

descriptor. On Initial Configure and Migrate life cycle operations, you must

either use the -p option to identify the location of the software package

containing the IU deployment descriptor or, alternatively, use the -Cfg

option to identify the root IU type identifier of the IU deployment

descriptor. On Reapply Update, Create (includes Create Feature), and

Update life cycle operations, you must use the -p option to identify the

location of the software package containing the IU deployment descriptor.

Do not use the -p option on Delete (includes Delete Feature) and Undo life

cycle operations.

-r discriminant

Identifies the particular installed software instance affected by the life cycle

operations being tested. If the software instance is affected by a Create life

cycle operation, the discriminant might identify the target path where the

software instance is to be deployed. If the software instance is affected by

any other life cycle operation, the discriminant might identify the current

path where the software instance is already deployed.

 Note that the discriminant can have any string identifier; it does not have to

be a directory path. Also note that if the _discriminant variable described

on page 66 is used in a deployment descriptor, the value derived from the

_discriminant variable supersedes the value supplied with the -r option. To

determine whether this is advantageous in your situation, refer to “Internal

variables” on page 66.

 The -r option is required, although it is ignored on Configure life cycle

operations. Combine this option with the -Cfg, -d, or -p option to uniquely

identify a software instance. A root IU type identifier and discriminant

specified together identify an installed software instance uniquely (see

“Specifying a software instance uniquely” on page 83 for a detailed

explanation).

-rerun file_name | all | features

 Specifies one of the following values, which indicate some particular action

descriptors that should be rerun:

file_name

Reruns the action descriptors for all of the smallest installable units

listed in file file_name, which provides this list as additional input

to the manageIU command. The file type for this file must be

.properties; for example, rerun.properties.

manageIU

98 Autonomic Deployment Engine for Software Package Developers

If you specify file_name, the action descriptors for any selected

feature (selectedFeature) listed in the response file used with the -i

option will also be rerun. If you specify file_name, however, you do

not have to specify the -i option.

all Reruns the action descriptors for all installed smallest IUs. If you

specify all, you cannot use the -i option.

features

Reruns the action descriptors for any selected feature

(selectedFeature) listed in the response file that you specified with

the -i option. If you specify features, you must use the -i option.

 Figure 34 shows the format of an entry in a rerun file that might be used

with the manageIU command.

 Figure 35 shows a sample rerun file:

-u true | false

Indicates whether you want to allow the software changed by an Update

life cycle operation (specified with the -o option) to have an Undo life

cycle operation performed on it in the future. This undo option applies to

fixes and incremental updates only. It does not apply to full updates.

Specify true if you want to allow an Undo operation for the update or

false if you do not. The default value is false.

-v true | false

 Indicates whether you want the most output possible—so-called "verbose"

output—displayed on-screen when running the manageIU command; that

is, whether you want to display the maximum available processing

information, including the display of command syntax and option

rerun.properties file for use with manageIU command

This file is used to rerun the action descriptors for all of the installable

units listed below.

The following example shows the format for a software IU type identifier,

which identifies a smallest IU to be rerun. Multiple software IU type

identifiers can be listed:

SoftwareIUTypeID[32_character_UUID,version,RootIUTypeID[32_character_UUID,version]]

Figure 34. A rerun file template for the manageIU command, showing the format of the list of

installable units whose action descriptors are to be rerun.

##############################

#Installable units to rerun

##############################

SoftwareIUTypeID[100900510ba426fe1f5377770000111b,1.5,RootIUTypeID[100900510ba426fe1f53777700001111,1.5]]

Figure 35. Sample rerun file for the manageIU command.

manageIU

Chapter 5. Developer commands 99

descriptions when a command is entered that is not valid. Specify true if

you want the maximum information or false if you do not. The default

value is false.

Authorization

Root or nonroot user.

See “Command authorization” on page 81 for a description of these users.

See also

When testing using the manageIU command, consider the following things:

v Deployment Engine is platform-specific, so be sure to test your software

packages on all applicable Windows, UNIX-based, and OS/400 operating

systems.

v If possible, test your software packages on single-user mode and multiuser

mode Deployment Engine installations, and test for both root and nonroot users.

v Be sure to test all the life cycle operations that are appropriate for your software

package using the manageIU command. You can double-check some life cycle

operations by also using the administration commands de_instmaint,

de_uninstmaint, de_uninstfeat, or de_uninstapp, described in the book IBM

Autonomic Deployment Engine: Autonomic Deployment Engine for Administrators.

v Use whatever techniques are appropriate to validate that your software packages

were deployed correctly. For example, use the administration commands

de_lsapp, de_lsfeat, or de_lsmaint, described in the book IBM Autonomic

Deployment Engine: Autonomic Deployment Engine for Administrators, to query the

Deployment Engine installation database and verify that the installable units you

intended to deploy are registered. In addition, check your target file system to

ensure that critical application files were deployed as expected.

manageIU

100 Autonomic Deployment Engine for Software Package Developers

validateIUDD

Validates a deployment, action, or media descriptor in an application's software

package.

Syntax

validateIUDD [-silent] [-s schema_directory] file_name

validateIUDD -?

Description

The validateIUDD command validates a specified descriptor file in a software

package for an application. You can validate a specified deployment descriptor,

action descriptor, or media descriptor against its associated Deployment Engine

schema file and, in the case of the deployment descriptor, Deployment Engine

XML semantics.

Command options are not case sensitive; option order does not matter.

When you issue the validateIUDD command, specify validateIUDD.sh on

UNIX-based and OS/400 operating systems; the operating system will process the

validateIUDD.sh command file. On Windows operating systems, specify

validateIUDD; in this case, the operating system will process the

validateIUDD.cmd command file.

Options

file_name

Specifies the fully qualified name of a descriptor that you want to validate

in the application's software package. When validating an IU deployment

descriptor, Deployment Engine will also validate any of the descriptor's

requisites (as defined by referencedIU elements), contained IUs, or

contained container IUs.

-s schema_directory_path

Specifies the full path to the schema (*.xsd) file for the specified descriptor.

This option is required only if the schema is in a directory different from

the default directory where Deployment Engine installed it. The default

directory is $SI_PATH/schema, where $SI_PATH is the directory where

Deployment Engine was installed. When specifying the path, do not

specify the schema file name. Deployment Engine obtains the schema file

name from the descriptor file that you specify in your command.

-silent Suppresses output messages when processing this command.

-? Displays command syntax for the validateIUDD command.

Authorization

Root or nonroot user.

See “Command authorization” on page 81 for a description of these users.

