
Display dynamic information on Web pages

with JavaServer Faces

���

ii Display dynamic information on Web pages with JavaServer Faces

Contents

Display dynamic information on Web

pages with JavaServer Faces 1

Display dynamic information on Web pages with

JavaServer Faces 1

Module 1: Create Web pages with data connections . 4

Lesson 1.1: Import the required resources and set

the target server 5

Lesson 1.2: Connect to a database and display

data on a Web page 7

Lesson 1.3: Test the Web site 12

Lesson 1.4: Create a new record to display and

update the database 14

Lesson 1.5: Program the Submit button 17

Lesson 1.6: Create an update page 20

Module 1: Summary 24

Module 2: Add advanced features 25

Lesson 2.1: Format a data table 28

Lesson 2.2: Use the file upload component . . . 35

Lesson 2.3: Use navigation rules 37

Lesson 2.4: Use automatic key generation . . . 39

Module 2: Summary 41

Display dynamic information on Web pages with

JavaServer Faces 42

 iii

iv Display dynamic information on Web pages with JavaServer Faces

Display dynamic information on Web pages with JavaServer

Faces

This tutorial teaches you how to design a dynamic Web site that functions as a newspaper’s classified

advertising section. The Web site is a complete J2EE Web application that uses JavaServer Faces (JSF)

components and Service Data Objects (SDO). This application uses JSF technology to create dynamic Web

pages that link to a database that stores classified advertising data. By dragging JSF components onto

your pages, you can create a JSF Web application known as a CRUD application because it can create,

read, update, and delete records from a database. Site users can use these functions to manage the

classified ads in the database.

Learning objectives

This tutorial is divided into two modules, each with its own learning objectives. You can choose to

complete either or both modules. Within each module, you must complete the exercises in order for the

Web site to work properly.

Module 1: Create Web pages with data connections

This module teaches you how to set up a connection to a database and display the information from the

database on a Web page. In this module, you will:

v Connect Web pages to a database.

v Create pages that display, create, edit, and delete records from the database.

v Send data from one page to another

Module 2: Add advanced features

This module teaches you more powerful ways to use data from a database. In this module, you will:

v Format database records on a Web page

v Add a component that allows uploading files to a database from a Web page

v Navigate from page to page automatically

v Automate some database administration tasks

When you are ready, begin Module 1: Creating Web pages with data connections.

Time required

Total: 3 hours and 30 minutes

Module 1: 2 hours

Module 2: 1 hour and 30 minutes

Display dynamic information on Web pages with JavaServer Faces

This tutorial teaches you how to design a dynamic Web site that functions as a newspaper’s classified

advertising section. The Web site is a complete J2EE Web application that uses JavaServer Faces (JSF)

components and Service Data Objects (SDO). This application uses JSF technology to create dynamic Web

pages that link to a database that stores classified advertising data. By dragging JSF components onto

 1

your pages, you can create a JSF Web application known as a CRUD application because it can create,

read, update, and delete records from a database. Site users can use these functions to manage the

classified ads in the database.

This tutorial might require some optionally installable components. To ensure that you installed the

appropriate optional components, see the System requirements list.

Upon completing this tutorial, site users can not only view items for sale, but also add new items, change

details about the items (for example the price or description), or search for a specific item. While this

tutorial site is simply designed, the principles and technologies it covers are also used in much larger and

more complicated Web sites.

Learning objectives

This tutorial is divided into two modules, each with its own learning objectives. You can choose to

complete either or both modules. Within each module, you must complete the exercises in order for the

Web site to work properly.

Module 1: Create Web pages with data connections

This module teaches you how to set up a connection to a database and display the information from the

database on a Web page. In this module, you will:

v Connect Web pages to a database.

v Create pages that display, create, edit, and delete records from the database.

v Send data from one page to another

Module 2: Add advanced features

This module teaches you more powerful ways to use data from a database. In this module, you will:

v Format database records on a Web page

v Add a component that allows uploading files to a database from a Web page

v Navigate from page to page automatically

v Automate some database administration tasks

When you are ready, begin Module 1: Creating Web pages with data connections.

Time required

Total: 3 hours and 30 minutes

Module 1: 2 hours

Module 2: 1 hour and 30 minutes

Skill level

Intermediate

Audience

Web application developers, Web user interface designers

2 Display dynamic information on Web pages with JavaServer Faces

System requirements

To complete this tutorial, you must first install and configure a runtime server. This tutorial has been

tested with the following servers:

v IBM® WebSphere® Application Server versions 6.0, 6.1, and 7.0

For information on deploying SDOs on servers other than WebSphere Application Servers, refer to Help

topic: Deploying SDOs on non-WAS servers.

This tutorial might require some capabilities that have not been initiated during the installation of the

product. If you cannot find user interface options described in the tutorial, ensure that you have enabled

the appropriate capabilities (Window → Preferences → Capabilities). In order to complete this tutorial,

you will need the following capabilities:

v Java™ Developer

v Web Developer (typical)

v XML Developer

v Database Developer

v Enterprise Java Developer

v Data

To use this tutorial, you must have an application server installed and configured. To verify that a server

runtime environment is available, click Window → Preferences, expand Server, and then click Installed

Runtimes. You can use this pane to add, remove, or edit installed server runtime definitions. You can

also download and install support for a new server.

Prerequisites

To complete this tutorial, you should be familiar with:

v Basic Web design concepts, such as Web sites, Web pages, browsers, and servers.

v How to create a simple static Web page.

v The elements of a Web page, such as tables, hyperlinks, forms, and images.

v Database terms, such as tables, records, columns, and fields.

It will also help if you understand:

v How to use the perspectives and views of the workbench.

v How to edit the HTML code for a Web page.

Expected results

Once the Web application is complete, the home page will look like the picture below. The Web site

navigation that is added to the Web pages via the site template, links to pages that allow you to create a

new advertisement or view all of the advertisements. The row action in the table displayed below, brings

you to an update page where you can change the information associated with a particular advertisement.

Display dynamic information on Web pages with JavaServer Faces 3

JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')
JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')

Related information

View the PDF version of this tutorial

Module 1: Create Web pages with data connections

In this module, you will learn how to create Web pages that allow you to display, edit, delete, and create

information from a database. You will learn about JavaServer Faces (JSF) technology and use it to make

complex programming operations simple.

Learning objectives

This module teaches you how to set up a connection to a database and display the information from the

database on a Web page. In this module, you will:

v Connect Web pages to a database.

v Create pages that display, create, edit, and delete records from the database.

4 Display dynamic information on Web pages with JavaServer Faces

v Send data from one page to another

Time required

This module should take approximately 2 hours to complete. If you decide to explore other facets of

dynamic Web sites while working on the tutorial, it could take longer to finish.

Lesson 1.1: Import the required resources and set the target server

Before you begin, you need to import the required resources for this tutorial: a set of Web pages and a

sample Derby database.

The main purpose of this tutorial is to teach you how to create a Web application that enables users to

access and manipulate data in a database. The tutorial does not go into the detail of designing the look

and feel of a Web site. Accordingly, the Web site design has been prepared for you already.

To complete this tutorial you will need to access an existing set of JavaServer Faces JSP files and a sample

Derby database. These foundational Web pages and sample database are included in a ZIP file. This

lesson will take you through the steps of importing the ZIP file so you can use the Web pages and the

database. You will also set the target server for the dynamic Web project.