Return values

0 Validation completed without errors.

1 Validation detected one or more errors within the specified descriptor file.

Chapter 5. Developer commands 101

2 Could not find the specified descriptor file. Validation could not be

performed.

3 Could not find schema files. Validation could not be performed.

4 Command incorrectly invoked.

5 An internal error occurred.

Examples

1. To determine whether deployment descriptor AB_packagedIU.xml in the C:

directory is valid, enter the following command:

validateIUDD.cmd c:\AB_packagedIU.xml

If the deployment descriptor is valid, you should receive the following

messages:

ACUVI0001I Validating c:\AB_packagedIU.xml...

ACUVI0009I Document is valid

If the deployment descriptor is not valid, the messages you receive should

include information about the errors:

ACUVI0001I Validating c:\AB_packagedIU.xml...

ACUVI0006E Error: [line7,col20] -cvc-pattern-valid: Value ’8563047’ is not

facet-valid with respect to pattern ’[0-9]{27}’.

Error: [line7,col20] -cvc-type.3.1.3: The value "8563047’ of element ’UUID’

is not valid.

Error: [line11,col44] -cvc-pattern-valid: Value ’CPU Check’ is not facet-valid

with respect to pattern ’[a-zA-Z_]+[0-9a-zA-Z_]*’

ACUV10008I ValidateIUDD completed with 0 warnings and 3 errors.

2. To determine whether deployment descriptor AB_packagedIU.xml in the C:

directory is valid and not receive messages (like those in the previous example)

to the screen, enter the following command:

validateIUDD.cmd c:\AB_packagedIU.xml -silent

To determine whether the command ran successfully, retrieve the return code

after running a command, as described in “Retrieving return codes” on page

84.

validateIUDD

102 Autonomic Deployment Engine for Software Package Developers

Part 3. Problem determination

© Copyright IBM Corp. 2006 103

104 Autonomic Deployment Engine for Software Package Developers

Chapter 6. Locating the Deployment Engine log files

Deployment Engine logs message and trace information into flat-text log files.

These log files can be used for troubleshooting purposes. The locations of the

Deployment Engine message and trace logs for components can be found in the

ACULogger.properties file.

To locate the Deployment Engine logs:

1. Find the ACULogger.properties file, as described on page 105.

2. Find the logs for components, as described on page 105.

Finding the ACULogger.properties file

To determine the location of the message and trace log files for the Deployment

Engine components, you need to look in the The ACULogger.properties file. This

properties file can be found in the common directory (referred to as

$ACU_COMMON) for Deployment Engine files.

As described in “Environment variables for the installed directories” on page 73,

the ACU_COMMON environment variable can be used to locate the common

directory for Deployment Engine files. To determine the location, just query your

operating system for the value of the ACU_COMMON environment variable.

After locating the ACULogger.properties file, use the information in the following

section to find the log files for messages and traces.

Finding the logs for components

In the sample property-file lines shown below, a fileName line specifies the file

name for a log file. The subsequent fileDir line specifies the path of the directory,

username, where that log file is located.

To find the message log file for the Deployment Engine component messages,

look for the following lines in the $ACU_COMMON/ACULogger.properties file:

 acu.message.handler.file.fileName = de_msg.log

 acu.message.handler.file.fileDir = $SI_PATH/logs

Note: This line represents the path to the log file directory username, where

username is the user ID of the user on the current operating system. Therefore

the log file will actually be located in $SI_PATH/logs/username. (SI_PATH is an

environment variable that represents the top-level directory where Deployment

Engine was installed. To determine the location of this installation directory, just

query your operating system for the value of the SI_PATH environment

variable.)

To find the trace log file for the Deployment Engine components, look for the

following lines in the $ACU_COMMON/ACULogger.properties file:

 acu.trace.handler.file.fileName = de_trace.log

 acu.trace.handler.file.fileDir = $SI_PATH/logs

© Copyright IBM Corp. 2006 105

Note: This line represents the path to the log file directory username, where

username is the user ID of the user on the current operating system. Therefore

the log file will actually be located in $SI_PATH/logs/username. (SI_PATH is an

environment variable that represents the top-level directory where Deployment

Engine was installed. To determine the location of this installation directory, just

query your operating system for the value of the SI_PATH environment

variable.)

106 Autonomic Deployment Engine for Software Package Developers

Chapter 7. Message logging

The sections that follow explain the standard form of Deployment Engine

messages and provide help information about the Deployment Engine warning

and error messages.

Message identifier

Deployment Engine message identifiers have the following format:

AAABBnnnnC

where the parts of the message are as follows:

AAA The “product” prefix. The prefix for Deployment Engine is ACU.

BB The ″component″ prefix. The "component" prefix for Deployment Engine

commands is EX. The component prefixes Deployment Engine

subcomponents, or internal components, are as follows:

SI Common (indicates messages common to multiple internal

components)

DB Installation database component

CM Change manager component

DC Dependency checker component

OS Operating system touchpoint

nnnn A numeric identifier unique within the combination of product and

component prefixes.

C The severity code indicator:

I Informational: Informational messages provide users with

information or feedback about normal events that have occurred or

are occurring, or request information from users in cases where the

outcome will not be negative, regardless of the response.

 Examples:

 v The status request is processing.

v The files were successfully transferred.

v Do you want to save your output in file a or in file b?

Note: Informational messages issued by Deployment Engine are

not documented in this chapter, as they are complete in themselves

and require no further information or explanation. This also

applies to informational messages giving the usage of the

Deployment Engine administrator commands.

W Warning: Warning messages indicate that potentially undesirable

conditions have occurred or could occur, but the program can

continue. Warning messages often ask users to make decisions

before processing continues.

 Examples:

 v A requested resource is missing. Processing will continue.

© Copyright IBM Corp. 2006 107

v A file already exists with the same name. Do you want to

overwrite this file?

E Error: Error messages indicate problems that require intervention

or correction before the program can continue.

 Examples:

 v The specified file could not be found.

v You are out of space on the x drive. The file cannot be saved to

this drive.

Message text

Every attempt has been made to represent the message text exactly as it appears in

the displayed or written message.

Where the system has included variable information in the message text, this

variable information is represented by an italicized label, describing the type of

information referred to by the variable. For example, if the message text that

appears on your screen is:

The error code is 1.

the message text shown in this chapter would be:

The error code is error_code.

In this case the label error_code tells you that the information that will be inserted

into the message by Deployment Engine is the error code for the problem.

Message help

In addition to the message text itself, help information is provided for most

warning and error messages. In this book, message help can include the following

help topics:

Explanation

This help topic typically expands on the information provided in the

message text, more fully explaining the circumstances in which the

message was issued.