The Web pages and database that you will use for this tutorial are included in a ZIP file. To import the

content of the ZIP file:

Import the sample project file

1. Import the project. Switch to the Web perspective (Window → Open Perspective → Web).

2. In the Project Explorer view of the Web perspective, ensure that your ClassifiedsTutorial project looks

like the following image:

Set the target server for the dynamic Web project

Setting the target server for the Web project enables you to test the resources that you will be creating in

this tutorial.

Display dynamic information on Web pages with JavaServer Faces 5

Javascript:importPISample('jsftut_wiz1+com.ibm.etools.webtools.tutorial.doc.jsftut_imp1')

To set the target server:

1. In the Project Explorer view of the Web perspective, right-click ClassifiedsTutorial and select

Properties.

2. In the properties list, click Server.

3. In the Default server list, select the server that you want to use as the default. Click Apply.

4. In the properties list, click Targeted Runtimes.

5. In the Runtimes list, click the runtime that corresponds with the server that you selected. Click OK.

If the server that you want to use is not listed in the target runtime list, close the workbench and install

the server that you want to use. Once the server is installed, follow the instructions to set the target

server.

Note: If you do not see any servers listed in the Default server list, and you have installed server

runtimes, it is possible the server needs to be configured. To configure a server, you can do the following:

1. Right-click all_records.jsp file, then select click Run As → Run on Server.

2. Choose Manually define a new server.

3. Select a server you have installed.

4. Follow the directions in the wizard to configure the server. The first time you run on server you may

receive an error. To fix the error set the target server as described above, restart the server in the

Servers view, and reload the Web page in the browser.

If you go back through the previously described steps for setting a target server, you will now find the

default server is the one you have just configured. If a server is installed but not configured, it will not

show up in the list of servers from which you can choose a default target.

For information on deploying SDOs on servers other than WebSphere Application Servers, refer to Help

topic: Deploying SDOs on non-WAS servers.

Lesson checkpoint

You have now imported the ClassifiedsTutorial dynamic Web project and set the target server.

You can browse the files in the tutorial Web project. To open a file, double-click it in the Project Explorer

view. To view a map-like representation of how the pages are related, double-click Web Site Navigation

in the Project Explorer.

The majority of your work in this sample will involve the following files:

all_records.jsp

This is the site’s home page. It will display every classified ad in the database.

new_record.jsp

This page will create a new classified ad.

update_record.jsp

This page will change the details about an ad in the database or delete it.

classifiedTemplate.jtpl

This is the template for the site pages. It includes elements like the table and the gray ″Welcome

to the Classifieds″ banner that are on every page. This page also has two navigational tabs below

the gray banner that lead to the home page and the new classified ads page.

Now you are ready to begin Exercise 1.2: Working with the relational record list and data table

components.

6 Display dynamic information on Web pages with JavaServer Faces

JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')
JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')

Lesson 1.2: Connect to a database and display data on a Web page

In this lesson, you will learn how to connect to a database and display data records on a Web page. You

will also learn how to add a relational records list to your Web page.

The Web site in this tutorial uses dynamic Web pages with JavaServer Faces components to access a

database and display information on the page. This tutorial uses relational records and relational record

lists to represent the data in a database so the data can be displayed on the page in the form of a data

table or an ordinary HTML table. Java access beans are used by these components.

Learn more about data access beans:

Data access beans are Java bean representations of enterprise beans. They are typically used in client

programs that employ JavaServer Pages (JSP) files, servlets, or enterprise beans that interface with other

enterprise beans. Access beans shield you from the complexities of managing enterprise bean life cycles.

This means that you can program to enterprise beans as easily as you can program to Java beans, which

simplifies your enterprise bean client programs and reduces your overall development time.

Display dynamic information on Web pages with JavaServer Faces 7

Learn more about JavaServer Faces and Faces components:

 JavaServer Faces is a technology that helps you build user

interfaces for dynamic Web applications that run on a

server. The JavaServer Faces framework manages UI state

across server requests and offers a simple model for the

development of server-side events that are activated by

the client. JavaServer Faces is based on a

model-view-controller (MVC) framework. For JavaServer

Faces, this means that the controller is a servlet, the

model is represented by JavaBeans™, and the view is

comprised of JavaServer Faces components with little or

no application code. The goal of this model is to separate

content from presentation.

Tools such as Faces Components to help you use this

technology in your Web applications. Faces Components

include a JavaServer Page (JSP) custom tag library for

expressing a JavaServer Faces interface within a page.

This wizard helps you create JSP files that are enabled to

use the Faces components. Faces components let you

develop a Web application by dragging components from

a Faces drawer in the Palette view and dropping them on

the Web pages you are creating.

For example, you can drag an input text field and drop it

to a form on the page. Then you can drag and drop a

Submit button next to the input text field. Finally, you

can connect the input text field to your data source. This

will enable end users to enter data from the Web

application to your data source.

Another benefit of applications built using Faces

components is that the user interface is rendered

independently of the underlying program logic. This

means that your applications can run and access data on

different platforms, such as browsers or handheld

devices.

8 Display dynamic information on Web pages with JavaServer Faces

Add a relational records list

In this lesson you will create a relational record list to represent all of the classified ads in the database.

Then, you will connect to the database and select the table that holds the information you need in the

relational record list. Finally, you will display this relational record list on the page in a data table.

v Relational records connect to only one record from a database. In this case, a relational record

represents a single classified ad from the sample database. Using a relational record, you can create a

new record, edit an existing record, or delete an old record.

v Relational record lists connect to more than one record from a database. In this case, a relational record

list represents anywhere from two to all of the classified ads in the sample database.

v Data tables display the data from a relational record list on the page. Data tables simply designate a

place for the record lists; they do not format the data into rows and columns in the same way that an

HTML table does.

Learn more about data tables:

The data table is a component in a Faces JSP page that holds data objects such as a relational record

list.Though a data table appears to have rows and columns like an HTML table, it does not work like

an HTML table. If you wish to format input and output controls as in a table, you must use a Panel -

Group Box from the Enhanced Faces Components drawer in the Palette. This is covered in Exercise 2.2:

Formatting a Data Table.

Because data tables are Faces components and not HTML components, they are controlled through the

Properties view, not through the Page Designer view. Using the Properties view, you can customize a

data table in a variety of ways:

– Add, remove, and change the order of columns

– Format text and background

– Add header, footer, and margins

– Add paging for results display

To create a new relational record list:

 1. In the Project Explorer view of the Web perspective, expand ClassifiedsTutorial → WebContent.

 2. In the WebContent folder, double-click all_records.jsp. The all_records.jsp file opens in the editor.

 3. Delete the default text Default content of bodyarea.

 4. In the Palette view, expand the Data and Services drawer.

 5. Drag the Relational Record List component from the Palette onto the blank content area. The Add

Relational Record List window opens.

 6. In the Name field, type all_recordlist. Relational record list and relational record names must

conform to Java standard naming conventions for variable names (for example, they cannot contain

any spaces).

 7. Make sure that Add data controls is selected. When Add data controls is selected, the wizard creates

a data table to display the record list on the page. Otherwise, the wizard only creates the record list

and not a representation of that data on the page. For now, you will have the wizard create the

default data table and you will customize it later. The Add Relational Record List window should

look like this:

Display dynamic information on Web pages with JavaServer Faces 9

Click Next.

 8. In the Connection name field on the next page of the wizard, click New to create a new database

connection. The New Connection Profile dialog opens.

 9. In the Connection Profile Types list, select Derby, then click Next. The Create Connection Profile

dialog opens.

10. In the Name field, type DerbyDB, then click Next.

11. In the Drivers field, click Browse. The Driver Definitions dialog opens.

12. In the Drivers definitions list, select 10.1, then click Add.

13. From the Available driver templates list, select Derby Embedded JDBC Driver, then click OK.

14. In the Provide Driver Details dialog, click Add JAR/Zip <shared_install_location>\plugins\
org.apache.derby.core_<version>, where <shared_install_location> is your shared installation directory

and <version> is the plugin version number. Once you have chosen the location of the JAR files, click

Open. Then click OK.

15. In the Drivers Definitions dialog, select Derby Embedded JDBC Driver then click OK.

16. In the Database location field, click Browse and select <workspace_location>\ClassifiedsTutorial\
WebContent\database, where <workspace_location> is the directory of your current workspace. Click

OK.

17. You may need to enter a User ID to access the database. A password is not required.

Tip: Any User ID will work.

18. In the New JDBC Connection wizard, click Finish. You return to the Add Relational Record List

wizard.

10 Display dynamic information on Web pages with JavaServer Faces

19. Click Configure project’s database connections. The JDBC Connections properties window opens.

20. Click Edit next to the Runtime connection details section. Select Use driver manager connection as

the runtime connection type. Click Finish then click OK to return to the Add Relational Record List

dialog. Now that you have created a connection to the Derby database, you need to choose a table or

the record list to represent. The Add Relational Record List wizard shows the tables in the database.

21. Expand W5SAMPLE and select ADS. Click Next. The remaining pages in the wizard let you exclude

columns from your record list and perform advanced options, such as defining the primary key,

adding relationships to other tables, and specifying filter and sort conditions. You will learn more

about these pages in later exercises.

22. In the Add Relational Record page of the dialog, you will specify the columns that you want to

include in your relational record list. Click Next.

23. For this tutorial you need to show only the title, description, category, price, and phone number for

each classified ad. By default, all columns are selected; click to clear all but the following columns

for display:

v MAINCATEGORY: String

v TITLE: String

v DESCRIPTION: String

v PRICE: BigDecimal

v PHONE: String

24. You can refine the organization of the data table display on your Web page. To reorder the columns,

select a column and click the up and down arrows until the column is in the desired position.

Arrange the columns in the following order:

Display dynamic information on Web pages with JavaServer Faces 11

v TITLE

v DESCRIPTION

v MAINCATEGORY

v PRICE

v PHONE

Click Finish. Your Web page now looks like this:

25. Save the page.

In the next lesson, you will see how this page will look on a real Web server. There are many options for

formatting data tables and JavaServer Faces components. Some of these options are covered in the next

module. You can also explore the Properties view on your own for the various JavaServer Faces

components on the page (for example, the data table and the individual output components).

Lesson checkpoint

You have completed Lesson 1.2. In this lesson, you learned how to connect to a database and display

data records on a Web page using a relational records list.

Lesson 1.3: Test the Web site

When you are ready to publish your Web application, you will need a server that will host it so users can

access the Web site through the Internet; however, to test your Web site, you can use a test environment.

In this lesson, you will run a JSP in a test environment to simulate what a page will look like when it is

actually published. You will also learn how to start and stop a server. At any time during your Web site

development, you can open a page in Page Designer and use the Preview tab to see how your design

will look in a browser. However, the Preview view does not allow you to see the dynamic aspects of your

page (such as database connections) as they would display running from a server.

Tip: Once you have started the server, you must stop it before you can continue working with the site.

12 Display dynamic information on Web pages with JavaServer Faces

To use this tutorial, you must have an application server installed and configured. To verify that a server

runtime environment is available, click Window → Preferences, expand Server, and then click Installed

Runtimes. You can use this pane to add, remove, or edit installed server runtime definitions. You can

also download and install support for a new server.

To test the Web site on a server:

1. In the Project Explorer view, right-click all_records.jsp file, then select click Run As → Run on Server.

The Run On Server window opens

2. You must use the same server as the one you chose to be the target server in Lesson 1.1. Using a

different server in this step will create errors.

v If you want to test the Web site on a previously defined server configuration:

a. Select Choose an existing server.

b. Select the server that you want to use from the list available.
v If you want to test the Web site on a new server configuration:

a. Select Manually define a new server.

b. Select the server type that you want to use from the list available.
3. Click Finish.

The server tools create the new server, start it, and open the page in the workbench internal Web browser.

This may take a moment. In the Console view, you can watch the messages as the server tools start the

server.

Once this process is complete, you can preview how the site will look and work once it is actually

published to a Web server. Click the links, enter data in the forms, and see any dynamically generated

content in the site that may not appear in Preview view. Also, if you wish to see your page in different

Web browsers, you can copy the URL from the workbench Web browser into the browser of your choice.

You must stop the server before you can continue with the tutorial. If you leave the server running, you

will see error messages when you continue with the tutorial. These errors appear because the server is

connected to the sample database, preventing you from connecting to the database to change the

information shown on the Web site.

To stop the server:

1. Open the Servers view. This view is usually located at the bottom center of the workbench. If you are

not able to find the Servers view, click Window → Show View → Servers from the main menu.

2. Select the server that you want to stop. Notice that the server status is listed as Started.

3. Click the Stop the server button

at the top right of the Servers view. The server Status changes to

Stopping. You will see messages in the Console view while the server shuts down. When the server

Status in the Servers view changes to Stopped, the server is stopped and you can continue working

on the Web site.

Tip: You can test your Web site on the server at any time, but remember to stop the server when you are

finished.

Display dynamic information on Web pages with JavaServer Faces 13

Lesson checkpoint

You have completed Lesson 1.3. In this lesson, you tested a JSP in a test environment to simulate what

your page will look like when it is actually published. You also learned how to start and stop a server.

Lesson 1.4: Create a new record to display and update the database

In this lesson, you will create a page that allows users to create new classified ads and post them to the

database.

First you will create a relational record to represent a new record in the database, and then create a

visualization of the record on your page as a set of input fields.

To create a new relational record:

 1. Double-click the new_record.jsp file in the Project Explorer view to open it.

 2. Delete the default text Default content of bodyarea.

 3. In the Palette view, click the Data and Services drawer to expand it.

 4. Drag the Relational Record component from the Palette onto the blank content area. The Add

Relational Record window opens.

Note: If a warning message appears and says that a connection to your database could not be

established, then you left the server running after testing the Web site. If this happens, click Cancel

in each dialog and stop the server as explained in Lesson 1.3.

 5. In the Name field, type create_record.

 6. Under Create controls for, click Creating a new record.

 7. Make sure Add input/output controls to display the record on the web page is selected. The Add

Relational Record window should look like this:

14 Display dynamic information on Web pages with JavaServer Faces

jsftut_ex13.dita

8. Click Next.

 9. In the Table box, expand W5SAMPLE and select ADS. Click Next.

10. Click Next again. The Configure Data Controls page opens.

Tip: The Configure Data Controls page helps you customize the visualization of your relational

record. For example, you can change the columns, field labels, and submit button on your input

form. After you finish these steps, a fully functional input form will be on the page.

11. In the Fields to display section, clear the check box next to every field name except for the ones you

want in your input form:

v DESCRIPTION

v ID

v MAINCATEGORY

v PHONE

v PRICE

v TITLE
12. Rearrange the fields in the following order by clicking the Up or Down buttons:

v ID

Display dynamic information on Web pages with JavaServer Faces 15

v TITLE

v DESCRIPTION

v MAINCATEGORY

v PRICE

v PHONE
13. Rename the labels as you like. For example, shorten the ″Maincategory:″ label to just ″Category:″ To

rename the labels generated for the input fields, click a label from the Label column. The mouse icon

turns into a cursor so you can type new text.