User Response

This help topic tells the user what to do next. This might include

instructions on how to solve a problem or correct an error. Sometimes,

particularly with warning messages, there is nothing that the user needs to

do. Sometimes the user is directed to where to find more information, or, if

necessary, who to see for further assistance.

Message log format

The message log contains a list of messages for the end-users that includes the

following fields:

Message entry date

Indicates the year, month, and day that the message entry was generated.

Message entry time

Indicates the time of day that the message entry was generated.

108 Autonomic Deployment Engine for Software Package Developers

Java class name

Indicates the name of the Java class that generated the message entry.

Method name

Indicates the name of the method that generated the message entry.

Host name

Indicates the fully qualified host name of the computer that is running the

instance of Deployment Engine that generated the message entry.

Message identifier

Indicates the identifier of the message entry.

Message text

Indicates the text of the message entry.

Chapter 7. Message logging 109

110 Autonomic Deployment Engine for Software Package Developers

Chapter 8. Messages issued by components

This section contains message help information for all of the error and warning

messages issued by internal components of Deployment Engine that are referenced

by a unique message reference number. The Deployment Engine components that

issue these messages are described in “The components of a Deployment Engine

environment” on page 6.

The messages are presented in the order listed below. The Deployment Engine

common messages are presented first. Then the messages for each Deployment

Engine internal component are presented in alphanumeric order, beginning with

the change manager subcomponent.

v “Common messages” on page 112

v “Change manager messages” on page 113

v “Dependency checker messages” on page 114

v “Operating system touchpoint messages” on page 115

Note: Informational messages issued by Deployment Engine are not documented

in this chapter, because they are complete in themselves and require no further

information or explanation. This also applies to informational messages that

provide usage information about Deployment Engine commands.

© Copyright IBM Corp. 2006 111

Common messages

The messages in this section are common to more than one Deployment Engine

component.

ACUSI0000E A processing error occurred that you cannot resolve by yourself. The error code is error_code.

Explanation: This error happened within internal componentry that is not generally accessible. Fixing the problem

requires outside assistance.

User response: Make a note of the error code, and contact your support representative for help.

ACUSI0002E The Deployment Engine session is currently busy processing another operation. The new operation

cannot be processed.

Explanation: Deployment Engine must process database operations singly to prevent the corruption of its database.

Because one such operation was already in progress, the new operation was not processed.

User response: Make sure you are not doing multiple operations that affect the database at the same time. Examples

of multiple operations include simultaneous software deployments and a software deployment that occurs

concurrently with a database operation like backup or restore. Retry your operation again when no other

database-related operations are in progress.

ACUSI0000E • ACUSI0002E

112 Autonomic Deployment Engine for Software Package Developers

Change manager messages

The messages in this section are issued by the Deployment Engine change manager

component.

ACUCM3002W Change management operation operation failed for installable unit installable_unit.

Explanation: A failure occurred during the processing of an action that subsequently caused the change

management operation to fail. This failed change management operation will usually cause the current change

request to fail as well.

User response: This warning requires no response, but corrective actions could be necessary if the change request

fails. Refer to the user response that is provided for any subsequent error messages.

ACUCM3004W Rollback of change management operation operation failed for installable unit installable_unit.

Explanation: Because a change request failed, Deployment Engine attempted to roll back each change management

operation that was processed for the change request. The purpose of these rollbacks is to return the software to its

original state. However, one of the rollbacks failed. Deployment Engine will not attempt to roll back any additional

change management operations.

User response: This warning requires no response, but corrective actions will be necessary because the change

request failed. Refer to the user response that is provided for any subsequent error messages.

ACUCM3005E Change request type request_type failed for software package package_name. Deployment Engine

successfully rolled back the changes that it made when processing the change request.

Explanation: The change request failed because a change management operation failed. All changed software was

restored to its original state.

User response: Resubmit the change request. If the problem persists, contact your support representative for

assistance.

ACUCM3006E Change request type request_type failed for software package package_name. Rollback also failed;

Deployment Engine was unable to restore the changes that it made when processing the change

request.

Explanation: The change request failed because a change management operation failed. The changed software was

not restored to its original state.

User response: Uninstall the software package and resubmit the change request. If the problem persists, contact

your support representative for assistance.

ACUCM3002W • ACUCM3006E

Chapter 8. Messages issued by components 113

Dependency checker messages

The messages in this section are issued by the Deployment Engine dependency

checker component.

ACUDC0002W One or more dependencies were not satisfied for software package package_name.

Explanation: Prior to software deployment, Deployment Engine can check for different kinds of dependencies,

including a computer’s processing or resource capacity, the availability of other software, or a property value,

relationship, or version associated with some particular software. In most cases an unsatisfied dependency will cause

the current change request to fail.

User response: The software deployment program might issue a message that provides details about the

dependencies that caused this problem or might prompt for additional information to address the problem. Contact

your support representative if you need additional help to identify and fulfill the unsatisfied dependencies so that

software deployment can go forward.

ACUDC0003W Deployment Engine found one or more integrity check violations in software package

package_name.

Explanation: Prior to software installation, Deployment Engine makes sure that the software registered in the

installation database can coexist with the software you are trying to install. Prior to software removal, Deployment

Engine makes sure that no registered software depends on the software you are trying to remove. This function is

referred to as integrity checking. Continuing when integrity check violations are present can adversely affect other

software currently in use. Therefore an integrity check violation will usually cause the current change request to fail.

User response: The software deployment program might issue a message that provides details about the integrity

check violation that caused this problem or might prompt for additional information to address the problem.

Typically you do not want to install or remove any software as long as it continues to violate the Interoperability

requirements of other software currently in use. Contact your support representative if you need additional help to 1)

understand the integrity check violations or 2) make adjustments to the registered software so that software

installation or removal can go forward.

ACUDC0002W • ACUDC0003W

114 Autonomic Deployment Engine for Software Package Developers

Operating system touchpoint messages

The messages in this section are issued by the operating system touchpoint.

ACUOS0046W A failure occurred during the installation processing of action action_name, sequence number

seq_num. Deployment Engine will ignore the failure and process the next action.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to ignore this failure and continue processing. As a result, this particular

failure will not cause the change management operation to fail.

User response: This warning requires no response. However, corrective actions might be required at a later time to

ensure the proper functioning of any related software or applications affected by the failed action.

ACUOS0059W A failure occurred during the undo processing of action action_name, sequence number seq_num.

Deployment Engine will ignore the failure and process the next action.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to ignore this failure and continue processing. As a result, this particular

failure will not cause the change management operation to fail.

User response: This warning requires no response. However, corrective actions might be required at a later time to

ensure the proper functioning of any related software or applications affected by the failed action.

ACUOS0060W A failure occurred during the uninstallation processing of action action_name, sequence number

seq_num. Deployment Engine will ignore the failure and process the next action.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to ignore this failure and continue processing. As a result, this particular

failure will not cause the change management operation to fail.

User response: This warning requires no response. However, corrective actions might be required at a later time to

ensure the proper functioning of any related software or applications affected by the failed action.

ACUOS0061W A failure occurred during the installation processing of action action_name, sequence number

seq_num. Subsequent actions will not be processed.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to stop processing when this action failed. As a result, Deployment Engine

will not process any more actions in this change management operation and the change management operation will

probably fail.

User response: This warning requires no response, but corrective actions could be necessary at a later time if the

change management operation and its associated change request fail. Refer to the user response that is provided for

any subsequent error messages.

ACUOS0062W A failure occurred during the undo processing of action action_name, sequence number seq_num.

Subsequent actions will not be processed.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to stop processing when this action failed. As a result, Deployment Engine

will not process any more actions in this change management operation and the change management operation will

probably fail.

User response: This warning requires no response, but corrective actions could be necessary at a later time if the

change management operation and its associated change request fail. Refer to the user response that is provided for

any subsequent error messages.

ACUOS0046W • ACUOS0062W

Chapter 8. Messages issued by components 115

ACUOS0063W A failure occurred during the uninstallation processing of action action_name, sequence number

seq_num. Subsequent actions will not be processed.

Explanation: This failure is usually associated with an authorization, disk space, or other operating system problem.

Deployment Engine received instructions to stop processing when this action failed. As a result, Deployment Engine

will not process any more actions in this change management operation and the change management operation will

probably fail.

User response: This warning requires no response, but corrective actions could be necessary at a later time if the

change management operation and its associated change request fail. Refer to the user response that is provided for

any subsequent error messages.

ACUOS0063W

116 Autonomic Deployment Engine for Software Package Developers

Chapter 9. Trace logging

The trace log file contains information that you can use to troubleshoot problems

yourself, or that you can send to IBM Support so that IBM can troubleshoot the

problem.

In the $ACU_COMMON/ACULogger.properties file, you can set the trace level for

all the components in the Deployment Engine operating environment (except the

WebSphere touchpoint) using a single setting. (For information about the tracing

facility used by the WebSphere touchpoints, see the book Solution Install for

Autonomic Computing: WebSphere Touchpoint Guide and Reference.) That setting must

be one of the following values:

DEBUG_MIN

Enables high-level tracing

DEBUG_MID

Enables mid-level tracing, including the tracing of method entries and exits

DEBUG_MAX

Enables full tracing.

To specify a trace level for all the supported Deployment Engine components,

modify the following line in the ACULogger.properties file (where trace_level is

either DEBUG_MIN, DEBUG_MID, or DEBUG_MAX):

acu.logger.level=trace_level

You can specify a trace level on a component basis for some internal and external

components of Deployment Engine that have their own trace loggers. By default,

these loggers are configured to use the trace level set for all Deployment Engine

components, as noted above. However, you do have the option to reconfigure

them. The following trace loggers are supported for these specific components:

DC Trace logger for dependency checker processing

CM Trace logger for change manager processing

AP Trace logger for the action processor of the operating system touchpoint;

this logger records the overall success or failure of each processed action as

the touchpoint progresses through the action descriptor

OSTP Trace logger for the action-specific code of the operating system

touchpoint; this logger records the step-by-step processing of each

individual action in the action descriptor

PA Trace logger for assisting with performance analysis; this logger logs time

stamps at particular points in the trace data, to help with performance

analysis

To reconfigure the component trace loggers, modify the following two lines in the

ACULogger.properties file for each logger that you want to change (where

logger_name is the DC, CM, AP, OSTP, or PA trace logger).

acu.logger.logger_name.logging=true|false

acu.logger.logger_name.level=trace_level

On the first line, a setting of false (the default) indicates that the logger's trace

level is the same as the trace level set for all Deployment Engine components (as

© Copyright IBM Corp. 2006 117

set on the acu.logger.level= line, described previously). To assign the logger its

own trace level, which may be different from all the other components, 1) specify a

value of true on the first line, and 2), on the second line, specify the trace level

you want for this particular logger (where trace_level is either DEBUG_MIN,

DEBUG_MID, or DEBUG_MAX):

The trace log contains information to help trace the flow of processing when

diagnosing problems. Each trace entry in the log includes the following fields:

Trace entry date

Indicates the year, month, and day that the trace entry was generated.

Trace entry time

Indicates the time of day that the trace entry was generated.

Java class name

Indicates the name of the Java class that generated the trace entry.

Method name

Indicates the name of the method that generated the trace entry.

Host name

Indicates the fully qualified host name of the computer that is running the

instance of Deployment Engine that generated the trace entry.

Message identifier

Indicates the identifier of the message for the trace entry.

Message text

Indicates the text of the message for the trace entry.

118 Autonomic Deployment Engine for Software Package Developers

Chapter 10. Troubleshooting

The following topics provide troubleshooting information to help prevent or

resolve problems related to Deployment Engine:

v Specifying a value for maximum version.

The maxVersion element in a deployment descriptor indicates the exact

maximum value allowed for the version of the software that is being checked. If

the software version is any higher than the exact maximum value, it will fail the

version check. For example, if the maxVersion value is set to 5.1, any software

with a version of 5.1.1 or greater will fail the version check because it exceeds

the maximum value of 5.1. In this particular case, to allow software with a

version up to 5.1.n to pass the version check, set the maxVersion value to 5.1.n.

For example, to allow any software with a version up to 5.1.9999 to pass a

version check, set the value of the maxVersion element to 5.1.9999.

v When Uninstall and Undo action descriptors are used.

When performing an Undo change request on an incremental update or fix

software package, the Install action descriptor is processed in reverse. The

Uninstall action descriptor is not used during Undo change request processing.

The Uninstall action descriptor is used only when a Delete change request is run

against the base software package. (See Table 2 on page 55 for more

information.)

v Circular contained IUs yield StackOverflowError.

A Java error, java.lang.StackOverflowError, is reported when Deployment Engine

encounters circular contained IUs. For example, a stack overflow error is

reported if an IU deployment descriptor has a contained IU that references a

second descriptor with a contained IU that references the original descriptor.