14. Select MAINCATEGORY then click Options. The Options window opens.

15. Make sure the Submit button option is selected.

16. Type Post New Listing in the Label field. Then click OK. The Add Relational Record window

should now look like this:

17. Click Finish to generate the input form. It should look like this:

16 Display dynamic information on Web pages with JavaServer Faces

Note: The form has an Error Messages field. This does not mean that your project has errors; this

field marks the place where errors will be displayed if there are any when the user submits the form.

18. Save the page.

When your input form is submitted, the page will automatically add the new record to the database. In

the next lesson, you will program the Post New Listing button to return to the all_records.jsp page so

that you can immediately view the new record in the database.

Lesson checkpoint

You have completed Lesson 1.4. In this lesson, you created a page that allows users to create new

classified ads and post them to the database.

Lesson 1.5: Program the Submit button

When your input form is submitted, the page will automatically add the new record to the database. In

this lesson, you will program the Post New Listing submit button to return to the all_records.jsp page so

that you can immediately view the new record in the database.

To program the submit button:

1. In the new_record.jsp file, right-click the Post New Listing button you created in the form on the Web

page and select Properties.

2. Click Add Rule. The Add Navigation Rule window opens.

3. From the Page drop down, select all_records.jsp then click OK.

4. Save the page. If you want to try adding a record to the database to verify that you will return to the

all_records.jsp page, run new_record.jsp on your test server.

Prevent duplicate keys

Important:

Display dynamic information on Web pages with JavaServer Faces 17

Since the ID column is a primary key in the ADS table, you cannot add records with an ID value that

already exists in the table. In Module 2, you will see how to use automatic key generation to

automatically create a new unused key for each new record.

Until then, you must enter an unused ID number in this page to add a new record. The records that

come with the database use ID numbers from 1 to 24, so you can enter any number above 24 as a

primary key. Be sure not to duplicate keys if you enter more than one record.

Bind input to the relational record (optional)

The input form on the page is a set of JavaServer Faces input fields which have been bound to the

relational record that you created. Recall that you created the relational record to represent a new record

in the ADS table of your database. Binding is a method by which you can link a JavaServer Faces input

component to a column in the relational record.

When you created the relational record, the wizard automatically bound all of its columns to the input

fields on the page. If you want to make changes manually, you can bind other columns to other input

fields. In order to bind a column from your relational record to the input field, drag the column from the

Page Data view onto the field. You can experiment with this process by deleting and recreating the

Description input field on your form.

Learn more about the Page Data view:

The Page Data view is usually found at the bottom left corner of the workbench. If you can’t find it, go

to the menu bar and click Window → Show View → Page Data. Generally, the Page Data view is only

used when you are creating dynamic Web pages.

The Page Data view stores connections to data sources like databases in the form of data objects such as

relational records or relational record lists. These data objects do not represent the data source itself or

any component on the page. Instead, these data objects represent a connection between the project and a

data source. Once this connection is created, you can drag a data object from the Page Data view onto a

Web page to complete the connection and display information from the data source on the Web page. For

example, here is a picture of the Page Data view showing a relational record list created during this

tutorial:

18 Display dynamic information on Web pages with JavaServer Faces

In this picture, you can see the all_recordlist (ADS) relational record list, followed by all of the columns

in this relational record list. Once this data object is defined and in the Page Data view, you can drag

these columns onto input components on a Web page as many times as you want without reconnecting

to the database.

For example, if you wanted to show the value of the DESCRIPTION column on a web page, you would

first drag a text output field onto the page and then drag the DESCRIPTION column from the Page Data

view onto that text output field. This is called binding a column to an output field.

Alternately, if you wanted to let the user type in a new value for the DESCRIPTION column in the

database, you could drag a text input field onto the page. Then, drag the DESCRIPTION column onto

that text input field.

The following steps are provided to illustrate the concept of the input field and the process of binding;

however, walking through these steps is optional in this tutorial. If you don’t want to do this, move on to

the next lesson.

1. In the new_record.jsp file, click the Description input field. Press the Delete key.

2. In the Palette view, click on the Enhanced Faces Components drawer to expand it.

3. Drag an Input component from the Palette onto the cell that contained the Description input field

you just deleted. There is now an input field in this cell, but there is no text such as {ID} or {TITLE}

inside it because this input field is not bound to any column.

4. In the Page Data view, click to expand Relational Records → create_record (Service Data Object) →

create_record (ADS) and drag the DESCRIPTION column onto the Input component you just created.

The text inside the Input component changes to indicate that it is now bound to the DESCRIPTION

column, as in this picture:

Display dynamic information on Web pages with JavaServer Faces 19

5. Save the file and then run the page on the test server if you would like to.

Lesson checkpoint

You have completed Lesson 1.5. In this lesson you learned to program a command button and to bind

data to an input field by dragging and dropping a JSF widget from the palette onto a Web page.

Lesson 1.6: Create an update page

At this point, you have created pages for viewing and creating listings for the Web site. In this exercise,

you will create a page that allows users to update and delete listings. The update page will look almost

exactly like the create page except that on the update page, the input fields will display data from an

existing record for the user to change.

First, you will create a relational record, which represents an existing record from the database. Next, you

will create a JavaServer Faces update form for this relational record and after a few small changes, your

page will be ready to test.

Create the update relational record

 1. Open the update_record.jsp file by double-clicking it in the Project Explorer view.

 2. Delete the default text Default content for bodyarea.

 3. In the Palette view, click the Data and Services drawer to expand it.

 4. Drag the Relational Record component from the Palette onto the blank content area. The Add

Relational Record window opens.

 5. In the Name field, type update_record.

 6. Under Create controls for, click Updating an existing record.

 7. Make sure the Add input/output controls to display the Relational Record on the web page option

is selected.

 8. Click Next.

 9. In the Table box, expand W5SAMPLE and select ADS.

10. Click Next. The Add Relational Record page opens.

Filter the results

A relational record can show only one record from the database. Therefore, you must filter the database

table so only one record appears for the user to edit. (You didn’t need to filter the database in the

previous exercise because you created a new record and thus there were no results from the database to

filter.) Since each record in the database has a unique ID number, you will filter the results to the one

with a given ID number.

1. The Add Relational Record page has a list of task links. Under Tasks, click Filter Results. The Filters

window opens and inserts the default filter condition ID = #{param.ID} in the Filter column. The

Filters window looks like this:

20 Display dynamic information on Web pages with JavaServer Faces

This code filters the records in the database so only the record with the specified ID number will

appear in the relational record. You will learn more about this condition in the Add a row action

section later in this exercise. Click Close.

2. Click Next. The Configure Data Controls page opens.

3. In the Fields to display section, clear the check box next to every field name except for those you

want to display in your input form:

v ID

v TITLE

v DESCRIPTION

v MAINCATEGORY

v PRICE

v PHONE
4. By clicking Up or Down, reorder the field names from top to bottom as follows:

v ID

v TITLE

v DESCRIPTION

v MAINCATEGORY

v PRICE

v PHONE
5. For the ID field, select Display number from the drop-down list in the Control Type column.

Although you want users to be able to view a record ID number, you do not want them to be able to

update it. Making the ID field into an output field will help you avoid the problem of duplicate IDs.

6. Click Options. The Options window opens. Make sure the Submit button option is selected. Type

Update in the Label field. Click OK. The Add Relational Record window should look like this:

Display dynamic information on Web pages with JavaServer Faces 21

7. Click Finish to generate your update form on the page, as shown below:

22 Display dynamic information on Web pages with JavaServer Faces

Program the update and delete buttons

Again, you will add code to refer the user to the all_records.jsp page to display the changed record along

with all the other records.

1. Right-click the Update button that you just created on the Web page and select Properties.

2. Click Add Rule. The Add Navigation Rule window opens.

3. From the Page drop down, select all_records.jsp. In the This rule is used by box, click This action

only. Ensure the field contains: #{pc_Update_record.doUpdate_recordUpdateAction}. Click OK.

4. Repeat steps 1-3 to edit the code in the same way for the Delete button on the Web page. Ensure the

This rule is used by field contains: #{pc_Update_record.doUpdate_recordDeleteAction}

5. Save the page. If you want to try updating a record in the database to verify that you will return to

the all_records.jsp page, run new_record.jsp on your test server.

Add a row action

Now, you will add a row action to the table on all_records.jsp so the user can select a database record to

update. #{param.ID} represents the ID number of the record that the update page will update. When the

user clicks a row, that record ID number will be sent to the update_record.jsp page as the #{param.ID}

parameter. Then, the filtered relational record you just inserted into the update_record.jsp page will

display only that record for updating.

1. In the Project Explorer view, double-click the all_records.jsp file to open it in the Editor. Click

anywhere inside the data table. Open the Properties view.

2. In the Properties view, click the Row Actions tab under hx:dataTableEx from the list of HTML tags.

3. Click Add an action that’s performed when a row is clicked. The Configure a RowAction dialog

opens. Select Clicking the row sends a request to the server with row information sent as

parameters then click OK. A column is added to the data table.

4. In the Properties view, click the hx:requestRowAction tab.

5. Click Add Rule. The Add Navigation Rule dialog opens.

6. From the Page drop down, select update_record.jsp. In the This rule is used by box, select This

action only. The this action only field is automatically populated by

#{pc_All_records.doRowAction1Action} which was created when you added the row action. Click

Display dynamic information on Web pages with JavaServer Faces 23

OK. If the field is not automatically populated with the above method, type the method in the field

and add the following to ClassifiedsTutorial/Java Resources: src/pagecode/All_records.java:

public String doRowAction1Action() {

 return "";

}

7. In the Properties view, click the Parameter tab under hx:requestRowAction. Click Add Parameter then

type ID in the Name field. You need to bind the ID parameter to the ID column. Binding the row

action to the ID column of the data list means that when the row is clicked, the request parameter

will be the ID of the record in the list.

a. Click Value then click the Select Page Data Object

button.

b. In the Data Object tab, expand all_recordlist (Service Data Object) → all_recordlist (ADS) and

select ID (java.lang.Integer).

c. Click OK.

Now when the user clicks a row, the Web site will allow the user to update information about the

classified ad. Save the file and test the page if you would like. Remember to open all_records.jsp first,

because this is the page that links to update_record.jsp.

Lesson checkpoint

You have completed Lesson 1.6. In this lesson, you learned how to create Web pages that update records

in a database.

Module 1: Summary

You have completed Module 1: Create Web pages with data connections.

Lessons learned

You now know how to:

v Display information from databases on Web pages.

v Work with relational records, relational record lists, and data tables.

v Display, edit, create, and delete database records from a Web page.

v Link to a record or set of records using a row action on the data table component.

This module introduced you to JavaServer Faces technology and tooling. There is much more you can do

to make your site attractive, usable, and efficient. In the next module, “Module 2: Add advanced

features” on page 25, you will learn how to take this simple classified advertising site and turn it into a

more visually pleasing and complex application. Continue to the next module if you want to learn to

make your site look like this:

24 Display dynamic information on Web pages with JavaServer Faces

Module 2: Add advanced features

In this module, you will learn how to use advanced features to modify the format of your Web pages,

add a feature that allows users to upload files to the database, set up rules that will automatically send

users to a particular page, and automate some administrative tasks such as key generation.

Learning objectives

This module teaches you more powerful ways to use data from a database. In this module, you will:

v Format database records on a Web page

v Add a component that allows uploading files to a database from a Web page

v Navigate from page to page automatically

v Automate some database administration tasks

Display dynamic information on Web pages with JavaServer Faces 25

Time required

This module should take approximately 1 hour and 30 minutes to complete. If you decide to explore

other facets of dynamic Web sites while working on the tutorial, it could take longer to finish.

Prerequisites

If you have already completed Module 1: Creating Web pages with data connections, skip the rest of this

prerequisites section and begin working on “Lesson 2.1: Format a data table” on page 28.

If you are beginning your work in this tutorial with module 2, without doing module 1 first, you must

first import the required resources, set up the target server, and set up the database connection.

To import the required resources:

1. Import the project. Switch to the Web perspective (Window → Open Perspective → Web).

2. In the Project Explorer view of the Web perspective, ensure that your ClassifiedsTutorial project looks

like the following image:

To set the target server:

1. In the Project Explorer view of the Web perspective, right-click ClassifiedsTutorial and select

Properties

2. In the properties list, click Server.

3. In the Default server list, select the server that you want to use as the default. Click Apply.

4. In the properties list, click Targeted Runtimes.

5. In the Runtimes list, click the runtime that corresponds with the server that you selected. Click OK.

If the server that you want to use is not listed in the target runtime list, close the workbench and install

the server that you want to use. Once the server is installed, follow the instructions to set the target

server.

Note: If you do not see any servers listed in the Default server list, and you have installed server

runtimes, it is possible the server needs to be configured. To configure a server, you can do the following:

26 Display dynamic information on Web pages with JavaServer Faces

Javascript:importPISample('jsftut_wiz2+com.ibm.etools.webtools.tutorial.doc.jsftut_imp2')

1. Right-click all_records.jsp file, then select click Run As → Run on Server.

2. Choose Manually define a new server.

3. Select a server you have installed.

4. Follow the directions in the wizard to configure the server. The first time you run on server you may

receive an error. To fix the error set the target server as described above, restart the server in the

Servers view, and reload the Web page in the browser.

If you go back through the previously described steps for setting a target server, you will now find the

default server is the one you have just configured. If a server is installed but not configured, it will not

show up in the list of servers from which you can choose a default target.

For information on deploying SDOs on servers other than WebSphere Application Servers, refer to Help

topic: Deploying SDOs on non-WAS servers.

To set up the database connection:

 1. In the Project Explorer view, right-click ClassifiedsTutorial and select Properties. The Properties for

the ClassifiedsTutorial window opens.

 2. Click JDBC Connections.

 3. In the JDBC Connection properties, click New. The New Connection Profile dialog opens.

 4. In the Connection Profile Types list, select Derby, then click Next.

 5. The Create Connection Profile dialog opens.

 6. In the Name field, type DerbyDB, then click Next.

 7. In the Drivers field, click Browse. The Driver Definitions dialog opens.

 8. In the Drivers definitions list, select 10.1, then click Add.

 9. From the Available driver templates list, select Derby Embedded JDBC Driver, then click OK..

10. In the Provide Driver Details dialog, click Add JAR/Zip <shared_install_location>\plugins\
org.apache.derby.core_<version>, where <shared_install_location> is your shared installation directory

and <version> is the plugin version number. Once you have chosen the location of the JAR files, click

Open. Then click OK.

11. In the Drivers Definitions dialog, select Derby Embedded JDBC Driver then click OK.

12. In the Database location field, click Browse and select <workspace_location>\ClassifiedsTutorial\
WebContent\database, where <workspace_location> is the directory of your current workspace. Click

OK.

13. You may need to enter a User ID to access the database. A password is not required.

Tip: Any User ID will work.