Make sure that none of the software packages within your application package

have IU deployment descriptors whose contained IUs circularly reference one

another’s IU deployment descriptor. These circular references are not valid and

will cause a Java error.

v Missing targetRef attribute yields NullPointerException.

A Java exception, java.lang.NullPointerException, is reported when one or more

smallest IUs or CUs in a deployment descriptor do not reference a topology

target. (Topology targets are referenced using the targetRef attribute.) For

example, a null pointer exception will be reported during a Configure change

request when one or more smallest CUs do not reference a topology target and

no topology target is referenced by the root CU.

Smallest IUs and CUs must either reference a topology target or inherit the

topology target of an ancestor unit in the IU or CU hierarchy. When referencing

a topology target using the targetRef attribute, set the value of the targetRef

attribute to the value of the id attribute of a target that is defined in the

topology section of the IU or CU deployment descriptor.

v The expected rollback of a change request did not occur.

There are some common reasons why a rollback might not occur as expected.

Before Deployment Engine can attempt a rollback, all of the following

requirements must be met:

– The change request is a Create, Create Feature, Update, Reapply Update, or

Configure request (Delete, Delete Feature, Undo, InitialConfig, and Migrate

requests do not support rollback).

– The change request is not a forced change request.

© Copyright IBM Corp. 2006 119

– Rollback support is enabled by the

ChangeRequest.setRollbackEnabled(boolean) API (rollback support is enabled

by default).

– The error handler is set to ON_ERROR_ROLLBACK (or, to attempt rollback

on the failed installable unit only, is set to PAUSE_ROLLBACK_FAILED_IU).

If any of the above requirements are not met and an error occurs in change

request processing, change manager will not attempt a rollback.

If, during rollback, only some xxxArtifact elements in the IU deployment

descriptor are defined with the undoable attribute set to true, change manager

processes the rollback until it encounters the first xxxArtifact element that does

not have the undoable attribute set to true. Change manager then stops,

registers the current state of the change request, and the change request fails.

v State of an installable unit changes from Created to Usable without running

the InitialConfig action descriptor.

The state of an installable unit can change from Created to Usable—even

without running the required InitialConfig action descriptor—if the condition

attribute of the installable unit evaluates to false during the processing of the

InitialConfig change management operation. When specifying a condition

attribute for an installable unit, specify a value that evaluates to either true or

false on all change management operations. For example, do not specify a

condition that can change over time, such as a required amount of available disk

space. Such a condition could evaluate as true at the time of a Create operation

but as false at the time of an InitialConfig operation.

In general, then, the condition of an installable unit should evaluate to the same

value on all operations. This will prevent other, similar problems. For example,

when performing a full update, Deployment Engine cannot update an installable

unit if its condition evaluates to false for the full update.

v InitialConfig action descriptors are ignored for new installable units in update

software packages.

A new installable unit that is introduced in a full or incremental update software

package cannot list an InitialConfig action descriptor as one of its valid action

descriptors. During an Update change request, Deployment Engine ignores any

InitialConfig action descriptor provided for a newly created installable unit,

because it expects a follow-on Migrate change management operation with a

Migrate action descriptor. To circumvent the problem, provide the InitialConfig

information in the Install action descriptor instead.

v Using JavaCustomAction yields ClassCastException.

A Java exception, java.lang.ClassCastException, is reported by Deployment

Engine when processing the action JavaCustomAction if the custom class does

not implement the com.ibm.ac.si.ap.action.JavaCustomActionInterface interface.

So make sure the custom class implements this interface.

120 Autonomic Deployment Engine for Software Package Developers

Part 4. Appendixes

© Copyright IBM Corp. 2006 121

122 Autonomic Deployment Engine for Software Package Developers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006 123

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information in softcopy form, the photographs and color

illustrations might not be displayed.

Open source license notices

This section contains details concerning certain notices IBM must provide to you

under its license to certain software code. The relevant notices are provided or

referenced below. Please note that any non-English version of the licenses below is

unofficial and is provided to you for your convenience only. The English version of

the licenses below, provided as part of the English version of this file, is the official

version.

124 Autonomic Deployment Engine for Software Package Developers

Notwithstanding the terms and conditions of any other agreement you may have

with IBM or any of its related or affiliated entities (collectively ″IBM″), the third

party software code identified below are ″Excluded Components″ and are subject

to the terms and conditions of the License Information document accompanying

this Program.

Apache Software License, Version 1.1

Copyright © 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must

include the following acknowledgment: “This product includes software

developed by the Apache Software Foundation (http://www.apache.org/).”

Alternately, this acknowledgment may appear in the software itself, if and

wherever such third-party acknowledgments normally appear.

4. The names “Apache” and “Apache Software Foundation” must not be used to

endorse or promote products derived from this software without prior written

permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, nor may

“Apache” appear in their name, without prior written permission of the

Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS’’ AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE

FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on

behalf of the Apache Software Foundation. For more information on the Apache

Software Foundation, please see <http://www.apache.org/>.

Portions of this software are based upon public domain software originally written

at the National Center for Supercomputing Applications, University of Illinois,

Urbana-Champaign.

Notices 125

Apache Software License, Version 2.0

 Apache License

 Version 2.0, January 2004

 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

″License″ shall mean the terms and conditions for use, reproduction, and

distribution as defined by Sections 1 through 9 of this document.

″Licensor″ shall mean the copyright owner or entity authorized by the

copyright owner that is granting the License.

″Legal Entity″ shall mean the union of the acting entity and all other entities

that control, are controlled by, or are under common control with that entity.

For the purposes of this definition, ″control″ means (i) the power, direct or

indirect, to cause the direction or management of such entity, whether by

contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

″You″ (or ″Your″) shall mean an individual or Legal Entity exercising

permissions granted by this License.

″Source″ form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation source, and

configuration files.

″Object″ form shall mean any form resulting from mechanical transformation or

translation of a Source form, including but not limited to compiled object code,

generated documentation, and conversions to other media types.

″Work″ shall mean the work of authorship, whether in Source or Object form,

made available under the License, as indicated by a copyright notice that is

included in or attached to the work (an example is provided in the Appendix

below).

″Derivative Works″ shall mean any work, whether in Source or Object form,

that is based on (or derived from) the Work and for which the editorial

revisions, annotations, elaborations, or other modifications represent, as a

whole, an original work of authorship. For the purposes of this License,

Derivative Works shall not include works that remain separable from, or merely

link (or bind by name) to the interfaces of, the Work and Derivative Works

thereof.