14. In the New JDBC Connection wizard, click Finish. You return to the Properties for

ClassifiedsTutorial dialog. Click OK.

You can browse the files in the tutorial Web project. To open a file, double-click it in the Project Explorer

view. To view a map-like representation of how the pages are related, double-click Web Site Navigation

in the Project Explorer.

The majority of your work in this sample will involve the following files:

all_records.jsp

This is the site’s home page. It will display every classified ad in the database.

new_record.jsp

This page will create a new classified ad.

update_record.jsp

This page will change the details about an ad in the database or delete it.

Display dynamic information on Web pages with JavaServer Faces 27

JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')
JavaScript:linkHelp('com.ibm.etools.webtools.tutorial.doc.sdo')

classifiedTemplate.jtpl

This is the template for the site pages. It includes elements like the table and the gray ″Welcome

to the Classifieds″ banner that are on every page. This page also has two navigational tabs below

the gray banner that lead to the home page and the new classified ads page.

Lesson 2.1: Format a data table

The data table on the all_records.jsp page has a utilitarian appearance. It displays all of the records in the

database and links to the other pages as it was intended to do, but it is not very attractive. In this

exercise, you will improve this data table by adding a pager, style rules, and pictures of the items for

sale.

Rename column headers

In many cases, you do not want the column headers in your data table to be the exact column names

from the database. The following steps show you how to rename data table column headers to something

more appropriate.

1. Double-click the all_records.jsp page in the Project Explorer view

2. Click the Maincategory column header in the data table.

3. In the Properties view, click the h:outputText tab and change the Value text field from Maincategory

to Category.

4. If you want to, rename the other columns.

5. Save the page.

Format output components

You can also format the output components. In these steps, you will format the {PRICE} output

component to appear as a currency value instead of as an ordinary number.

1. Click the {PRICE} output component on the page.

2. In the Properties view, find the Type drop-down list and select Currency. Now the price of each item

will be shown in the currency style instead of as an ordinary number. Other styles and formats are

available for different types of data such as percentages, dates, and times. You can also customize the

format of an output component to show a type of data not listed in the Properties view, such as a

telephone number.

3. Save the page.

Sort the data

Right now, the data is not listed in any order. To provide the users with a more organized list of ads,

order the record list by category so that similar items will be grouped together.

1. Right-click all_recordlist (ADS) in the Page Data view (Window → Show View → Page Data) and click

Configure from the context menu. The Configure Relational Record List window opens. If a warning

message appears and says that a connection to your database could not be established, then you left

the server running after testing the Web site. If this happens, click cancel in each dialog and stop the

server as explained in the section ″Stopping the server″ in Testing the Web site.

2. Select Retrieve existing record or record list from scope and Reuse metadata definition from an

existing record or record list and then click Next.

3. In the next window, click to select ADS, then click Next.

4. On the right side of the next window, click Order results. This opens the Orders window.

5. In the Available columns pane, click MAINCATEGORY.

6. Click the > button to move the MAINCATEGORY column into the Order by pane. The window

should look like this:

28 Display dynamic information on Web pages with JavaServer Faces

7. Click Close to close the Orders window.

8. Click Finish to apply the changes. Now, the data will be ordered by category. You can sort by any

column in the database.

Add a pager

Rather than display every record at once in our data table, you can use a pager. A pager automatically

splits the records into pages of a set size without creating any new JSP files in your project.

1. Click anywhere inside the data table.

2. In Properties view, click h:dataTableEx from the list of HTML tags at the left of the view.

3. Click the Display options tab under h:dataTableEx.

4. In the Rows per page field, enter 5.

5. Click the button next to Add a web style pager. A picture of what the pager will look like appears at

the bottom of the data table. The visualization of the pager in Page Designer is a placeholder image

and does not actually reflect how many pages will be displayed, as this can only be determined when

the page loads in a browser.

6. Save the page. You can experiment with the different styles of pagers and the page statistics

component to find the right fit for the page if you want.

Lay out the components in a group box as a list

Instead of having exactly one output component in each column of the data table, it is possible to

combine elements within columns to produce a more attractive layout. You will use a group box to

arrange the components, similar to how you would use a hidden HTML table. Specifically, after adding

the image component to visually enhance the site, you will take most of the textual information about

each ad and place it into a single data table column, which will then be labeled DETAILS.

 1. Click the Enhanced Faces Components drawer in the Palette to open it. Drag a Panel - Group Box

component into the TITLE column of the data table. The Select Type window opens.

Display dynamic information on Web pages with JavaServer Faces 29

2. Choose Box as the group box type in the Select Type window and click OK. This group box lays out

components placed within it in a single column or row and can be oriented either vertically or

horizontally.

 3. Click the group box to select it.

 4. Using the Properties view, change the Orientation to Vertical.

 5. Drag the {TITLE} component into the list group box. The instructional text in the group box

disappears once you add a component to it.

 6. Drag an Image component from the Enhanced Faces Components drawer of the Palette into the list

group box. It helps to drop the image component onto the bottom edge of the group box in order to

ensure that the image will be placed below the title.

 7. Click the image component that you just added.

 8. Use the Size area of the Properties view to set the Width to 60 pixels and the Height to 50 pixels.

This ensures that no matter what size the images are in the database, they will always appear as

60x50 on the page.

 9. Bind the image component to the PHOTO column of all_recordlist by dragging the PHOTO column

from the Page Data view onto the image component. This will cause the image component to

display the image data found in the PHOTO column of each record. If the PHOTO (ByteArray)

column is not listed, right-click all_recordlist (ADS) in the Page Data view and select Configure

from the menu. Click OK to close the URL window if it opens. In the Configure Relational Record

List window, click Next. Select ADS and then click Next. Click to check the box next to PHOTO

(ByteArray) and then click Finish.

10. Click the graphic you inserted. On the hx:graphicImageEx tab of the Properties view, click the Select

Page Data Object

button next to the Type field. The Select Page Data Object window opens.

11. Click to expand all_recordlist (Service Data Object) → all_recordlist (ADS).

12. Click IMAGETYPE (String).

13. Click OK, then save the page.

Your page should now look like this:

30 Display dynamic information on Web pages with JavaServer Faces

Refine layout with a group box grid

A group box can also organize components in a format like a table. A list type group box can only have

one row or column, but a grid type group box can have any number of rows and columns. In these steps,

you will move the {PRICE} and {PHONE} components into the DESCRIPTION column of the data table

and include labels for them.

 1. Drag a Panel - Group Box component from the Enhanced Faces Components drawer of the Palette

into the DESCRIPTION column of the data table. The Select Type window opens.

 2. Click Grid as the type of component to add and click OK.

 3. Click the new grid group box.

 4. Use the Properties view to set the number of Columns for this group box to be 2.

 5. Drop an Output component from the Faces Components drawer of the Palette into the grid group

box. This output component will be a label for the description of the item for sale. Each output

component will have a label like this in the left cell of the table.

 6. Click the Output component (it appears in Page Designer as outputText) and use the Properties

view to assign it a Value of Description:

 7. Drag the existing {DESCRIPTION} component to the bottom edge of the grid group box. If you are

having trouble dragging the components to the right place in the group box, try holding the mouse

button down and watching the cursor. The location of the cursor in the group box indicates where

the component will appear when you let go of the mouse button. For this exercise, you should

release the mouse button when the cursor is to the right of the previous component.

 8. Drag another Output component from the Palette and drop on to the right side of the group box.

 9. Use the Properties view to assign it a Value of Price:.

10. Drag the existing {PRICE} output component on the right of the Price output text.

11. In the same way, drag a new Output component for the label for the {PHONE} component and label

it Phone:.