″Contribution″ shall mean any work of authorship, including the original

version of the Work and any modifications or additions to that Work or

Derivative Works thereof, that is intentionally submitted to Licensor for

inclusion in the Work by the copyright owner or by an individual or Legal

Entity authorized to submit on behalf of the copyright owner. For the purposes

of this definition, ″submitted″ means any form of electronic, verbal, or written

communication sent to the Licensor or its representatives, including but not

limited to communication on electronic mailing lists, source code control

systems,and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but excluding

communication that is conspicuously marked or otherwise designated in

writing by the copyright owner as ″Not a Contribution.″

″Contributor″ shall mean Licensor and any individual or Legal Entity on behalf

of whom a Contribution has been received by Licensor and subsequently

incorporated within the Work.

126 Autonomic Deployment Engine for Software Package Developers

2. Grant of Copyright License. Subject to the terms and conditions of this License,

each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,

no-charge, royalty-free, irrevocable copyright license to reproduce, prepare

Derivative Works of, publicly display, publicly perform, sublicense, and

distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,

each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,

no-charge, royalty-free, irrevocable (except as stated in this section) patent

license to make, have made, use, offer to sell, sell, import, and otherwise

transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s) with the Work

to which such Contribution(s) was submitted. If You institute patent litigation

against any entity (including a cross-claim or counterclaim in a lawsuit)

alleging that the Work or a Contribution incorporated within the Work

constitutes direct or contributory patent infringement, then any patent licenses

granted to You under this License for that Work shall terminate as of the date

such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or

Derivative Works thereof in any medium, with or without modifications, and in

Source or Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy

of this License; and

b. You must cause any modified files to carry prominent notices stating that

You changed the files; and

c. You must retain, in the Source form of any Derivative Works that You

distribute, all copyright, patent, trademark, and attribution notices from the

Source form of the Work, excluding those notices that do not pertain to any

part of the Derivative Works; and

d. If the Work includes a ″NOTICE″ text file as part of its distribution, then

any Derivative Works that You distribute must include a readable copy of

the attribution notices contained within such NOTICE file, excluding those

notices that do not pertain to any part of the Derivative Works, in at least

one of the following places: within a NOTICE text file distributed as part of

the Derivative Works; within the Source form or documentation, if provided

along with the Derivative Works; or, within a display generated by the

Derivative Works, if and wherever such third-party notices normally appear.

The contents of the NOTICE file are for informational purposes only and do

not modify the License. You may add Your own attribution notices within

Derivative Works that You distribute, alongside or as an addendum to the

NOTICE text from the Work, provided that such additional attribution

notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may

provide additional or different license terms and conditions for use,

reproduction, or distribution of Your modifications, or for any such Derivative

Works as a whole, provided Your use, reproduction, and distribution of the

Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any

Contribution intentionally submitted for inclusion in the Work by You to the

Licensor shall be under the terms and conditions of this License, without any

additional terms or conditions. Notwithstanding the above, nothing herein shall

supersede or modify the terms of any separate license agreement you may have

executed with Licensor regarding such Contributions.

Notices 127

6. Trademarks. This License does not grant permission to use the trade names,

trademarks, service marks, or product names of the Licensor, except as required

for reasonable and customary use in describing the origin of the Work and

reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in

writing, Licensor provides the Work (and each Contributor provides its

Contributions) on an ″AS IS″ BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied, including, without

limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,

MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are

solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of

permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort

(including negligence), contract, or otherwise, unless required by applicable law

(such as deliberate and grossly negligent acts) or agreed to in writing, shall any

Contributor be liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a result of this

License or out of the use or inability to use the Work (including but not limited

to damages for loss of goodwill, work stoppage, computer failure or

malfunction, or any and all other commercial damages or losses), even if such

Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or

Derivative Works thereof, You may choose to offer, and charge a fee for,

acceptance of support, warranty, indemnity, or other liability obligations and/or

rights consistent with this License. However, in accepting such obligations, You

may act only on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify, defend, and hold

each Contributor harmless for any liability incurred by, or claims asserted

against, such Contributor by reason of your accepting any such warranty or

additional liability.

W3C Software Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other

related items) is being provided by the copyright holders under the following

license. By obtaining, using and/or copying this work, you (the licensee) agree that

you have read, understood, and will comply with the following terms and

conditions.

Permission to copy, modify, and distribute this software and its documentation,

with or without modification, for any purpose and without fee or royalty is hereby

granted, provided that you include the following on ALL copies of the software

and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed

or derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and

conditions. If none exist, the W3C
®

Software Short Notice should be included

(hypertext is preferred, text is permitted) within the body of any redistributed

or derivative code.

3. Notice of any changes or modifications to the files, including the date changes

were made. (We recommend you provide URIs to the location from which the

code is derived.)

128 Autonomic Deployment Engine for Software Package Developers

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED ″AS IS,″ AND

COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE

ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS. COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT,

INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY

USE OF THE SOFTWARE OR DOCUMENTATION. The name and trademarks of

copyright holders may NOT be used in advertising or publicity pertaining to the

software without specific, written prior permission. Title to copyright in this

software and any associated documentation will at all times remain with copyright

holders.

Trademarks

IBM, the IBM logo, DB2, OS/400, Tivoli, and WebSphere are trademarks or

registered trademarks of International Business Machines Corporation in the

United States, other countries, or both.

Microsoft and Windows Windows NT, and Windows 2000 are registered

trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 129

130 Autonomic Deployment Engine for Software Package Developers

Index

A
action descriptor sets

definition 47

action descriptors
actions 46, 47

and change management operations 54

and root installable units 48

and smallest configuration units 46

and smallest installable units 46, 48, 54

Configure action descriptors 47

Custom-check action descriptors 48

definition 45

identified in an IU deployment descriptor (XML

sample) 48

in Deployment Engine operating environment 8

InitialConfig action descriptors 47

Install action descriptors 46

life cycle–related 46

Migrate action descriptors 47

sets 47

Uninstall action descriptors 47

XML sample 49

actions
definition 46

ACU_COMMON environment variable 73

administration commands v, 88

de_version command 81

alternatives 60, 90

appendix information 123

application packages
definition 13

applications
definition 5

testing with manageIU command 86

artifacts
See action descriptors

authorities
multiuser mode 70

single-user mode 71

B
backing resources

and Deploys relationship 61

and manageIU -force command 91

and overwriting identical software 91

and resulting resources 38

definition 38

backward-compatible constraints
forcing failed checks 92

base application
definition 12

base content
definition 34

base software packages
definition 12

bold typeface, meaning of vi

bootstrap program 8

C
capacity dependencies 56

case sensitivity in command syntax 82

change management operations
and handling of relationship types 63

Configure operation 55, 56

Create operation 55

definition 54

Delete operation 55

InitialConfig operation 55

Migrate operation 55

Undo operation 55

Update operation 55

change manager
definition 9

in Deployment Engine operating environment 9

messages 113

change plan
definition 54

change requests
and life cycle operations 97

Configure change request 53

Create change request 53

Create Feature change request 53

definition 52

Delete change request 53

Delete Feature change request 53

Initial Configure change request 53

Migrate change request 53

Reapply Update change request 53

Undo change request 53

Update change request 53

checks
and alternatives 60, 90

and dependencies 57

and requirements 60, 90

capacity checks 57

consumption checks 57

custom checks 58

definition 57

forcing failed checks 90

hosted resource checks 58

installable unit checks 58

property checks 59

relationship checks 59

software checks 59

types 57

version checks 60

commands 83, 84

case sensitivity in 82

description 79

location of command files 82

manageIU command 86

summary of developer commands 79

validateIUDD command 101

common messages
for Deployment Engine components 112

components
application-defined

software packages 14

Deployment Engine operating environment 6

© Copyright IBM Corp. 2006 131

conditioned units
definition 17

configuration unit deployment descriptors
definition 16

in Deployment Engine operating environment 8

root configuration units 28

smallest configuration units 29

configuration unit hierarchies
definition 33

configuration units
definition 27

root configuration units 28

smallest configuration units 29

Configure action descriptors
definition 47

configuring
definition 6

contained container installable units
definition 24

XML sample 25

contained installable units
definition 23

XML sample 24

container installable units
definition 22

XML sample 23

conventions used in this book
command syntax 82

typeface vi

UNIX directory names vii

UNIX directory paths vii

UNIX environment variables vii

Created state
definition 52

CUs
See configuration units

Custom-check action descriptors
definition 48

D
de_version command 81

dependencies
and checks 57

capacity checks 57

capacity dependency 57

consumption checks 57

consumption dependency 57

custom checks 58

customized dependency 58

definition 56

hosted resource checks 58

hosted resource dependency 58

installable unit checks 58

installable unit dependencies 58

property checks 59

property dependencies 59

relationship checks 59

relationship dependencies 59

software checks 59

software dependencies 59

version checks 60

version dependency 60

dependency checker
definition 8, 56

in Deployment Engine operating environment 8

messages 114

dependency checking
and Custom-check action descriptors 48

definition 56

deploying
definition 6

deployment descriptors
configuration unit deployment descriptors 16

definition 15

installable unit deployment descriptors 15

types 15

validating with validateIUDD command 101

Deployment Engine
definition 3

installation database 9

messages from components 111

operating environment components 6

previous name (Solution Install) 3

run-time components 7

what it does 5

Deployment Engine interface
in Deployment Engine operating environment 8

Deployment Engine run-time environment
definition 69

in the application package 69

Deployment Engine–enabled application
definition v

Deploys relationship 61

derived variable
definition 64

descriptor
See deployment descriptor

descriptors
action descriptors 45

definition 14

deployment descriptors 15

in Deployment Engine operating environment 7

media descriptor 49

discriminant
definition 65

internal variable 66

query IU discriminant variable 65

discriminant variable
definition 66

E
environment variables 73

ACU_COMMON environment variable 73

ERRORLEVEL environment variable 84

SI_PATH environment variable 73

ERRORLEVEL environment variable 84

F
features

definition 35

testing with manageIU command 93

Federates relationship 62

fix pack
in incremental update software package 13

fix software packages
definition 13

Fixes relationship 62

force processing
with manageIU command 89

132 Autonomic Deployment Engine for Software Package Developers

fresh installation
definition 12

full update software packages
definition 12

fully enabled software deployment
definition 10

H
HasComponents relationship 62

hosted resources
definition 9, 58

in Deployment Engine operating environment 9

hosting environments
definition 9

in Deployment Engine operating environment 9

Hosts relationship 62

hybrid software deployment programs
definition 12

I
implementing Deployment Engine

single software package 11

software deployment methods 11

software deployment models 10

software package set 12

software package tree 11

wrappered software deployment 10

incremental software packages
definition 13

InitialConfig action descriptors
definition 47

Install action descriptors
definition 46

installable unit deployment descriptors
contained container installable units 24

contained installable units 23

container installable units 22

definition 15

in Deployment Engine operating environment 7

root installable units 18

smallest installable units 20

solution modules 25

validating with validateIUDD command 101

what units to include 42

installable unit hierarchies
definition 32

installable units
contained container installable units 24

contained installable units 23

container installable units 22

definition 4, 17

root installable units 18

smallest installable units 20

software life cycle 51

solution modules 25

supported states 51, 52

installation database
access restrictions in multiuser mode 71

access restrictions in single-user mode 72

database access 71

definition 9

in Deployment Engine operating environment 9

multiuser access 70

installation groups
definition 36

testing with manageIU command 93

instances
definition 5

integrity checking
and relationships 64

definition 57

forcing failed checks 91

interim fix
in fix software package 13

introduction to Deployment Engine 3

italic typeface, meaning of vi

IUs
See installable units

L
legal notices

IBM 123

third party 124

levels, trace 117

life cycle
See software life cycle

life cycle operations
See also change requests

definition 86

option in manageIU command 97

life cycle states
Created state 52

definition 52

Updated state 52

Usable state 52

logging
trace logging 117

M
maintenance

definition 6

managed resources
backing resources 38

definition 38

manageIU command 86

manufacturing refresh
in full update software package 12

media descriptors
and multivolume files 50

definition 49

in Deployment Engine operating environment 8

message log fields 108

messages
change manager messages 113

common messages
for Deployment Engine components 112