Display dynamic information on Web pages with JavaServer Faces 31

12. Drag the existing {PHONE} component into the grid group box to the right of the Phone output text.

Your page should now look like this:

13. Delete the empty PRICE and PHONE columns of the data table. To delete a column, click the

column and open Properties view. Then, click h:dataTable from the list of HTML tags at the left of

the view, select the column you want to delete from the list at the right of the view, and click

Remove.

14. Click the header of the Description column and use the Properties view to change its Value field to

Details. The page should look like this:

32 Display dynamic information on Web pages with JavaServer Faces

15. Save the page and test it. If you are not familiar with running applications on the server, refer to

“Lesson 1.3: Test the Web site” on page 12.

When you test the page, it should look like this:

Display dynamic information on Web pages with JavaServer Faces 33

Any ads that do not have an associated image will display a broken link. In the next lesson, you will

learn how to add a file upload component to the page to add or change an ad’s image.

Lesson checkpoint

You have completed Lesson 2.1. In this lesson you have learned how to format your data table in various

ways.

You learned how to:

v Change the column headings.

v Sort the data in your table.

v Add a pager to break the data into several smaller Web pages.

v Use group boxes in various ways to change the layout of the table on the Web page.

34 Display dynamic information on Web pages with JavaServer Faces

Lesson 2.2: Use the file upload component

Use this lesson to learn how to give users the ability to upload pictures for the classified ads. This

function is particularly important on the new_record.jsp and update_record.jsp pages. The file upload

component allows users to browse their file system, upload a file to the database, and have this file show

up in the database immediately.

Since the procedure for using the file upload component is similar in both the create and update cases,

this exercise will allow the update page to change the current image for any listing. If you want, you can

make the same changes to the new record page when you are finished with the update page.

Add the current photo to the page

You will notice that the update form is nothing more than an HTML table with static text and input

components bound to columns in the update_record relational record. Knowing this, you can add rows

and columns to modify the form just like modifying any HTML table. In the following steps, you will

add a new row to show the current photo.

Adding rows and columns is more complicated in a data table displaying a relational record list. For

information about adding columns to a data table, refer to “Lesson 1.2: Connect to a database and display

data on a Web page” on page 7.

1. Double click the update_record.jsp page in the Project Explorer view.

2. Place the cursor in the first (top left) cell of the table. This cell is labeled ID.

3. From the main menu, click Table → Specify and Add. The Add Rows or Columns dialog opens. Click

Rows then Above the selected cell. This will create a new row at the top of the table that will contain

the current photo for the record. Click OK.

4. In the left cell of this new row, type Current photo: to act as a label.

5. Drag an Image component from the Faces Components drawer of the Palette into the right-most cell

of the new row. Unlike in the previous exercise, you will allow the user to see the full image without

constraining the size, so do not change the width and height in the Properties view.

6. Bind the image component to the PHOTO column of update_record by dragging the PHOTO column

from the Page Data view onto the new image component. The image component is now bound to the

PHOTO column of the database.

7. With the graphic image still selected, go to the Properties view and click the Select Page Data Object

button next to the Type field. The Select Page Data Object window opens.

8. Click update_record (Service Data Object) → update_record (ADS) → IMAGETYPE (String).

9. Click OK Now, the page shows the current photo for the classified ad, if it has one. Your page should

look like this:

Display dynamic information on Web pages with JavaServer Faces 35

Add the file upload component to the page

Next, add a new row to the bottom of the table to contain the file upload component.

1. Place the cursor in the last row by clicking it.

2. From the menu bar, click Table → Add Row Below.

3. In the first cell of the new row, type New photo: as the label.

4. Drag a File Upload component from the Enhanced Faces Components drawer of the Palette into the

last cell of the new row.

5. In the same way that you bound the image component, bind the file upload component to the

PHOTO column of the update_record relational record. {PHOTO} is shown in the text field to show

that this component is bound to the PHOTO column and that the uploaded file will be placed in that

column. Your page should look like this:

36 Display dynamic information on Web pages with JavaServer Faces

6. Save the page and test it if you want.

Lesson checkpoint

You have completed Lesson 2.2. In this lesson you learned how to manipulate the table on the update

page, add a current photo to the table, and add a file upload component to the table.

Lesson 2.3: Use navigation rules

In this lesson, you will learn how to set up navigation rules to redirect a site user to specific Web pages.

The way the new_record.jsp page is set up, users must be very careful not to enter an ID number that is

already in use, because each record in the database must have a unique ID number. This was explained

in more detail under the note “Prevent duplicate keys” in “Lesson 1.5: Program the Submit button” on

page 17. In this lesson, you will check to see if the ID entered is unique, and if not, send the user to an

error page that describes the problem and tells the user how to fix it.

Navigation rules allow you to direct users to the error page or the all_records.jsp page after checking to

see if users have entered a duplicate ID number or not. You will assign aliases to these two possible

outcomes and then link those two aliases to the correct target pages. In this example, an error on the

create_record.jsp page will signal the ERROR_CREATE alias, which will send users to the error page. If users

fill out the create_record.jsp page correctly, it will signal the MAIN alias, which will be linked to the

all_records.jsp page as usual.

Set up the rules

 1. Double-click the new_record.jsp page in the Project Navigator.

 2. Click the Post New Listing button on the page.

Display dynamic information on Web pages with JavaServer Faces 37

3. In the Properties view, click Add Rule. The Add Navigation Rule window opens. The first rule will

send the user to an error page named create_error.jsp if something goes wrong when creating and

committing the new record to the database.

 4. In the Page field, type error_create.jsp. This page does not exist, but for the purpose of this

tutorial, you can just imagine that it exists.

 5. Click the The outcome named radio button.

 6. Type ERROR_CREATE in the text field after the The outcome named radio button.

 7. Click the This page only radio button because there is no other page in the site where the user

could trigger this particular error by entering a duplicate ID number. Click OK. The next rule will

navigate to all_records.jsp if the user entered a valid ID number.

 8. Click the Add Rule button to open the Add Navigation Rule window again.

 9. Use the Page drop down box to select all_records.jsp.

10. Click the The outcome named checkbox and then type MAIN into the text field after it.

11. Since you might want to reuse this rule in another page (for instance, the update_record.jsp page),

click the All pages radio button under This rule is used for. Click OK. The two rules are now

displayed on the Properties view.

Return aliases from the button action

All that remains now is to put the new navigation rules to work. You will add two return statements

into the code for the Post New Listing button. These return statements summon the appropriate alias so

the user is sent to the appropriate page as set in the navigation rule.

1. Click the Post New Listing button.

2. Open the Quick Edit view.

3. In the Quick Edit view, find the line that reads } catch (Throwable e) {. This catch function runs if

the user has entered a duplicate ID number.

4. Remove all the code between the opening curly brace { at the end of this line and the next closing

curly brace } a few lines down. Do not remove either curly brace.

5. In place of the code between the braces, type this text:return "ERROR_CREATE";

6. Next, remove all code below the last closing curly brace } and in its place type this text: return

"MAIN";

This step removes the gotoPage action that you added in exercise 1.4. You no longer need this code

because the navigation rules do the same thing.

Your button’s code should now look like this:

38 Display dynamic information on Web pages with JavaServer Faces

7. Save your page and test it if you want.

Optionally, you can create a simple error page named create_error.jsp which explains to your users that

an error occurred while creating their listing and to try a different ID value. You can then test these

navigation rules by attempting to add a new listing that uses an existing ID value (such as 1).

Lesson checkpoint

You have completed Lesson 2.3. In this lesson you learned how to use navigation rules to create an error

if user try to enter an invalid ID value, or to send the user to all_recordlist.jsp if the user enters a valid

ID.

Lesson 2.4: Use automatic key generation

In the previous lesson, you set up navigation rules to ensure that users entered a unique ID for the new

classified ad. This process is frustrating and unrealistic, because you would not want your site users to

find a unique ID through trial and error. In this lesson, you will set up automatic key generation so that

the database assigns a unique number for each new record in the database automatically.

Automatic key generation is a complex topic, but in short, a database can choose new keys if it has a

special table reserved for key generation. This table must have a list of unused keys in one column (the

incrementor column) and a list of numbers in order starting with 1 in the other column (the identity

column). When the database needs a new key, it takes the key from the row with the 1 in the identity

column and then gets a new key ready for the next time.

Learn more about automatic key generation:

In order to set up automatic key generation, you must know a few things about how it works. To use

automatic key generation, the database must have a table set aside for this purpose. This table has two

columns:

v The incrementor column stores available keys. When the database needs a new unique key, it retrieves

one from this column.

Display dynamic information on Web pages with JavaServer Faces 39

v The identity column is a list of numbers with only one instance of the number 1. This column tells the

database which key to select from the incrementor column. The identity column is the primary key of

the key generation table.

When the database needs a new unique key, it finds the row with an identity column value of 1. This

row’s incrementor column value holds the next available key. The database uses this key and updates the

table so a new key will be available next time.

Here is an example of a key generation table. What is the next available key for this database? The

answer is below the table.

 Table 1. Key generation table

Identity Column Incrementor Column

3 78

4 3

1 65

2 12

The next available key in this table is 65, because that key (in the incrementor column) is in the same row

as the 1 in the identity column.

After the next available key is fetched from the table, the table is updated for the next time a key is

needed. The database can also retrieve multiple keys at once by taking the incrementor column value of

more than one row.

In short, for automatic key generation to work, you need only have a key generation table set up with

two columns: a primary key column for use as an identity column, and a column for storing the next

available key. This table must be initialized with one record whose identity column value is 1 and whose

incrementor column value is the first available key to use. Once you have this set up, you are ready to

use automatic key generation.

Set up the automatic key generation

The sample database provided with this tutorial has a key generation table named KEYS. Its two

columns, as described above, will supply a new ID number for each new record. In these steps, you will

set up the create_record relational record to take its ID number from the KEYS table.

 1. Double-click the new_record.jsp page in the Project Explorer view.

 2. Double-click the create_record relational record in the Page Data view. The Configure Relational

Record window opens.

 3. Click Reuse metadata definition from an existing record or record list and Fill record with existing

data from the database then click Next.

 4. Select your database connection from the drop down list, then click Next.

 5. In the Configure Relational Record window, on the right is a list of links. Click Auto generate key.

The Key generation window opens.

 6. Select Use Auto Key Generation.

 7. Click to expand the W5SAMPLE list, then click the KEYS table.

 8. In the Select identity column field, click KEY_ID.

 9. In the Select incrementor column field, click NEXT_KEY.

Since you only need one key for the ad’s ID, you will leave the ″Keys fetched at once″ setting at 1. If

you needed multiple keys, this setting would make the database select all of them at once.

The Configure Data Object window should look like this:

40 Display dynamic information on Web pages with JavaServer Faces

10. Click Close to close the Key generation window, then Finish to apply the changes. Now the ID field

will be automatically generated for each new record. Next you must remove the ID input field so the

user cannot enter a value.

11. Place the cursor in the top row of the input form table by clicking on the Id: text.

12. Click Table → Delete → Delete Row.

13. Save the page.

Optionally, if you wanted to see what key is being generated for you, you could instead delete the input

component for the ID number and replace it with an output component bound to the ID column of

create_record. Then, the automatically generated key would appear at the top of the form but the user

would not be able to change it.

Test the completed tutorial

When you are ready to publish your Web application, you will need a server that will host it so that

users can access the Web site through the Internet. However, to test your Web site, you can use an

available runtime to simulate a server for testing purposes. To find out how to test the Web site, refer to

“Lesson 1.3: Test the Web site” on page 12.

Lesson checkpoint

You have completed Lesson 2.4. In this lesson you learned how to set up automated key generation.

Module 2: Summary

You have completed Module 2: Add advanced features.

Display dynamic information on Web pages with JavaServer Faces 41

Lessons learned

You now know how to:

v Format database records on a Web page

v Add a component that allows users to upload files to a database from a Web page

v Use navigation rules to go from page to page automatically

v Use automatic key generation

Additional resources

For more information about this product or about JavaServer Faces and JSF technology, see the links

below.

 Related information

JavaServer Faces Technology

JSF in developerWorks

Display dynamic information on Web pages with JavaServer Faces

You have completed the Display dynamic information on Web pages with JavaServer Faces tutorial. This

tutorial has taught you how to use JavaServer Faces to create Web pages that can use information from a

database.

Lessons learned

By completing this tutorial, you learned about the following concepts and tasks:

v How to connect Web pages to a database.

v How to create pages that can create, read, update, and delete records from the database.

v How to send data from one page to another.

v How to format dynamic content on Web pages.

v About JavaServer Faces and the JSF components

Additional resources

If you want to learn more about the topics covered in this tutorial, consider the following sources:

 Related information

JavaServer Faces Technology

JSF in developerWorks

42 Display dynamic information on Web pages with JavaServer Faces

http://java.sun.com/javaee/javaserverfaces/
http://www-128.ibm.com/developerworks/search/searchResults.jsp?searchType=1&searchSite=dW&searchScope=dW&query=jsf&Search.x=0&Search.y=0&Search=Search
http://java.sun.com/javaee/javaserverfaces/
http://www-128.ibm.com/developerworks/search/searchResults.jsp?searchType=1&searchSite=dW&searchScope=dW&query=jsf&Search.x=0&Search.y=0&Search=Search

	Contents
	Display dynamic information on Web pages with JavaServer Faces
	Display dynamic information on Web pages with JavaServer Faces
	Module 1: Create Web pages with data connections
	Lesson 1.1: Import the required resources and set the target server
	Import the sample project file
	Set the target server for the dynamic Web project
	Lesson checkpoint

	Lesson 1.2: Connect to a database and display data on a Web page
	Add a relational records list
	Lesson checkpoint

	Lesson 1.3: Test the Web site
	Lesson checkpoint

	Lesson 1.4: Create a new record to display and update the database
	Lesson checkpoint

	Lesson 1.5: Program the Submit button
	Bind input to the relational record (optional)
	Lesson checkpoint

	Lesson 1.6: Create an update page
	Create the update relational record
	Filter the results
	Program the update and delete buttons
	Add a row action
	Lesson checkpoint

	Module 1: Summary

	Module 2: Add advanced features
	Lesson 2.1: Format a data table
	Rename column headers
	Format output components
	Sort the data
	Add a pager
	Lay out the components in a group box as a list
	Refine layout with a group box grid
	Lesson checkpoint

	Lesson 2.2: Use the file upload component
	Add the current photo to the page
	Add the file upload component to the page
	Lesson checkpoint

	Lesson 2.3: Use navigation rules
	Set up the rules
	Return aliases from the button action
	Lesson checkpoint

	Lesson 2.4: Use automatic key generation
	Set up the automatic key generation
	Test the completed tutorial
	Lesson checkpoint

	Module 2: Summary

	Display dynamic information on Web pages with JavaServer Faces