dependency checker messages 114

format
message help 108

message identifiers 107

help information for 111

message log fields 108

message text 108

operating system touchpoint messages 115

Migrate action descriptors
definition 47

models for software deployment 10

Index 133

monospace font, meaning of vi

multiuser mode
and de_version command 81

definition 70

multivolume files
definition 50

N
nonroot user

and Deployment Engine in single-user mode 71

definition 81

notices
IBM 123

third party 124

O
operating environment of Deployment Engine 6

operating system touchpoint
in Deployment Engine operating environment 9

messages 115

optional content
definition 34

features 35

installation groups 36

XML sample 35

overview of Deployment Engine 3

P
packaging

definition 6

parameter variable
definition 64

testing with manageIU command 93

payload files
definition 3, 15

in Deployment Engine operating environment 8

problem determination 105

Deployment Engine component messages 111

finding the ACULogger.properties files
component messages 105

message help 108

trace logging 117

troubleshooting 119

property dependencies 56

Q
query IU discriminant variable

definition 65

query property variable
definition 65

R
refresh pack

in incremental update software package 13

relationship types
Deploys relationship 61

Federates relationship 62

Fixes relationship 62

HasComponents relationship 62

Hosts relationship 62

relationship types (continued)
relationships.xsd schema 61

Supersedes relationship 62

Uses relationship 63

relationships
and integrity checking 64

definition 61

management of 63

representing strings that include spaces 84

requirements 60, 90

requisite packages
See requisites

requisites
definition 40

XML sample 42

rerun processing
with manageIU command 98

resulting resources
as backing resource 39

definition 38

XML sample 40

return codes, retrieving 84

root configuration units
definition 28

XML sample 29

root CUs
See root configuration units

root installable units
definition 18

XML sample 20

root IUs
See root installable units

root user
and Deployment Engine in multiuser mode 70

definition 81

S
selectedFeatures variable

definition 68

SI_PATH environment variable 73

single-user mode
and de_version command 81

definition 71

smallest configuration units
definition 29

XML sample 31

smallest CUs
See

smallest installable units
definition 20

XML sample 21, 22

smallest IUs
See smallest installable units

software dependencies 56

software deployment
methods 11

models 10

software deployment models
fully enabled software deployment 10

implementing Deployment Engine
fully enabled software deployment 10

wrappered software deployment 10

software deployment programs
and bootstrap program 8

hybrid software deployment program 12

in Deployment Engine operating environment 8

134 Autonomic Deployment Engine for Software Package Developers

software life cycle
definition 51

supported states 52

software package set
definition 12

software package tree
and requisites 40

definition 11

software package types
base software package 12

definition 12

fix software package 13

full update software package 12

incremental update software package 13

software packages
base software package 12

definition 3, 14

fix software package 13

fresh installation 12

full update software package 12

in Deployment Engine operating environment 7

incremental update software package 13

testing with manageIU command 86

that include fix packs and refresh packs 13

that include interim fixes and test fixes 13

that include manufacturing refreshs 12

types 12

software states
See life cycle states

solution modules
definition 25

XML sample 27

specifying a software instance uniquely 83

states
See also life cycle states

and software life cycle 51

subordinate units
definition 17

Supersedes relationship 62

T
targets

definition 38

terminology, introductory 3, 5

test fix
in fix software package 13

topologies
definition 38

touchpoints
in Deployment Engine operating environment 9

trace levels 117

trace loggers
AP logger 117

CM logger 117

DC logger 117

OSTP logger 117

PA logger 117

trace log fields 118

trace logging
description 117

setting the trace level 117

trace loggers 117

troubleshooting 119

typeface conventions vi

U
Uninstall action descriptors

definition 47

Updated state
definition 52

Usable state
definition 52

user modes
multiuser mode 70

single-user mode 71

Uses relationship 63

V
validateIUDD command 101

variables
_discriminant variable 66

boolean variables 68

definition 64

derived variable 64

environment variables 73

ERRORLEVEL environment variable 84

internal variables 66

parameter variable 64, 93

query IU discriminant variable 65

query property variable 65

selectedFeatures variable 68

variable types 64

W
Web service interface

in Deployment Engine operating environment 9

WebSphere touchpoint
in Deployment Engine operating environment 9

wrappered software deployment
definition 10

Index 135

136 Autonomic Deployment Engine for Software Package Developers

����

Printed in USA

	Contents
	Preface
	Who should read this book
	Related documents
	Conventions used in this book

	Part 1. Introduction
	Chapter 1. Overview of Deployment Engine
	What is Deployment Engine?
	What can I do with Deployment Engine?
	What the Deployment Engine technologies do

	More key terms used by Deployment Engine
	The components of a Deployment Engine environment
	How do I implement Deployment Engine?
	Software deployment models
	Wrappered software deployment
	Fully enabled software deployment

	Software deployment methods
	Software package types
	Application packages

	The contents of a software package
	Payload files
	Deployment descriptors
	Installable unit deployment descriptors
	Configuration unit deployment descriptors
	Installable units
	Root installable units
	Smallest installable units
	Container installable units
	Contained installable units
	Contained container installable units
	Solution modules

	Configuration units
	Root configuration units
	Smallest configuration units

	Unit hierarchies
	Installable unit hierarchies
	Configuration unit hierarchies

	Optional content
	Features
	Installation groups

	Managed resources
	Backing resources
	Topologies
	Requisites
	Which units are most appropriate for my IU deployment descriptor?
	Root IU and smallest IUs
	IUs that reference other applications (optional)
	IUs that organize other IUs (optional)
	Smallest CUs that initiate one-time configuration (optional)
	Optional content (optional)
	Summary of IU deployment descriptor entities and their uses

	Action descriptors
	Media descriptor

	Software life cycle
	Life cycle states
	Change requests
	Change management operations
	Dependencies
	Checks
	Types of dependencies and their corresponding checks

	Relationships
	Relationship types
	Management of relationships
	Relationships and integrity checking

	Variables
	Variable types
	Internal variables

	Chapter 2. The Deployment Engine run-time environment
	User mode selection for the run-time environment
	Deployment Engine user modes
	Multiuser mode
	Single-user mode

	Database access
	Access restrictions in multiuser mode
	Access restrictions in single-user mode

	Installed directories
	Directories for users of Deployment Engine in multiuser mode
	Directories for users of Deployment Engine in single-user mode
	Environment variables for the installed directories

	Removing Deployment Engine

	Part 2. Commands
	Chapter 3. Command summary
	Chapter 4. Working with commands
	Command authorization
	Locating and running the commands
	Command syntax conventions
	Case sensitivity in commands
	Specifying a software instance uniquely
	Retrieving return codes
	Representing strings that include spaces

	Chapter 5. Developer commands
	manageIU
	validateIUDD

	Part 3. Problem determination
	Chapter 6. Locating the Deployment Engine log files
	Finding the ACULogger.properties file
	Finding the logs for components

	Chapter 7. Message logging
	Message identifier
	Message text
	Message help
	Message log format

	Chapter 8. Messages issued by components
	Common messages
	Change manager messages
	Dependency checker messages
	Operating system touchpoint messages

	Chapter 9. Trace logging
	Chapter 10. Troubleshooting
	Part 4. Appendixes
	Notices
	Open source license notices
	Apache Software License, Version 1.1
	Apache Software License, Version 2.0
	W3C Software Notice and License

	Trademarks

	Index

